Math 235 (Fall 2012) Assignment 1 solutions

Luiz Kazuo Takei

September 25, 2012

Exercise 1

a) $x^3 + 3x + 1$

In this case, the discriminant is

$$1^2 + 4\frac{3^3}{27} > 0$$

which means there is only one real solution.

b) $x^3 - 3x + 1$

In this case, the discriminant is

$$1^2 + 4\frac{(-3)^3}{27} = -3 < 0$$

which means there are more than 1 solution. The solutions are given by

$$u + v$$

where u^3, v^3 are roots of

and

uv = 1.

 $y^2 + y + 1$

The roots of

$$y^2 + y + 1$$

(computed using the quadratic formula) are given by

$$e^{i\frac{2\pi}{3}}$$
 and $-e^{i\frac{\pi}{3}} = e^{i\frac{4\pi}{3}}$.

The cube roots of $e^{i\frac{\pi}{3}}$ are given by

 $e^{i\frac{2\pi}{9}}$, $e^{i\frac{2\pi}{9}}e^{i\frac{2\pi}{3}} = e^{i\frac{8\pi}{9}}$ and $e^{i\frac{2\pi}{9}}e^{i\frac{4\pi}{3}} = e^{i\frac{14\pi}{9}}$.

Similarly, the cube roots of $e^{i\frac{4\pi}{3}}$ are given by

$$e^{i\frac{4\pi}{9}}$$
, $e^{i\frac{4\pi}{9}}e^{i\frac{2\pi}{3}} = e^{i\frac{10\pi}{9}}$ and $e^{i\frac{4\pi}{9}}e^{i\frac{4\pi}{3}} = e^{i\frac{16\pi}{9}}$.

So the solutions are

$$\zeta + \zeta^{-1}$$
 , $\zeta^4 + \zeta^{-4}$ and $\zeta^7 + \zeta^{-7}$

where

$$\zeta := e^{i\frac{2\pi}{9}}.$$

In other words, the solutions are

$$(\cos(\frac{2\pi}{9}) + i\sin(\frac{2\pi}{9})) + (\cos(\frac{2\pi}{9}) - i\sin(\frac{2\pi}{9})) (\cos(\frac{2\pi}{9}) + i\sin(\frac{2\pi}{9}))^4 + (\cos(\frac{2\pi}{9}) - i\sin(\frac{2\pi}{9}))^{-4} (\cos(\frac{2\pi}{9}) + i\sin(\frac{2\pi}{9}))^7 + (\cos(\frac{2\pi}{9}) - i\sin(\frac{2\pi}{9}))^{-7}.$$

or, written in a different way,

$$2\cos(\frac{2\pi}{9})$$
, $2\cos(\frac{8\pi}{9})$ and $2\cos(\frac{14\pi}{9})$

Exercise 2

а

To define a function from S to T, we need to define the images of each element of S. So, for instance, $a \in S$ could be mapped to either x or y (both in T). The same applies to $b, c \in S$. Therefore, we have $2^3 = 8$ functions $S \to T$.

\mathbf{b}

For a function to be injective, the target must be at least of the same size as the domain. Since |S| > |T|, there is no injective function $S \to T$.

\mathbf{c}

To be surjective, the image of the function must be equal to its target, which in our case is $T = \{x, y\}$. So there must be at least one element of S being mapped to x and one being mapped to y.

Since |S| = 3, there are two possibilities for such a surjective function:

- (i) there are exactly 2 points being mapped to x (and, hence, 1 point being mapped to y); or
- (ii) there is exactly 1 point being mapped to x (and, hence, 2 points being mapped to y).

To count how many possibilities falling in the first case, we need to count in how many times we can split the set S in two subsets, one having 2 elements and the other one having 1 element. This is the same as counting how many subsets of S having 2 elements there are. And the answer to this question is

$$\binom{3}{2} = \frac{3!}{2! \cdot 1!} = 3.$$

Similarly, the number of possibilities in the second case is also

$$\binom{3}{2} = \frac{3!}{2! \cdot 1!} = 3.$$

So, there are 6 surjective functions $S \to T$.

