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Exercise 1

a) x3 + 3x + 1

In this case, the discriminant is

12 + 4
33

27
> 0

which means there is only one real solution.

b) x3 − 3x + 1

In this case, the discriminant is

12 + 4
(−3)3

27
= −3 < 0

which means there are more than 1 solution. The solutions are given by

u + v

where u3, v3 are roots of
y2 + y + 1

and
uv = 1.

The roots of
y2 + y + 1

(computed using the quadratic formula) are given by

ei 2π
3 and −ei π

3 = ei 4π
3 .
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The cube roots of ei π
3 are given by

ei 2π
9 , ei 2π

9 ei 2π
3 = ei 8π

9 and ei 2π
9 ei 4π

3 = ei 14π
9 .

Similarly, the cube roots of ei 4π
3 are given by

ei 4π
9 , ei 4π

9 ei 2π
3 = ei 10π

9 and ei 4π
9 ei 4π

3 = ei 16π
9 .

So the solutions are

ζ + ζ−1 , ζ4 + ζ−4 and ζ7 + ζ−7

where
ζ := ei 2π

9 .

In other words, the solutions are

(cos( 2π
9 ) + i sin( 2π

9 )) + (cos( 2π
9 )− i sin( 2π

9 ))
(cos( 2π

9 ) + i sin( 2π
9 ))4 + (cos( 2π

9 )− i sin( 2π
9 ))−4

(cos( 2π
9 ) + i sin( 2π

9 ))7 + (cos( 2π
9 )− i sin( 2π

9 ))−7.

or, written in a different way,

2 cos( 2π
9 ) , 2 cos( 8π

9 ) and 2 cos( 14π
9 )

Exercise 2

a

To define a function from S to T , we need to define the images of each element
of S. So, for instance, a ∈ S could be mapped to either x or y (both in T ). The
same applies to b, c ∈ S. Therefore, we have 23 = 8 functions S → T .

b

For a function to be injective, the target must be at least of the same size as
the domain. Since |S| > |T |, there is no injective function S → T .

c

To be surjective, the image of the function must be equal to its target, which
in our case is T = {x, y}. So there must be at least one element of S being
mapped to x and one being mapped to y.

Since |S| = 3, there are two possibilities for such a surjective function:

(i) there are exactly 2 points being mapped to x (and, hence, 1 point being
mapped to y); or

(ii) there is exactly 1 point being mapped to x (and, hence, 2 points being
mapped to y).
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To count how many possibilities falling in the first case, we need to count in
how many times we can split the set S in two subsets, one having 2 elements
and the other one having 1 element. This is the same as counting how many
subsets of S having 2 elements there are. And the answer to this question is

�
3
2

�
=

3!
2! · 1!

= 3.

Similarly, the number of possibilities in the second case is also
�

3
2

�
=

3!
2! · 1!

= 3.

So, there are 6 surjective functions S → T .

Exercise 3

a

Notice that, by definition, fg = f ◦ g, where

(f ◦ g)(x) = f(g(x)).

To prove two functions are the same, it is enough to show they are equal
when evaluated at each point. Now,

[f(gh)](x) = [f ◦ (g ◦ h)](x) = f((g ◦ h)(x)) = f(g(h(x))),

and
[(fg)h](x) = [(f ◦ g) ◦ h)](x) = (f ◦ g)(h(x)) = f(g(h(x))).

This proves f(gh) = (fg)h.

b

Define f, g : N → N by

f(n) := n2 and g(n) := n + 1.

Then

(fg)(n) = f(g(n)) = f(n + 1) = (n + 1)2 and (gf)(n) = g(f(n)) = g(n2) = n2 + 1.

And therefore

(fg)(1) = (1 + 1)2 = 4 and (gf)(1) = 12 + 1 = 2.

shows that fg �= gf .
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Exercise 4

Let z := 1 +
√

3i and notice that the polar representation of z is given by

z = 2ei π
3 .

Thus
z111 = 2111ei π

3 111 = 2111ei37π.

Since
37π = 18(2π) + π,

we obtain that

z111 = 2111 · (ei2π)18 · eiπ = 2111 · (1) · (−1) = −2111

is an integer.

Exercise 5

We are going to use the following fact (which can itself be proved by induction):

1 + 2 + · · · + n =
n(n + 1)

2
.

Now we prove by induction that for all n ≥ 1

13 + 23 + · · · + n3 = (1 + 2 + · · · + n)2.

The base case n = 1 is trivial.
We therefore assume it holds for n and prove it for n + 1.

13 + 23 + · · · + +n3 + (n + 1)3 = (1 + 2 + · · · + n)2 + (n + 1)3

= n2(n+1)2

22 + (n + 1)3

= (n + 1)2
�

n2

4 + (n + 1)
�

= (n + 1)2
�

(n+2)2

4

�

= (n+1)2(n+2)2

22

= (1 + 2 + · · · + (n + 1))2.

Exercise 6
910091 = 3619 · 251 + 1722

3619 = 1722 · 2 + 175
1722 = 175 · 9 + 147
175 = 147 · 1 + 28
147 = 28 · 5 + 7
28 = 7 · 4 + 0

Since 7 is the last non-zero remainder,

gcd(910091, 3619) = 7.

