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1 Sophie Germain

1.1 A Passion for Mathematics

Marie-Sophie Germain was a self-taught mathematician with an exceptional desire to learn mathe-
matics. Born April 1, 1776 in Paris, France, revolution surrounded Germain’s childhood. She came
from a relatively prosperous family; her father was a silk merchant and was elected a member of the
Constituent Assembly in 1789, when Germain was 13 years old. Escaping the chaos of revolution,
Germain retreated into her father’s library, where she discovered mathematics.

The first books to enrapture her were Etienne Bézout’s standard mathematical textbooks and
Jean-Etienne Montucla’s “Histoire des mathématiques.”[2] Here she read the legend telling of how
Archimedes, circa 212 B.C., was examining a geometric figure in the sand with such concentration
that he did not respond to an enemy soldier’s questions, and was speared to death. Germain began
to realize that mathematics must be a fascinating subject, to inspire such absolute focus in a person,
and henceforth she dedicated her time to studying math from the books in her father’s study.

In this time, however, women were not known to study mathematics; some aristocratic women
were expected to have a basic understanding, but just enough to sustain a social conversation.[5]
Germain, on the other hand, studied late into the night, absorbed in her attempts to understand,
unguided, Bézout’s texts. As her friend Guglielmo Libri recounted in her obituary, Germain’s
parents disapproved of her mathematical obsession. For this reason, they put out the fire in her
room at night, and also took away her candles and clothing after nightfall, so that she would be
unable to study. Even this did not deter her. She would study “at night in a room so cold that the
ink often froze in its well, working enveloped with covers by the light of a lamp.”[2]

In 1794, when Germain was 22, the Ecole Polytechnique was founded in Paris, with the purpose
of training exceptional young mathematicians and scientists. It was open only to male students, and
so Germain was unable to attend classes, given by mathematicians such as Joseph-Louis Lagrange.
However, she was able to obtain weekly lecture notes by using the alias “Antoine-August Le Blanc,”
and she completed and submitted assignments under this same name. Her answers to these problem
sets were “ingenious,” and she also submitted written “observations” that so impressed Lagrange
that he expressed an interest in meeting his student. Germain was forced to reveal her true identity,
and Lagrange became her friend and mathematical mentor. Amazingly, she had taught her self
mathematics all the way to the undergraduate level, and despite this weak background, her work
was impressive enough to merit the praise of one of the foremost mathematicians of her time.[5, 3]

1.2 Sophie Germain’s Interest in Number Theory

Germain became interested in number theory after reading Adrien-Marie Legendre’s Essai sur la
théorie des nombres (1789) and Carl Friedrich Gauss’s Disquisitiones Arithmeticae (1801).[1] She
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began work on Fermat’s Last Theorem, which I will discuss in this text. She worked on original
research for several years, until she had accomplished and understood a great deal, and she decided
she needed to discuss her work with a number theorist. Boldly, she wrote directly to Gauss, again
using her pseudonym, sharing her new, more general approach to proving Fermat’s Last Theorem.
Gauss was impressed by her progress, and he began to correspond with her.[5, 1]

Upon learning that his correspondent was not, in fact, M. Le Blanc, but rather Sophie Germain,
a woman, Gauss responded,

“But how to describe to you my admiration and astonishment at seeing my esteemed
correspondent Monsieur Le Blanc metamorphose himself into this illustrious personage
who gives such a brilliant example of what I would find it difficult to believe. A taste
for the abstract sciences in general and above all the mysteries of numbers is excessively
rare: one is not astonished at it: the enchanting charms of this sublime science reveal
only to those who have the courage to go deeply into it. But when a person of the
sex which, according to our customs and prejudices, must encounter infinitely more
difficulties than men to familiarize herself with these thorny researches, succeeds never-
theless in surmounting these obstacles and penetrating the most obscure parts of them,
then without doubt she must have the noblest courage, quite extraordinary talents and
superior genius.”[5]

After her correspondence with Gauss petered off, and she no longer was supported in her
mathematical endeavours, Germain turned to the study of physics.

