
ASSIGNMENT 2: SOLUTIONS

Question 1.

Solution. gcd (9 + 49i, 31 + 39i) = 11− 5i as

11− 5i = 2i(31 + 39i)− (1 + 2i)(9 + 49i).

�

Question 2.

Solution. By what we’re given in the question, it follows that

(15 +
√
−118)(15−

√
−118) = 334 = 73

are two different factorizations of 343 in Z[
√
−118]. We need to show that this is a factorization into irreducibles. We

can do this via norm arguments.
For example, let’s show 15±

√
−118 are irreducible. Suppose we can write

15 +
√
−118 = αβ = (a+ b

√
−118)(c+ d

√
−118)

for some a, b, c, d ∈ Z, and hence

334 = |15 +
√
−118| = (αβ)(ᾱβ̄) = (αᾱ)(ββ̄) = (a2 + b2118)(c2 + d2118).

Since 334 < 1182, then either b = 0 or d = 0. Wolog suppose b = 0. Then a2 | 334 = 73, so a = ±1,±7. If a = ±7,

then |β| = 7, but there is no choice of c, d ∈ Z that makes this possible (as
√

7 /∈ Z). Therefore a = α = ±1 is a unit

so 15 +
√
−118 is irreducible. Since 15−

√
−118 = 15 +

√
−118 = ᾱβ̄, our argument also shows that 15−

√
−118 is

irreducible.
A proof that 7 is irreducible can be done in a similar manner. �

Question 3.

Solution. Let R denote the ring of integers of a number field and let I be an ideal with non-trivial factorization
I = I1I2 (i.e. Ij 6= R for j = 1, 2). Note that we can take I1, I2 6= 0, otherwise the factorization is trivial. For x ∈ Ij ,
rx ∈ Ij for any r ∈ R, so I ⊆ I1, I2. We need to show that I 6= I1 and I 6= I2. Wolog suppose that I = I1. Then
I1I2 = I1R which implies that I2 = R (divisibility property of ideals in R as I2 6= 0). This is a contradiction to the
assumption that our factorization was non-trivial. Therefore I 6= I1 and similarly I 6= I2.

Now, if R
/
I is a field, then I is maximal, so by the property we established above, I is irreducible.

Sketch of the rest: Let I = (15 +
√
−118, 7), and one easily observes that I3 ⊇ (15 +

√
−118) since 15 +

√
−118

divides each of the generators of I3. Next, you need to show that 15 +
√
−118 ∈ I3 (find some linear combination of

the generators for I3 that gives you 15 +
√
−118. Then conclude that I3 = (15 +

√
−118). A similar process shows

that for J = (15−
√
−118, 7), J3 = (15−

√
−118).

It follows from the previous question that (343) = I3J3. It remains to show that the ideals I, J are irreducible.
Do this by showing that R

/
I and R

/
J are fields. For example, show that the map φ : R → Z

/
7Z given by

φ(a+ b
√
−118) = a− b (mod 7) is as surjective homomorphism and then show that ker(φ) = I. Similarly for J . �

Question 4.

Solution. To show |α| = a2 + b2 + c2 + d2, just write out the multiplication. Take α′ = ᾱ
|α| . �

Question 5.

Solution. Show closure of R under addition and multiplication by taking generic elements, adding or multiplying
them together (as appropriate) and rearranging to get an element of R. The positivity of the norm of an element
α ∈ R is trivial, and by simply computing the norm one shows that |a| ∈ Z. �

Question 6. Note: this question was not marked.

Solution. Let α, β ∈ R. Then αβ−1 = a+ bi+ cj+ dk ∈ H and each of a, b, c, d is a distance of less than 1/2 from an
element of Z + Z · 1

2
, so we can find a q = a′ + b′i+ c′j + d′k ∈ R such that a− a′, b− b′, c− c′, d− d′ < 1

2
and hence

|αβ−1 − q| < 4

(
1

2

)2

= 1.

1
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By the multiplicativity of the norm, it follows that

|α− qβ| < |β|
and setting r = α − qβ gives the desired result. Note that αβ−1 is not necessarily equal to β−1α so one should not
write things such as α

β
as it is ambiguous. Also, note that this does not prove that R is Euclidean domain (a domain

is necessarily commutative). �

Question 7. Note: this question was not marked.

Solution. Since we established that the norm is a map |·| : R → Z+, every left ideal I ⊂ R has a minimal element
with respect to the norm, call it α. Use the Eucliden property of R to show that I = (α). �

Question 8. Note: this question was not marked. It was also not particularly well done from what I saw—in
my brief skimming I did not see a single complete solution.

Solution. First of all, we need to treat the case where p = 2 separately. Take α = 1 + i. Then α ∈ R and N(α) = 2.
Next, consider the case where p is an odd prime. Then let

A =

{
a2 (mod p)

∣∣∣∣ 0 ≤ a ≤ p− 1

2

}
.

(many of you took the set A =
{
a2

∣∣ a ∈ Z
/
pZ

}
—this isn’t good enough to give the necessary bound on the norm).

Show that |A| = p+1
2

. By translation, the sets

At =

{
t− a2 (mod p)

∣∣∣∣ 0 ≤ a ≤ p− 1

2

}
∀t ∈ {1, . . . , p− 1}

also have cardinality p+1
2

. In particular, fixing t gives A ∩At 6= ∅ and A ∩Ap−t 6= ∅. It follows that by choosing t to

be a non-square mod p there exist a, b, c, d ∈
{

0, 1, . . . , p−1
2

}
not all 0 such that

t ≡ a2 + b2 (mod p)

p− t ≡ cd + d2 (mod p)

and hence
a2 + b2 + c2 + d2 ≡ 0 (mod p).

On the other hand, by construction we have that

a2 + b2 + c2 + d2 ≤ 4

(
p− 1

2

)2

= (p− 1)2 < p2.

Therefore, setting α = a+ bi+ cj + dk gives the desired element. �

Question 9.

Solution. Let α be an element of R such that p | |α| but p2 - |α|. Consider the ideal I = Rp + Rα. Observe that
every element of I has norm divisible by p (since the norm is multiplicative) so I 6= R. We showed that every ideal
in R is principal, so there exists β ∈ I such that I = Rβ and hence |β| | |α| and |β| | p2. Thus |β| | p. But β ∈ I, so
p | |β| and it follows that |β| = p.

It remains to show that |β| can be written as the sum of four squared integers. Write β = a+ bi+ cj + d 1+i+j+k
2

where a, b, c, d ∈ Z. If d is even we are done. If d is odd, we can multiply β by a suitable unit ω such that βω has the
desired form. Therefore p = |βω| = |β| can be written as a sum of four squared integers. �

Question 10.

Solution. Decompose every positive integer n into its prime factors and apply the previous question to obtain a
product of elements of the form α = a + bi + cj + dk where a, b, c, d ∈ Z whose norm is equal to n using the
multiplicitivity of the norm. Since elements of form a + bi + cj + dk where a, b, c, d,∈ Z retain their form under
multiplication, conclude that every positive integer n can be written as the sum of four square integers.

To show the result is optimal, show that one cannot write 7 as a sum of three squares (or any other example you
like). �


