Math 235 (Fall 2012)
 Assignment 1 solutions

Luiz Kazuo Takei

September 25, 2012

Exercise 1

a) $x^{3}+3 x+1$

In this case, the discriminant is

$$
1^{2}+4 \frac{3^{3}}{27}>0
$$

which means there is only one real solution.
b) $x^{3}-3 x+1$

In this case, the discriminant is

$$
1^{2}+4 \frac{(-3)^{3}}{27}=-3<0
$$

which means there are more than 1 solution. The solutions are given by

$$
u+v
$$

where u^{3}, v^{3} are roots of

$$
y^{2}+y+1
$$

and

$$
u v=1
$$

The roots of

$$
y^{2}+y+1
$$

(computed using the quadratic formula) are given by

$$
e^{i \frac{2 \pi}{3}} \quad \text { and } \quad-e^{i \frac{\pi}{3}}=e^{i \frac{4 \pi}{3}} .
$$

The cube roots of $e^{i \frac{\pi}{3}}$ are given by

$$
e^{i \frac{2 \pi}{9}} \quad, \quad e^{i \frac{2 \pi}{9}} e^{i \frac{2 \pi}{3}}=e^{i \frac{8 \pi}{9}} \quad \text { and } \quad e^{i \frac{2 \pi}{9}} e^{i \frac{4 \pi}{3}}=e^{i \frac{14 \pi}{9}}
$$

Similarly, the cube roots of $e^{i \frac{4 \pi}{3}}$ are given by

$$
e^{i \frac{4 \pi}{9}} \quad, \quad e^{i \frac{4 \pi}{9}} e^{i \frac{2 \pi}{3}}=e^{i \frac{10 \pi}{9}} \quad \text { and } \quad e^{i \frac{4 \pi}{9}} e^{i \frac{4 \pi}{3}}=e^{i \frac{16 \pi}{9}}
$$

So the solutions are

$$
\zeta+\zeta^{-1} \quad, \quad \zeta^{4}+\zeta^{-4} \quad \text { and } \quad \zeta^{7}+\zeta^{-7}
$$

where

$$
\zeta:=e^{i \frac{2 \pi}{9}} .
$$

In other words, the solutions are

$$
\begin{gathered}
\left(\cos \left(\frac{2 \pi}{9}\right)+i \sin \left(\frac{2 \pi}{9}\right)\right)+\left(\cos \left(\frac{2 \pi}{9}\right)-i \sin \left(\frac{2 \pi}{9}\right)\right) \\
\left(\cos \left(\frac{2 \pi}{9}\right)+i \sin \left(\frac{2 \pi}{9}\right)\right)^{4}+\left(\cos \left(\frac{2 \pi}{9}\right)-i \sin \left(\frac{2 \pi}{9}\right)\right)^{-4} \\
\left(\cos \left(\frac{2 \pi}{9}\right)+i \sin \left(\frac{2 \pi}{9}\right)\right)^{7}+\left(\cos \left(\frac{2 \pi}{9}\right)-i \sin \left(\frac{2 \pi}{9}\right)\right)^{-7} .
\end{gathered}
$$

or, written in a different way,

$$
2 \cos \left(\frac{2 \pi}{9}\right) \quad, \quad 2 \cos \left(\frac{8 \pi}{9}\right) \quad \text { and } \quad 2 \cos \left(\frac{14 \pi}{9}\right)
$$

Exercise 2

a
To define a function from S to T, we need to define the images of each element of S. So, for instance, $a \in S$ could be mapped to either x or y (both in T). The same applies to $b, c \in S$. Therefore, we have $2^{3}=8$ functions $S \rightarrow T$.
b
For a function to be injective, the target must be at least of the same size as the domain. Since $|S|>|T|$, there is no injective function $S \rightarrow T$.
c
To be surjective, the image of the function must be equal to its target, which in our case is $T=\{x, y\}$. So there must be at least one element of S being mapped to x and one being mapped to y.

Since $|S|=3$, there are two possibilities for such a surjective function:
(i) there are exactly 2 points being mapped to x (and, hence, 1 point being mapped to y); or
(ii) there is exactly 1 point being mapped to x (and, hence, 2 points being mapped to y).

To count how many possibilities falling in the first case, we need to count in how many times we can split the set S in two subsets, one having 2 elements and the other one having 1 element. This is the same as counting how many subsets of S having 2 elements there are. And the answer to this question is

$$
\binom{3}{2}=\frac{3!}{2!\cdot 1!}=3
$$

Similarly, the number of possibilities in the second case is also

$$
\binom{3}{2}=\frac{3!}{2!\cdot 1!}=3
$$

So, there are 6 surjective functions $S \rightarrow T$.