Sophie Germain died June 27, 1831 in Paris.[1] On her death certificate, she was recorded as
having been a “rentière,” not a mathematician.[5]

2 A Special Case of Fermat’s Last Theorem

2.1 An Introduction to Fermat’s Last Theorem

Originally posed by Pierre de Fermat in the late 1630’s, Fermat’s Last Theorem states that

xn + yn = zn has no positive integer solutions for all n > 2.

The original Latin statement, famously written by Fermat in the margin of his copy of Diophantus’
Arithmetica, was

“Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et
generaliter nullam in infinitum ultra quadratum potestatem in duos ejusdem nominis fas
est dividere: cujus rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas
non caperet.”(As quoted in [6])

This translates to “It is impossible to separate a cube into two cubes, or a biquadrate into two
biquadrates, or in general any power higher than the second into two powers of like degree. I have
discovered a truly remarkable proof which this margin is too small to contain.”[4]

The proof of this mathematical conjecture, deceptively easy to state, eluded mathematicians for
over three hundred and fifty years. Finally, in 1995, Andrew Wiles published a proof of a conjecture
which had been previously shown to imply Fermat’s Last Theorem. (This also relied on a related
paper co-authored with his former doctoral student, Richard Taylor.)
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2.2 Past Work on Fermat’s Last Theorem

Countless mathematicians have worked on Fermat’s Last Theorem (FLT), including Euler, Leg-
endre, Gauss, Abel, Dirichlet, Kummer, and Cauchy. Germain was in fact on of the first people
to have a “grand plan” for proving the theorem for all primes p, rather than a more patchwork
attempt to prove special cases.[4]

Fermat himself proved the case n = 4. Using his method of infinite descent, he showed that
the area of a right triangle with rational sides cannot be a perfect square. This is equivalent to the
statement that there are no integer solutions to x4 + y4 = z2, which then implies that there are no
solutions to x4 + y4 = z4. If there were integer solutions a, b, c ∈ Z such that a4 + b4 = c4, then
letting d = c2 would give a4 + b4 = d2, which is a contradiction.

Any integer > 2 is either a multiple of 4 or has an odd prime factor. Thus, it now suffices to
prove FLT for all odd prime exponents. If n = pm where p is a prime, then xn + yn = zn has a
solution implies (xm)p + (ym)p = (zm)p, which gives a solution for the exponent p.

In 1770, Euler published a proof for the case p = 3, although some subtle points were not
rigorously justified in his proof. At the time Germain began working on FLT, only the proofs for
the cases n = 3 and n = 4 were known.[4]

2.3 Sophie Germain’s “Grand Plan”

In around 1816, the Academy of Sciences in Paris announced a competition with a prize for a proof
of Fermat’s Last Theorem. Germain neither submitted to this competition nor published any work
on FLT, despite the fact that she worked a great deal on the problem and made notable progress.
Due to the unpublished nature of her manuscripts, the extent of her work on FLT was not known
until very recently. (See [3] for a detailed examination of her original manuscripts and her various
efforts relating to FLT.)

Germain’s grand plan did not work out as desired, but she proved some other interesting results
along the way. Historically, she has not been given credit for many of her results, some of which
were later proven by Legendre, presumably independently.[3]

In a letter to Gauss, dated May 12, 1819, she explained her idea for a general proof. She
aimed to show that for all odd primes p, there are infinitely many auxiliary primes of the form
2np + 1, where n ∈ Z≥1, such that the set of non-zero residues xp mod (2np + 1) for 1 ≤ x ≤ 2np
does not contain any consecutive integer residue classes mod (2np + 1). For example, if ap ≡ m
mod (2np+ 1) and bp ≡ (m+ 1) mod (2np+ 1) for some a, b 6= 0, then this condition would not be
satisfied, since m and m + 1 belong to consecutive integer residue classes. She then showed that
given an integer solution to xp + yp = zp, all auxiliary primes satisfying the non-consecutive pth
power residue condition necessarily divide either x, y, or z. I will prove this second statement after
a brief example of auxiliary primes. Germain analysed the auxiliary primes with 1 ≤ n ≤ 10 for all
primes less than 100.