Exercise 3

а

Notice that, by definition, $fg = f \circ g$, where

$$(f \circ g)(x) = f(g(x)).$$

To prove two functions are the same, it is enough to show they are equal when evaluated at each point. Now,

$$[f(gh)](x) = [f \circ (g \circ h)](x) = f((g \circ h)(x)) = f(g(h(x))),$$

and

$$[(fg)h](x) = [(f \circ g) \circ h)](x) = (f \circ g)(h(x)) = f(g(h(x))).$$

This proves f(gh) = (fg)h.

\mathbf{b}

Define $f,g:\mathbb{N}\to\mathbb{N}$ by

$$f(n) := n^2$$
 and $g(n) := n + 1$.

Then

$$(fg)(n) = f(g(n)) = f(n+1) = (n+1)^2$$
 and $(gf)(n) = g(f(n)) = g(n^2) = n^2 + 1.$

And therefore

$$(fg)(1) = (1+1)^2 = 4$$
 and $(gf)(1) = 1^2 + 1 = 2$.

shows that $fg \neq gf$.

Exercise 4

Let $z := 1 + \sqrt{3}i$ and notice that the polar representation of z is given by

$$z = 2e^{i\frac{\pi}{3}}.$$

Thus

$$z^{111} = 2^{111} e^{i\frac{\pi}{3}111} = 2^{111} e^{i37\pi}.$$

Since

$$37\pi = 18(2\pi) + \pi$$
,

we obtain that

$$z^{111} = 2^{111} \cdot (e^{i2\pi})^{18} \cdot e^{i\pi} = 2^{111} \cdot (1) \cdot (-1) = -2^{111}$$

is an integer.

Exercise 5

We are going to use the following fact (which can itself be proved by induction):

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}.$$

Now we prove by induction that for all $n\geq 1$

$$1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2.$$

The base case n = 1 is trivial.

We therefore assume it holds for n and prove it for n + 1.

$$1^{3} + 2^{3} + \dots + n^{3} + (n+1)^{3} = (1+2+\dots+n)^{2} + (n+1)^{3}$$

$$= \frac{n^{2}(n+1)^{2}}{2^{2}} + (n+1)^{3}$$

$$= (n+1)^{2} \left[\frac{n^{2}}{4} + (n+1) \right]$$

$$= (n+1)^{2} \left[\frac{(n+2)^{2}}{4} \right]$$

$$= \frac{(n+1)^{2}(n+2)^{2}}{2^{2}}$$

$$= (1+2+\dots+(n+1))^{2}.$$

Exercise 6

Since 7 is the last non-zero remainder,

$$gcd(910091, 3619) = 7.$$

Exercise 7

First we show that 7 divides $8^n - 1$ for all $n \ge 0$.

It is known that

$$x^{n} - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1)$$

for every number x (cf. example 2.3.5 in notes).

Therefore

$$8^{n} - 1 = 7 \cdot (8^{n-1} + 8^{n-2} + \dots + 8 + 1)$$

~

is clearly divisible by 7.

We now prove by induction that 49 divides $8^n - 7n - 1$ for all $n \ge 0$.

.

As usual, the base case n = 0 is trivial. We now assume it holds for n and show it for n + 1.

We know 49 divides

$$8^{n} - 7n - 1 = 7(8^{n-1} + \dots + 8 + 1) - 7n = 7(8^{n-1} + \dots + 8 + 1 - n).$$

Hence, 7 divides $8^{n-1} + \cdots + 8 + 1 - n$. We now want to show that 49 divides

$$8^{n+1} - 7(n+1) - 1 = 7(8^n + \dots + 8 + 1 - (n+1)),$$

which is equivalent to proving that 7 divides

$$8^{n} + \dots + 8 + 1 - (n+1) = (8^{n-1} + \dots + 8 + 1 - n) + (8^{n} - 1).$$

But the first term on the right-hand side is divisible by 7 by the induction hypothesis and the second term is divisible by 7 by the first part of this exercise.

This finishes the solution of this exercise.

Exercise 8

Recall that the addition law was defined on $\mathbb N$ as follows:

$$0 + m := m$$
 and $S(n) + m := S(n + m)$.

Moreover, it was proved in class that this addition is commutative (i.e., n + m = m + n).

We now want to show it is associative, i.e.,

$$(r+s) + t = r + (s+t)$$

for all $r, s, t \in \mathbb{N}$.