Exercise 3

a
Notice that, by definition, $f g=f \circ g$, where

$$
(f \circ g)(x)=f(g(x))
$$

To prove two functions are the same, it is enough to show they are equal when evaluated at each point. Now,

$$
[f(g h)](x)=[f \circ(g \circ h)](x)=f((g \circ h)(x))=f(g(h(x)))
$$

and

$$
[(f g) h](x)=[(f \circ g) \circ h)](x)=(f \circ g)(h(x))=f(g(h(x)))
$$

This proves $f(g h)=(f g) h$.
b
Define $f, g: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
f(n):=n^{2} \quad \text { and } \quad g(n):=n+1
$$

Then

$$
(f g)(n)=f(g(n))=f(n+1)=(n+1)^{2} \quad \text { and } \quad(g f)(n)=g(f(n))=g\left(n^{2}\right)=n^{2}+1
$$

And therefore

$$
(f g)(1)=(1+1)^{2}=4 \quad \text { and } \quad(g f)(1)=1^{2}+1=2
$$

shows that $f g \neq g f$.

Exercise 4

Let $z:=1+\sqrt{3} i$ and notice that the polar representation of z is given by

$$
z=2 e^{i \frac{\pi}{3}} .
$$

Thus

$$
z^{111}=2^{111} e^{i \frac{\pi}{3} 111}=2^{111} e^{i 37 \pi} .
$$

Since

$$
37 \pi=18(2 \pi)+\pi,
$$

we obtain that

$$
z^{111}=2^{111} \cdot\left(e^{i 2 \pi}\right)^{18} \cdot e^{i \pi}=2^{111} \cdot(1) \cdot(-1)=-2^{111}
$$

is an integer.

Exercise 5

We are going to use the following fact (which can itself be proved by induction):

$$
1+2+\cdots+n=\frac{n(n+1)}{2} .
$$

Now we prove by induction that for all $n \geq 1$

$$
1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2} .
$$

The base case $n=1$ is trivial.
We therefore assume it holds for n and prove it for $n+1$.

$$
\begin{aligned}
1^{3}+2^{3}+\cdots++n^{3}+(n+1)^{3} & =(1+2+\cdots+n)^{2}+(n+1)^{3} \\
& =\frac{n^{2}(n+1)^{2}}{2^{2}}+(n+1)^{3} \\
& =(n+1)^{2}\left[\frac{n^{2}}{4}+(n+1)\right] \\
& \left.=(n+1)^{2}{ }^{2} \frac{(n+2)^{2}}{4}\right] \\
& =\frac{(n+1)^{2}(n+2)^{2}}{2^{2}} \\
& =(1+2+\cdots+(n+1))^{2} .
\end{aligned}
$$

Exercise 6

$$
\begin{aligned}
910091 & =3619 \cdot 251+1722 \\
3619 & =1722 \cdot 2+175 \\
1722 & =175 \cdot 9+147 \\
175 & =147 \cdot 1+28 \\
147 & =28 \cdot 5+7 \\
28 & =7 \cdot 4+0
\end{aligned}
$$

Since 7 is the last non-zero remainder,

$$
\operatorname{gcd}(910091,3619)=7
$$

Exercise 7

First we show that 7 divides $8^{n}-1$ for all $n \geq 0$.
It is known that

$$
x^{n}-1=(x-1)\left(x^{n-1}+x^{n-2}+\cdots+x+1\right)
$$

for every number x (cf. example 2.3.5 in notes).
Therefore

$$
8^{n}-1=7 \cdot\left(8^{n-1}+8^{n-2}+\cdots+8+1\right)
$$

is clearly divisible by 7 .
We now prove by induction that 49 divides $8^{n}-7 n-1$ for all $n \geq 0$.
As usual, the base case $n=0$ is trivial. We now assume it holds for n and show it for $n+1$.

We know 49 divides

$$
8^{n}-7 n-1=7\left(8^{n-1}+\cdots+8+1\right)-7 n=7\left(8^{n-1}+\cdots+8+1-n\right)
$$

Hence, 7 divides $8^{n-1}+\cdots+8+1-n$.
We now want to show that 49 divides

$$
8^{n+1}-7(n+1)-1=7\left(8^{n}+\cdots+8+1-(n+1)\right)
$$

which is equivalent to proving that 7 divides

$$
8^{n}+\cdots+8+1-(n+1)=\left(8^{n-1}+\cdots+8+1-n\right)+\left(8^{n}-1\right)
$$

But the first term on the right-hand side is divisible by 7 by the induction hypothesis and the second term is divisible by 7 by the first part of this exercise.

This finishes the solution of this exercise.

Exercise 8

Recall that the addition law was defined on \mathbb{N} as follows:

$$
0+m:=m \quad \text { and } \quad S(n)+m:=S(n+m)
$$

Moreover, it was proved in class that this addition is commutative (i.e., $n+m=m+n)$.