What is important about Germain’s technique is that she was the first person we know of who
attempted to prove FLT for infinitely many prime exponents, rather than just on a case-by-case
basis.[4] This philosophy reflects modern attempts to prove the theorem for infinitely many primes
at once.

The following is an example of auxiliary primes for the case p = 5, as shown in [4], with
additional explanations.

First look at n = 1. Then 2np+ 1 = 2 · 5 + 1 = 11, so we look at all of the residue classes of the
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integers 1 ≤ k ≤ 10 to the power 5.

{15, 25, 35, 45, 55, 65, 75, 85, 95, 105}
= {1, 32, 243, 1024, 3125, 7776, 16807, 32768, 59049, 100000}mod 11

= {1, 10, 1, 1, 1, 10, 10, 10, 1, 10}mod 11

= {1, 10}

Since 1 and 10 are not consecutive integers mod 11, we see that 11 is an auxiliary prime for 5.
For n = 2, 2np + 1 = 21, which is not a prime, so n = 2 certainly does not yield an auxiliary

prime.
n = 3 gives 2np+ 1 = 31, and the fifth power residues mod 31 are {1, 5, 6, 25, 26, 30}mod 31.

This fails the non-consecutive residues condition, since 25 and 26 are consecutive residues. In fact,
as I will prove below, the non-consecutive residues condition fails whenever n is a multiple of 3.

n = 4 yields fifth power residues {1, 3, 9, 14, 27, 32, 38, 40}mod 41. This has no consecutive
residues, so 41 is an auxiliary prime.

n = 5 gives 2np + 1 = 51 = 3 · 17, so this is not a prime.
n = 6 is a multiple of 3, so this will not work either.
n = 7 satisfies that there are no consecutive fifth power residues mod 71.
n = 8 gives that 2np + 1 = 81 which is not a prime.
n = 9 is a multiple of 3.
n = 10 satisfies that there are no consecutive fifth power residues mod 101.
Thus, we see that for p = 5 and 1 ≤ n ≤ 10, it is true that 11, 41, 71, and 101 are all auxiliary

primes. We now need the following proposition, based on that shown in [3].

Proposition 1. Let p be an odd prime. Given a non-trivial integer solution to xp + yp = zp, all
auxiliary primes that satisfy the non-consecutivity condition of pth power residues necessarily divide
either x, y, or z.

Proof. Let q be such an auxiliary prime. Assume for a contradiction that q divides neither x, y, nor
z. Then, since q is a prime, x, y, and z all have inverses mod q. Let a = x−1 mod q. Multiplying
both sides of the equation by ap gives (ax)p+(ay)p = (az)p ⇒ 1+(ay)p ≡ (az)p mod q. Thus, ay and
az ∈ Z/qZ satisfy that their pth power residues mod q are consecutive, which is a contradiction.

Using the above proposition, we have that if there is a solution of FLT for p = 5, then one of
x, y, or z must be a multiple of 11, one of 41, one of 71, and one of 101. Thus, one of x, y, and z
must be a multiple of at least two of these auxiliary primes.

This brings us back to Sophie Germain’s original grand plan to solve FLT. She aimed to prove
that every odd prime p has infinitely many auxiliary primes satisfying the non-consecutive pth

power residues criterion. If this were true, then any integer solution to xp + yp = zp would satisfy
that infinitely many auxiliary primes must divide one of x, y, or z. Since the set of primes that
must divide either x, y, or z is infinite, this implies that infinitely many primes must divide at least
one of x, y, or z. This gives a contradiction to the existence of a solution to FLT with the exponent
p. It was later shown, however, that for each odd prime p, there are only finitely many auxiliary
primes satisfying the non-consecutivity condition. Thus, this ambitious approach does not work.

