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1. Let f(x) and g(x) be non-zero polynomials in the ring F [x] of polynomials with coefficients in
a field F . Let L be the set of all non-zero linear combinations of f and g:

L = {a(x)f(x) + b(x)g(x), with a, b ∈ F [x] and af + bg 6= 0.}.

(a) Let h(x) be a monic polynomial in L of minimal degree. Show that h(x) divides both f(x) and
g(x).
(b) Show that this polynomial h(x) is the gcd of f(x) and g(x).

2. Let R = Z[x] be the ring of polynomials with coefficients in Z. Show that the ideal

I = (2, x2 + x + 1) = {2f(x) + (x2 + x + 1)g(x), with f, g ∈ Z[x] }

generated by 2 and x2 + x + 1 is not a principal ideal. Show that the quotient R/I is a field. How
many elements does it contain?

3. Let (an) be a sequence of integers defined recursively by the rules

a0 = 14, a1 = 21, an+1 = 5an + an−1.

What is the gcd of a1000 and a1001? You should prove that your answer is correct.

4. Let F = Z/pZ be the field with p elements, where p is a prime. Show that the polynomial
xp−1 − 1 admits the factorisation

xp−1 − 1 = (x − 1)(x − 2) · · · (x − (p − 1))

in F [x]. State Wilson’s theorem and derive it from the above polynomial identity.

5. Let n = 1729 = 7×13×19 and let a be any integer satisfying gcd(a, n) = 1. Show that an−1 ≡ 1
(mod n).
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6. Show that the ring
Z[
√
−5] = {a + b

√
−5, with a, b ∈ Z}

is not a unique factorisation ring by factoring the number 6 into irreducible elements in this ring
in two fundamentally distinct ways.

7. Write down the elements in the alternating group G = A4 on 4 letters, using cycle notation.
Write down the cosets in G/H and in H\G where H is the subgroup of G given by

H = {1, (12)(34), (13)(24), (14)(23)}.

Using this calculation, show that H is a normal subgroup of G. What is the quotient G/H
isomorphic to?

8. Let G be a finite group. Show that the order of any element in G divides the cardinality of G.
Explain how this fact can be used to prove Fermat’s Little Theorem.

9. Let G = Z/3Z × Z/3Z be a product of two cyclic groups of order 3. Show that G cannot be
(isomorphic to) a subgroup of the multiplicative group (Z/pZ)×, where p is a prime number. (Hint:
consider the polynomial x3 − 1 in Z/pZ[x].)

10. Let m and n be two integers that are relatively prime, and let

f : Z −→ Z/mZ × Z/nZ

be the homomorphism sending the integer a to the pair (a (mod m), a (mod n)). What is the
kernel of f? Explain why this can be used, in conjunction with the first isomorphism theorem for
rings, to conclude the Chinese remainder theorem.