We now want to show it is associative, i.e.,

$$
(r+s)+t=r+(s+t)
$$

for all $r, s, t \in \mathbb{N}$.
To prove this, we fix s and t and use induction on r.
Let's prove the base case $r=0$:

$$
(0+s)+t=s+t=0+(s+t)
$$

Now we assume it holds for r and show it for $S(r)$:

$$
\begin{aligned}
(S(r)+s)+t & =S(r+s)+t=S((r+s)+t)=S(r+(s+t)) \\
& =S(r)+(s+t)
\end{aligned}
$$

where the third equality follows from the induction hypothesis and the other ones follow from the definition of addition on \mathbb{N}.

Exercise 9

To show that $|A|<\left|2^{A}\right|$, we need to show that $|A| \leq\left|2^{A}\right|$ and $|A| \neq\left|2^{A}\right|$.
It is easy to show that $|A| \leq\left|2^{A}\right|$. In fact, construct the injection $f: A \rightarrow 2^{A}$ given by $f(a):=\{a\}$.

Now we need to show that $|A| \neq\left|2^{A}\right|$, i.e., we need to show that there is no bijection $A \rightarrow 2^{A}$. To prove this, we take a function $g: A \rightarrow 2^{A}$ and show it can't be surjective. Given a function $g: A \rightarrow 2^{A}$, we may construct the following subset of A :

$$
X:=\{a \in A \mid a \notin g(a)\} \in 2^{A}
$$

(note this makes sense because $g(a)$, being an element of 2^{A}, is a subset of A). Claim. X is not in the image of g.

Proof. Suppose X is in the image of g. Then, there exists $a_{0} \in A$ such that $X=g\left(a_{0}\right)$.

We may ask ourselves: is $a_{0} \in X$?
If $a_{0} \in X$, it satisfies the condition to be in X, namely: $a_{0} \notin g\left(a_{0}\right)$. But $g\left(a_{0}\right)=X$. So $a_{0} \notin X$.

On the other hand, if $a_{0} \notin X$, it does not satisfies the condition to be in X, namely: $a_{0} \in g\left(a_{0}\right)=X$.

The conclusion is, if there is $a_{0} \in A$ such that $X=g\left(a_{0}\right)$, then it satisfies the following:

$$
a_{0} \in X \Leftrightarrow a_{0} \notin X
$$

which is obviously impossible (unless you live in a crazy logical world...).
We showed that if we have a function $g: A \rightarrow 2^{A}$, it can't be surjective. In particular, there is no bijective function $A \rightarrow 2^{A}$, meaning $|A| \neq\left|2^{A}\right|$ as we wanted to show.

Exercise 10

We first prove that if the decimal expansion of a number becomes periodic, then it is a rational number.

The first step is to note that if the decimal expansion stops, then it is rational. Indeed, if

$$
x=m \cdot a_{1} \cdots a_{r}
$$

for $m \in \mathbb{Z}$ and $a_{i} \in\{0, \ldots, 9\}$, then

$$
10^{r} x=u \in \mathbb{Z}
$$

and, thus,

$$
x=\frac{u}{10^{r}} \in \mathbb{Q} .
$$

Now, if x is any number whose decimal expansion becomes periodic, we may write x as

$$
x=y+10^{-s} z
$$

where y is a number whose decimal expansion stops (hence, rational) and z is a number whose decimal expansion is periodic and satisfies $0<z<1$.

So, it remains only to show that z is rational (since a sum of rational numbers is again rational).

Suppose

$$
z=0 . a_{1} a_{2} \cdots a_{t} a_{1} a_{2} \cdots a_{t} \cdots
$$

i.e., the digits $a_{1} \cdots a_{t}$ just keep repeating in the expansion of z.

Then it is easy to see that

$$
10^{t} z=w+z
$$

where w is the integer whose digits are $a_{0} \cdots a_{t}$, i.e., $w=a_{1} 10^{t-1}+\cdots+a_{t-1} 10+$ a_{t} and, so,

$$
z=\frac{w}{10^{t}-1} \in \mathbb{Q}
$$

We now prove the converse: if a number is rational, then its decimal expansion becomes periodic.

For this, we need to understand how to write the decimal expansion of a rational number $\frac{m}{n}$. We may assume $0<m<n$ (the other cases can be reduced to this one). So

$$
\frac{m}{n}=0 . a_{1} a_{2} \ldots
$$

To find a_{1}, we use Euclidean division for $10 m$ and n, i.e.,

$$
10 m=a_{1} \cdot n+r_{1}
$$

where $0 \leq r_{1}<n$.
To find a_{2}, we use Euclidean division for $10 r_{1}$ and n, i.e.,

$$
10 r_{1}=a_{2} \cdot n+r_{2}
$$

where $0 \leq r_{2}<n$.
In general, to find a_{i}, we use Euclidean division for $10 r_{i-1}$ and n, i.e.,

$$
10 r_{i-1}=a_{i} \cdot n+r_{i}
$$

where $0 \leq r_{i}<n$.

So, the digit a_{i} depends only on the remainders of the divisions by n of the previous step. Since these remainders can only be one of the

$$
0,1, \ldots, n-1
$$

it follows that at some point, the remainder will start repeating and then the digit a_{i} will start repeating.