In particular, Germain herself proved, in a letter to Legendre, that for p = 3, the only auxiliary
primes that work are 7 and 13, and so there certainly cannot be infinitely many auxiliary primes for
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this specific case. This shows that she was aware that her grand plan would not work, at least not
for all primes.[3] Below, the proof Germain provided to Legendre is explained. It appears that she
formulated the proof overnight, since in her letter she thanks Legendre for telling her “yesterday”
something that implies there are only finitely many solutions for p = 3. She then proceeds to write
out a fully formulated proof.[3] I think that this is evidence that her work, in both mathematics and
physics, would have been more significant had she enjoyed the benefit of her peers’ collaborations
and suggestions. Her work suffered from many errors, some rather subtle, that would have been
noticed had another mathematician looked over her proofs, especially a mathematician with formal
training, which she lacked.

Before proceeding to Germain’s proof that the grand plan does not work for p = 3, here are a
theorem and a lemma to make the proof clearer.

Euler’s Theorem, special case: Let q = 2np+1 be a prime and let 0 < a < q. Then xp ≡ amod q
has a solution if and only if a2n ≡ 1 mod q.

Proof. Since q = 2np, we have that ϕ(q) = 2np. To see the “only if” implication, note that
xp ≡ amod q has a solution implies that a2n ≡ 1 mod q. This is by Fermat’s Little Theorem, since
a2n = (xp)2n = x2pn, where x is some solution to xp ≡ a here. For the “if” implication, let a2n ≡ 1
mod q. If a = 1, then the theorem holds, choosing x = 1. So we can assume a 6= 1, and therefore
a = gp is a solution, for g some primitive root modulo q, since gk = 1 implies k = 2pn.

Lemma 2. There are 2n different non-zero pth power residues modulo q = 2np + 1.

Proof. By the case of Euler’s theorem proven above, we know that there is a bijection between the
non-zero pth power residues mod q and solutions to a2n ≡ 1 mod q.
Let g be a primitive root modulo q. (q is prime, so there must be a primitive root.) Then
gp, g2p, g3p, ..., g(2n−1)p, g2np are all unique elements of Z/qZ that are ≡ 1 mod q when taken to the
2nth power. The cardinality of {p, 2p, ..., 2np} is 2n.

We can now show Germain’s proposition.

Proposition 3. The grand plan cannot work for p = 3. For any prime q of the form 6a + 1,
with q > 13, there are non-zero consecutive cubic residues. That is, the non-consecutive pth power
residues condition fails for q = 2np + 1 for p = 3 and n > 2, so the only valid auxiliary primes for
p = 3 are q = 7 and 13.

Proof. We only consider the non-zero residue classes 1, ..., 6a. Suppose for a contradiction that
the non-consecutive power residues condition holds true; i.e., that there are no consecutive cubic
residues. Note that we are looking at cubic residues because p = 3, so the pth power residues are
the cubic residues. Further suppose that there are no pairs of cubic residues whose difference is 2.
The term “residues” here refers to the residue classes, not congruence classes, and so all residues r
that we examine are such that 1 ≤ r ≤ 6a; we do not look at 0. In particular, −1 and 1 are cubic
congruence classes, but their difference in residue classes that we look at is not 2.

q = 2a·3+1 here, so there are 2a cubic residues, as shown above. These are distributed amongst
the 6a residues, and differences of 1 or 2 between these residues are not permitted, by assumption.
To separate these 2a cubic residues, there must be 2a − 1 “gaps” between them, each containing
at least 2 non-cubic residues (n.c.r.’s), and all of the gaps together containing the 4a n.c.r.’s. Since
each of 2a− 1 gaps requires at least 2 n.c.r.’s, this uses 4a− 2 of the n.c.r.’s, and leaves 2 that can
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be distributed anywhere. Thus, it is either the case that all but two gaps contain exactly 2 n.c.r.’s
and two contain 3 n.c.r.’s each, or all but one contain 2 n.c.r.’s and one gap contains 4 n.c.r.’s.

Since q > 13, we know that 1 and 8 must be cubic residues, since 13 = 1 and 23 = 8 mod q. By
our assumptions on the gap between cubic residues, 2 and 3 cannot be cubic residues. If 4 were a
cubic residue, then taking 8 · 4−1 = 8/2 = 2 would also give a cubic residue mod q, but we just
said that 2 cannot be a cubic residue. So 4 is also not a cubic residue. Thus, we must have that 5
is a cubic residue, since otherwise there cannot be a sufficient gap between the residue and 8, and
the size of the gap cannot be greater than 4 n.c.r.’s, either. Furthermore, we have now distributed
one of the two extra n.c.r.’s. This implies that only one other pair of cubic residues can have a gap
between them of exactly 3 n.c.r.’s.

