189-235A: Algebra 1
 Practice Midterm Exam

1. Recall that the power set of a set A, denoted $P(A)$, is the set of all subsets of A. Let $f: A \rightarrow P(A)$ be a function from A to its power set. Show that the subset B of A defined by

$$
B=\{a \in A \text { such that } a \notin f(a)\}
$$

is not an element of the image of f.

2. Compute the greatest common divisor of the integers

$$
\begin{aligned}
a & =13200000008150000000000000000132 \\
b & =1320000000815
\end{aligned}
$$

3. Compute the least residue modulo $N=95$ of the integer 3^{1100}
4. Using only the basic properties of the gcd proved in class, (and not the fundamental theorem of arithmetic) show that if a p is a prime and p divides a product $a b$ of two integers, then p necessarily divides either a or b.