4



Exercise 7

First we show that 7 divides 8n − 1 for all n ≥ 0.
It is known that

xn − 1 = (x− 1)(xn−1 + xn−2 + · · · + x + 1)

for every number x (cf. example 2.3.5 in notes).
Therefore

8n − 1 = 7 · (8n−1 + 8n−2 + · · · + 8 + 1)

is clearly divisible by 7.
We now prove by induction that 49 divides 8n − 7n− 1 for all n ≥ 0.
As usual, the base case n = 0 is trivial. We now assume it holds for n and

show it for n + 1.
We know 49 divides

8n − 7n− 1 = 7(8n−1 + · · · + 8 + 1)− 7n = 7(8n−1 + · · · + 8 + 1− n).

Hence, 7 divides 8n−1 + · · · + 8 + 1− n.
We now want to show that 49 divides

8n+1 − 7(n + 1)− 1 = 7(8n + · · · + 8 + 1− (n + 1)),

which is equivalent to proving that 7 divides

8n + · · · + 8 + 1− (n + 1) = (8n−1 + · · · + 8 + 1− n) + (8n − 1).

But the first term on the right-hand side is divisible by 7 by the induction
hypothesis and the second term is divisible by 7 by the first part of this exercise.

This finishes the solution of this exercise.

Exercise 8

Recall that the addition law was defined on N as follows:

0 + m := m and S(n) + m := S(n + m).

Moreover, it was proved in class that this addition is commutative (i.e.,
n + m = m + n).

We now want to show it is associative, i.e.,

(r + s) + t = r + (s + t)

for all r, s, t ∈ N.
To prove this, we fix s and t and use induction on r.
Let’s prove the base case r = 0:

(0 + s) + t = s + t = 0 + (s + t).

5



Now we assume it holds for r and show it for S(r):

(S(r) + s) + t = S(r + s) + t = S((r + s) + t) = S(r + (s + t))
= S(r) + (s + t),

where the third equality follows from the induction hypothesis and the other
ones follow from the definition of addition on N.

Exercise 9

To show that |A| < |2A|, we need to show that |A| ≤ |2A| and |A| �= |2A|.
It is easy to show that |A| ≤ |2A|. In fact, construct the injection f : A→ 2A

given by f(a) := {a}.
Now we need to show that |A| �= |2A|, i.e., we need to show that there is

no bijection A → 2A. To prove this, we take a function g : A → 2A and show
it can’t be surjective. Given a function g : A → 2A, we may construct the
following subset of A:

X := {a ∈ A | a �∈ g(a)} ∈ 2A

(note this makes sense because g(a), being an element of 2A, is a subset of A).
Claim. X is not in the image of g.

Proof. Suppose X is in the image of g. Then, there exists a0 ∈ A such that
X = g(a0).

We may ask ourselves: is a0 ∈ X?
If a0 ∈ X, it satisfies the condition to be in X, namely: a0 �∈ g(a0). But

g(a0) = X. So a0 �∈ X.
On the other hand, if a0 �∈ X, it does not satisfies the condition to be in X,

namely: a0 ∈ g(a0) = X.
The conclusion is, if there is a0 ∈ A such that X = g(a0), then it satisfies

the following:
a0 ∈ X ⇔ a0 �∈ X,

which is obviously impossible (unless you live in a crazy logical world...).

We showed that if we have a function g : A → 2A, it can’t be surjective.
In particular, there is no bijective function A → 2A, meaning |A| �= |2A| as we
wanted to show.

Exercise 10

We first prove that if the decimal expansion of a number becomes periodic, then
it is a rational number.

The first step is to note that if the decimal expansion stops, then it is rational.
Indeed, if

x = m.a1 · · · ar,
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for m ∈ Z and ai ∈ {0, . . . , 9}, then

10rx = u ∈ Z

and, thus,
x =

u

10r
∈ Q.

Now, if x is any number whose decimal expansion becomes periodic, we may
write x as

x = y + 10−sz

where y is a number whose decimal expansion stops (hence, rational) and z is
a number whose decimal expansion is periodic and satisfies 0 < z < 1.

So, it remains only to show that z is rational (since a sum of rational numbers
is again rational).

Suppose
z = 0.a1a2 · · · ata1a2 · · · at . . . ,

i.e., the digits a1 · · · at just keep repeating in the expansion of z.
Then it is easy to see that

10tz = w + z,

where w is the integer whose digits are a0 · · · at, i.e., w = a110t−1+· · ·+at−110+
at and, so,

z =
w

10t − 1
∈ Q.

We now prove the converse: if a number is rational, then its decimal expan-
sion becomes periodic.

For this, we need to understand how to write the decimal expansion of a
rational number m

n . We may assume 0 < m < n (the other cases can be
reduced to this one). So

m

n
= 0.a1a2 . . . .

To find a1, we use Euclidean division for 10m and n, i.e.,

10m = a1 · n + r1

where 0 ≤ r1 < n.
To find a2, we use Euclidean division for 10r1 and n, i.e.,

10r1 = a2 · n + r2

where 0 ≤ r2 < n.
In general, to find ai, we use Euclidean division for 10ri−1 and n, i.e.,

10ri−1 = ai · n + ri

where 0 ≤ ri < n.
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So, the digit ai depends only on the remainders of the divisions by n of the
previous step. Since these remainders can only be one of the

0, 1, . . . , n− 1

it follows that at some point, the remainder will start repeating and then the
digit ai will start repeating.
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