The sequence of cubic residues must therefore be 1, 5, 8, 11, ..., 6a−10, 6a−7, 6a−4, 6a, since
the cubic residues are symmetric about 6a/2. This is because b ≡ x3 for some xmod q ⇔ −b ≡ −x3,
and −b ≡ (q−b) mod q. Therefore, the two exceptional gaps of size 3 are located and the beginning
and the end of the sequence. We now show that this cannot be the pattern of cubic residues, and
thus one of our assumptions must be false.

We are concerned only with primes of the form 6a + 1 > 13. The first case to look at is 19.
43 = 64 ≡ 7 mod 19, which is not on the list. So 19 is not an auxiliary prime to 3. The next
possible auxiliary prime is 31 = 6 · 5 + 1, so we see that for all possible auxiliary primes for 3 that
are greater than 19, 33 = 27 gives a cubic residue modulo q. This contradicts the pattern that the
cubic residues must follow under our assumptions, since 27 is less than 6a ≥ 30, and 27 ≡ 0 mod 3.
In the pattern we found, all cubic residues, with the exceptions of 1 and 6a, must be ≡ 2 mod 3.

Therefore, one of the two initial assumptions must be false. If the non-consecutivity condition
on 3rd power residues is false, then the proposition holds.

So we may assume that the failure is due to the second assumption. This means that there are
some cubic residues with only a single n.c.r. between them. Let r and r′ be such that r − r′ = 2;
i.e., the gap between r and r′ is a single n.c.r. Let g be a primitive rood modulo q. 2 is not a cubic
residue, since we are still assuming there is at least one n.c.r. between each pair of cubic residues,
and 1 must be a cubic residue. This implies that g3k±1 = 2, where k ∈ Z, since the power of g
representing 2 cannot be divisible by 3.

Consider r + r′. We claim that r + r′ 6≡ 0 mod q. If r + r′ ≡ 0, then r ≡ −r′, so 2 = r− r′ ≡ 2r
⇒ r ≡ 1⇒ r = 1 ∈ Z. This last fact uses that we are looking are residues 1 ≤ r ≤ q− 1. It cannot
be that 2 = 1− r′, because 1 ≤ r′ ≤ q − 1. Thus, r + r′ 6≡ 0 mod q.

This in turn implies that r + r′ is in (Z/qZ)×, and so r + r′ = gm for some 1 ≤ m ≤ q − 1. If
m were divisible by 3, then 1 + r′r−1 = gmr−1, with both r′r−1 and gmr−1 cubic residues. This
contradicts the non-consecutivity condition. So 3 does not divide m, and thus r+r′ ≡ g3j±1, j ∈ Z.
Now we claim that the sign in r + r′ must agree with that in r − r′, i.e. the sign in 3k ± 1 agrees
with that in 3j±1. If not, letting r+r′ = g3j∓1 gives that r2−r′2 = (r−r′)(r+r′) ≡ g3k±1g3j∓1 =
g3k+3j±1∓1 = g3(k+j), (k + j) ∈ Z, so r2 − r′2 is a cubic residue. As above, this contradicts the
non-consecutivity condition on cubic residues.

Finally, we add together r− r′ = g3k±1 and r + r′ = g3j±1 to obtain 2r = g3k±1 + g3j±1. Recall
that 2 = g3k±1, as originally defined. Thus, g3k±1r = g3k±1 + g3j±1 ⇒ r = 1 + g3(j−k). This again
contradicts the non-consecutivity assumption, and this is all that we have assumed.

Therefore, the original assumption that there were no two consecutive cubic residues mod q
must have been false.
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2.4 Two Cases for Fermat’s Last Theorem

As a result of Sophie Germain’s work, Fermat’s Last Theorem was divided into two cases for
examination.[4]

FLT Case 1: xp + yp = zp has no integer solutions for which none of x, y, and z are divisible
by p.