To prove this, we fix s and t and use induction on r. Let's prove the base case r = 0:

$$(0+s) + t = s + t = 0 + (s+t).$$

Now we assume it holds for r and show it for S(r):

$$\begin{array}{rcl} (S(r)+s)+t &=& S(r+s)+t = S((r+s)+t) = S(r+(s+t)) \\ &=& S(r)+(s+t), \end{array}$$

where the third equality follows from the induction hypothesis and the other ones follow from the definition of addition on \mathbb{N} .

Exercise 9

To show that $|A| < |2^A|$, we need to show that $|A| \le |2^A|$ and $|A| \ne |2^A|$.

It is easy to show that $|A| \leq |2^A|$. In fact, construct the injection $f : A \to 2^A$ given by $f(a) := \{a\}$.

Now we need to show that $|A| \neq |2^A|$, i.e., we need to show that there is no bijection $A \to 2^A$. To prove this, we take a function $g: A \to 2^A$ and show it can't be surjective. Given a function $g: A \to 2^A$, we may construct the following subset of A:

$$X := \{a \in A \mid a \notin g(a)\} \in 2^A$$

(note this makes sense because g(a), being an element of 2^A , is a subset of A). Claim. X is not in the image of g.

Proof. Suppose X is in the image of g. Then, there exists $a_0 \in A$ such that $X = g(a_0)$.

We may ask ourselves: is $a_0 \in X$?

If $a_0 \in X$, it satisfies the condition to be in X, namely: $a_0 \notin g(a_0)$. But $g(a_0) = X$. So $a_0 \notin X$.

On the other hand, if $a_0 \notin X$, it does not satisfies the condition to be in X, namely: $a_0 \in g(a_0) = X$.

The conclusion is, if there is $a_0 \in A$ such that $X = g(a_0)$, then it satisfies the following:

$$a_0 \in X \Leftrightarrow a_0 \notin X,$$

which is obviously impossible (unless you live in a crazy logical world...).

We showed that if we have a function $g : A \to 2^A$, it can't be surjective. In particular, there is no bijective function $A \to 2^A$, meaning $|A| \neq |2^A|$ as we wanted to show.

Exercise 10

We first prove that if the decimal expansion of a number becomes periodic, then it is a rational number.

The first step is to note that if the decimal expansion stops, then it is rational. Indeed, if

$$x = m.a_1 \cdots a_r,$$

for $m \in \mathbb{Z}$ and $a_i \in \{0, \ldots, 9\}$, then

$$10^r x = u \in \mathbb{Z}$$

and, thus,

$$x = \frac{u}{10^r} \in \mathbb{Q}.$$

Now, if x is any number whose decimal expansion becomes periodic, we may write x as

$$x = y + 10^{-s}z$$

where y is a number whose decimal expansion stops (hence, rational) and z is a number whose decimal expansion is periodic and satisfies 0 < z < 1.

So, it remains only to show that z is rational (since a sum of rational numbers is again rational).

Suppose

$$z = 0.a_1 a_2 \cdots a_t a_1 a_2 \cdots a_t \dots$$

i.e., the digits $a_1 \cdots a_t$ just keep repeating in the expansion of z.

Then it is easy to see that

$$10^t z = w + z,$$

where w is the integer whose digits are $a_0 \cdots a_t$, i.e., $w = a_1 10^{t-1} + \cdots + a_{t-1} 10 + a_t$ and, so,

$$z = \frac{w}{10^t - 1} \in \mathbb{Q}.$$

We now prove the converse: if a number is rational, then its decimal expansion becomes periodic.

For this, we need to understand how to write the decimal expansion of a rational number $\frac{m}{n}$. We may assume 0 < m < n (the other cases can be reduced to this one). So

$$\frac{m}{n} = 0.a_1 a_2 \dots$$

To find a_1 , we use Euclidean division for 10m and n, i.e.,

$$10m = a_1 \cdot n + r_1$$

where $0 \leq r_1 < n$.

To find a_2 , we use Euclidean division for $10r_1$ and n, i.e.,

$$10r_1 = a_2 \cdot n + r_2$$

where $0 \le r_2 < n$.

In general, to find a_i , we use Euclidean division for $10r_{i-1}$ and n, i.e.,

$$10r_{i-1} = a_i \cdot n + r_i$$

where $0 \leq r_i < n$.

So, the digit a_i depends only on the remainders of the divisions by n of the previous step. Since these remainders can only be one of the

$$0, 1, \ldots, n-1$$

it follows that at some point, the remainder will start repeating and then the digit a_i will start repeating.