FLT Case 2: xp + yp = zp has no integer solutions for which one and only one of x, y, and z
is divisible by p.

Note that if any two of x, y, and z are divisible by p, then so too is the third number. Let all
three integers be divisible by pk but not pk+1, k ∈ Z≥1. Then, dividing each integer by pk gives a
solution satisfying either case 1 or 2.

3 Sophie Germain’s Theorem

The original statement of Sophie Germain’s theorem is stronger than the theorem for which she is
usually given credit.

Sophie Germain’s Theorem (Original)
If p is an odd prime and there exists an auxiliary prime q = 2np + 1 satisfying:

1. there are no consecutive pth power residues mod q

2. p is not a pth power residue mod q

then in any solution to the Fermat equation xp + yp = zp, p2 must divide one of x, y, or z. In
particular, Case 1 of Fermat’s Last Theorem is true for p.

This theorem is usually stated in a weaker form, as follows:

Sophie Germain’s Theorem
If p is an odd prime and q = 2p + 1 is also prime, then p must divide one of x, y, or z, and

therefore Case 1 of Fermat’s Last Theorem is true for p.

A prime p satisfying that 2p + 1 is also prime is called a Sophie Germain prime.
Credit is in fact often given to Legendre for proving that p2, and not just p, must divide one of

these integers, even though this was part of Germain’s proof. Legendre explicitly credits Germain
for this result, but later authors have often understated her contributions.[3]

I will now show that if q = 2p + 1 is a prime, then conditions 1 and 2 of Germain’s original
theorem are necessarily satisfied.

Claim 4. There are no consecutive pth power residues mod q if and only if xp + yp + zp ≡ 0 mod q
implies that x, y, or z ≡ 0 mod q.

Proof. This proof is essentially the same as that of Proposition 1. Assume there is an integral
solution xp + yp + zp ≡ 0 mod q but x, y, and z 6≡ 0 mod q. ⇔ xp + yp ≡ −zp = (−z)p mod q,
none of these integers congruent to 0 mod q. Multiplying both sides by (x−1)p gives 1 + yp =
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(−z)p. This gives consecutive power residues mod q. This proof actually shows both directions
by contrapositives, since given zp = yp + 1, none of these elements ≡ 0 of course, we can multiply
both sides by gp for g some primitive root mod q to find a non-trivial solution to xp + yp + zp ≡ 0
mod q.

Claim 5. Suppose q = 2p + 1; that is, p is an odd Sophie Germain prime. Then conditions 1 and
2 of Sophie Germain’s original theorem are satisfied.

Proof. ϕ(q) = 2p. So for any a ∈ (Z/qZ)×, a2p = (ap)2 ≡ 1 mod q, by Fermat’s Little Theorem.
⇒ a2p − 1 ≡ 0 mod q ⇒ (ap − 1)(ap + 1) ≡ 0 mod q ⇒ ap ≡ 1 mod q or ap ≡ −1 mod q, since q
is prime. If x, y, and z 6≡ 0 mod q then xp + yp + zp ≡ ±1 ± 1 ± 1 6≡ 0 mod q. In order to have
xp + yp + zp ≡ 0 mod q, one of these integers must be congruent to 0 mod q. Thus, condition 1 is
satisfied.

Furthermore, since xp = ±1 mod q, it is impossible for xp ≡ p for any x, and so condition 2 is
also satisfied.

As mentioned in the example given for p = 5, the non-consecutive residues condition fails for
q = 2np + 1 whenever n is a multiple of 3, as Germain herself showed.[4]

Proposition 6. If p is a prime and q = 2 · 3kp + 1 is also prime, then there exist x, y, and z each
non-zero mod q such that xp + yp + zp ≡ 0 mod q. Therefore, condition 1 of Sophie Germain’s
(original) theorem does not hold for this q.

Proof. ϕ(q) = 2 · 3kp. Let g be a primitive root modulo q. gn 6≡ 0 mod q for all n ∈ Z. Let
m = g2kp 6≡ 1, since |g| = ϕ(q) = 6kp. Moreover, m3 = g6kp ≡ 1 mod q ⇒ m3 − 1 = (m− 1)(m2 +
m+ 1) ≡ 0. m 6≡ 1⇒ m2 +m+ 1 ≡ 0 mod q ⇔ g4kp + g2kp + 1 ≡ 0 mod q. None of these elements
are ≡ 0, and so, by Claim 4, condition 1 of Sophie Germain’s theorem cannot be satisfied.

Germain actually proved much more than Claim 5. She showed that if xp 6≡ 2 mod q for all x
and the auxiliary prime q is of the form 4p+1, 8p+1, 10p+1, 14p+1, or 16p+1, then condition 1 of
her theorem holds. She then examined the exceptional cases where there is some ap ≡ 2 mod q, and
found the auxiliary primes of the form 2np+ 1 satisfying condition 1 for all n such that 1 ≤ n ≤ 10
and all odd prime exponents p ≤ 100. She also showed that all of these auxiliary primes found
satisfy condition 2.

Legendre is usually credited with finding this, as his results were published in an 1823 paper,
and Germain never published her results.[4] It appears that the two of them found their results
independently, given that they used very different techniques.[3]

Germain and Legendre collectively showed that all odd prime exponents p < 197 satisfy Case 1
of Fermat’s Last Theorem, by explicitly finding an auxiliary prime q = 2np+1 that satisfies Sophie
Germain’s theorem. See [4] for a table listing these auxiliary primes. This result was a large leap
forward, even if it only showed that one of two cases holds true. Recall that previously, proofs had
only been known for the exponents 3 and 4. Even a partial result relating to so many different
primes was impressive.

I will now show the proof of the strong version of Sophie Germain’s theorem, which is restated
below.
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Sophie Germain’s Theorem (Original)
If p is an odd prime and there exists an auxiliary prime q = 2np + 1 satisfying:

1. there are no consecutive pth power residues mod q

2. xp 6≡ pmod q for all 1 ≤ x ≤ q − 1

then in any solution to the Fermat equation xp + yp = zp, p2 must divide one of x, y, or z.

Proof. We assume, without loss of generality, that x, y and z are all coprime. (See the remark after
the introduction of the two cases of FLT for details.)

First, we claim that the pairs of numbers below can have no common divisors other than p.

x + y and xp−1 − xp−2y + xp−3y2 − ... + ... + yp−1

z − y and zp−1 + zp−2y + zp−3y2 + ... + yp−1

z − x and zp−1 + zp−2x + zp−3x2 + ... + xp−1

Let ϕ(x, y) denote the right-hand expression on the first line. If some prime q 6= p divides both
x + y and ϕ(x, y), then y ≡ −xmod q, by definition of q | (x + y). Then, substituting this into
ϕ(x, y) immediately gives ϕ(x, y) ≡ pxp−1 mod q, which is divisible by q by assumption. x must be
divisible by q, since q does not divide p. This gives that both x and x+ y are divisible by q, which
implies that y is divisible by q as well, contradicting the assumption that x and y are relatively
prime. Thus, no primes other than p can divide both x + y and ϕ(x, y).

The same can be seen for the second and third pairs of numbers, using that if q divides z − y
then z ≡ y mod q, and similarly for x.

We now need the following subclaim.

Claim 7. p must divide one of x, y, or z.

Proof of Subclaim: Now, we assume for contradiction that x, y, and z are all coprime with p.
Then, letting z = lr, x = hn, and y = vm, we have that:

x + y = lp and xp−1 − xp−2y + xp−3y2 − ... + ... + yp−1 = rp

z − y = hp and zp−1 + zp−2y + zp−3y2 + ... + yp−1 = np (1)

z − x = vp and zp−1 + zp−2x + zp−3x2 + ... + xp−1 = mp. (2)

These equations were given by Barlow around 1810, and also stated by Abel in 1823.[3] We are
assuming that each pair of numbers is coprime with p, and we just showed that the only common
factor each pair can have is p. Thus, we are essentially assuming that each pair of numbers is
coprime. Looking at the first line, for example, this explains why x + y = lp, with no r factors,
and ϕ(x, y) = rp, with no l factors; otherwise, the left and right numbers would not be coprime.
Then, note that (x+y) ·ϕ(x, y) = xp +yp = zp, this last equality coming from the statement of the
theorem. Therefore, we see that x+ y 6= lk for any k 6= p, and similarly we must have ϕ(x, y) = rp.
The second and third equations follow analogously.

As shown in Proposition 1, the auxiliary prime q, which is assumed to exist and satisfy conditions
1 and 2, must divide either x, y, or z. Without loss of generality, assume that q divides z. (If q
divided x or y, the following equations would simply have a sign change in them.)

q|z ⇒ q|2z, so 2z = (z − y) + (z − x) + (x + y) = lp + hp + vp ≡ 0 mod q. Now, as shown in
Claim 4, lp + hp + vp ≡ 0 mod q ⇔ either l, h, or v is divisible by q. If either h or v were divisible
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by q, using that y = z − hp and x = z − vp from equations 1 and 2, and that q|z, then either y or
x, respectively, would be divisible by q as well. This contradicts the assumption that x, y, and z
are all coprime. Thus, it must be that q|l.

x + y = lp, so this implies that y ≡ −xmod q. We also have that ϕ(x, y) ≡ pxp−1 ≡ rp mod q,
as shown.

Since z ≡ 0 mod q by assumption, z − x = vp ≡ −xmod q. So x must be a pth power residue
mod q, by definition. Now use that pxp−1 ≡ rp mod q. Substituting in vp for x, this yields
p(vp−1)p ≡ rp. Recall that q does not divide x, since q|z by assumption and x and z are coprime.
This therefore implies that p is also a pth residue mod q. This contradicts condition 2. Thus, we
see that it cannot be that p does not divide either x, y, or z. So p divides one of these integers. 4

Now we no longer assume that it is z that q divides. We instead assume, without loss of
generality, that p|z; it is not necessarily true that q|z with this assumption.

Note that the above subclaim is enough to establish the weaker version of Sophie Germain’s
theorem, as it is usually stated.

Now set z = lrp. We claim that x+y = lppp−1 and xp−1−xp−2y+xp−3y2− ...+ ...+yp−1 = prp.
The remaining equations are the same, because x and y are still coprime to p, so x = hn and y = vm.
Since zp = (x + y) · ϕ(x, y) must be divisible by pp, it suffices to show that ϕ(x, y) is divisible by p
but not by pk for all k > 1. ϕ(x, y) = yp+xp

x+y . Let s = x + y. This gives:

ϕ(x, y) =
(s− x)p + xp

s
= sp−1 −

(
p

1

)
sp−2x + ...−

(
p

p− 2

)
sxp−2 +

(
p

p− 1

)
xp−1

Every term but the last in the above sum is divisible by p2. s = x + y ≡ xp + yp ≡ zp mod p,
by Fermat’s Little Theorem, and so p divides s. The last term is divisible by exactly p because
gcd(x, p) = 1. So ϕ(x, y) is divisible by exactly the first power of p.

Using equations 1 and 2 given above, 2z − (x + y) = 2z − x− y = hp + vp; this implies that p
divides hp + vp, since p divides both z and x + y. Moreover, p divides h + v, by Fermat’s Little
Theorem. ⇒ h ≡ −v mod p, which implies that hp ≡ −vp mod p2. To see this, write h = −v +mp,
where m ∈ Z. hp = (−v + mp)p = −vp + vp−1p2m− ... + (mp)p ≡ −vp mod p2, since p2 divides all
terms except for −vp.

x + y = lppp−1 was shown, so p2| (x + y), and we just showed above that p2| hp + vp. We also
know that 2z = hp + vp + (x + y), and therefore p2 divides z.

This concludes my exposition of Sophie Germain’s work relating to Fermat’s Last Theorem. It
is my hope that the reader now has a greater understanding of the significant progress she made
on this problem, progress for which she historically has not been given sufficient credit.
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