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Abstract

This paper seeks to explore the wonders of the p-adic universe in terms of its analytic
construction. After sketching the algebraic development of Z

p

and Q
p

we will introduce the
machinery of the p-adic norm and its corresponding metric along with a few of the topological
curiousities of fields with non-Archimedean metrics. From here we will proceed to a proof
of Ostrowski’s theorem, illustrating its consequences for metric completions of the rationals
and conclude by proving that Q

p

with its norm is indeed a complete metric space. The aim
throughout will be to remark on the similarities and di↵erences with the usual completion
of the rationals by the reals.

1 Introduction to the p-adic Numbers

1.1 The Algebraic Route

The p-adic numbers - where p will always and forever indicate a prime number - occupy
a curious place within the intersection of number theory and analysis. In this way, their
construction begets of both an algebraic and analytic approach. While I shall focus almost
exclusively on the latter, any introduction to this unique subject would be found wanting were
it to leave its algebraic conception completely untouched. Indeed, it provides a serendipitous
point of entry their study.

Kurt Hensel was the first to introduce explicitly the p-adic numbers in his 1897 paper
Über eine neue Begründung der Theorie der algebraischen Zahlen (“On a new grounding
of the theory of algebraic numbers”) and it is thus to him that we owe the famed Hensel’s
lemma. To wit:

Lemma 1. (Hensel) Let f(x) 2 Z[x] and a 2 Z such that f(a) ⌘ 0 mod p

j, for some j 2 Z.
Assume f

0(a) 6⌘0 mod p, ie. 9� 2 Z/p Z : �f 0(a) ⌘ 1 mod p. Then ã = a � �f(a) satisfies
f(ã) ⌘ 0 mod p

j+1.

That is to say, if a polynomial with integer coe�cients has a zero modulo some power
of a prime with non-zero derivative at that point, then we can ‘lift’ said zero to a new one
modulo the next integer power of that prime. This language of lifting is apt, since were we
to ‘lower’ the zero back down again, ie. consider ã mod p

j, we would see immediately that
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we get back our original term a. Moreover, as f(a) is divisible by p

j, it is certainly divisible
by p, such that ã = a � �f(a) ⌘ a mod p and so f

0(ã) ⌘
p

f

0(a) 6⌘
p

0 and we can apply
the lemma again to obtain zeroes of f(x) for arbitrarily grand powers of p. In this sense,
were we to start with j = 1, we would establish a sequence (a

1

, . . . , a

n

, . . .) of zeroes of some
polynomial modulo each prime power that were in a way ‘coherent’, that is:

a

n

⌘ a

n�1

mod p

n�1

, 8 n > 1

This coherence is essential, as it allows us to take seriously the infinite length of our
sequence and indeed the utility of Hensel’s lemma is that it is applicable in this limit case,
wherein we find the p-adic integers themselves. Consider the map '

n

: Z/pnZ ! Z/pn�1Z
given by '

n

(a) = a mod p

n�1, which is a surjective homomorphism with kernel pn�1Z/pnZ.
We establish a sequence of groups via these maps as such:

. . .

'

n+1! Z/pnZ '

n! Z/pn�1Z '

n�1! . . .

'3! Z/p2Z '2! Z/p Z

The p-adic integers, Z
p

are algebraically conceived of as the projective limit of this system of
groups and maps,1 such that its elements are just those sequences (a

1

, . . . , a

n

, . . .) that are
coherent in the manner illustrated above, with a

k

2 Z/pkZ. Since addition and multiplication
are well-defined under the modulus as operations on the representatives of equivalence classes,
elements of Z

p

permit coordinate-wise addition and multiplication, making it a subring of
the direct product Z/p Z⇥ · · ·⇥ Z/pnZ⇥ · · · .

For an example of such a sequence, consider 37 as an element of Z
3

:

37 = ([37]
3

, [37]
3

2
, [37]

3

3
, [37]

3

4
, [37]

3

5
, . . .) = (1, 1, 10, 37, 37, . . .) 2 Z

3

Notice that 37 = 1 + 0 · 3 + 1 · 32 + 1 · 33 + 0 · 34 + . . . in its base 3 expansion, where
the partial sums correspond to the entries in the sequence. In the shorthand expression for
this expansion, it is convenient to write 37 = . . . 01101

3

or simply 1101
3

, where the zeroes
implicitly continue to the left (much as 37 = 37.000 . . . in its decimal expansion). The p-adic
integers are accordingly those numbers whose p-adic expansions contain no negative powers
of p. Clearly Z ⇢ Z

p

. Curiously enough, many rational numbers are also p-adic integers, ex.
1

5

= . . . 12102
3

, although this is less surprising when we recall that Z/p Z is a field and so
equations of the form bx� a = 0, a, b 6= 0 : gcd(b, p) = 1 are by all means solvable modulo p

and can accordingly be lifted with Hensel’s lemma in order to give a solution in Z
p

(whereas
1

9

= 1 · 3�2 = 0.01
3

/2 Z
3

).
Not every element of Z

p

has a multiplicative inverse - it is just a ring, or more precisely,
an integral domain (no two non-zero elements can multiply to give the zero sequence; this is
evident at least when the first entries are non-zero, as Z/p Z is a field). The p-adic numbers
proper, Q

p

are thus realized as the field of fractions of Z
p

, where we formally afix the inverse

1We denote Zp = lim(Z/pnZ,'n), where this limit goes ‘to the left’ and remark formally that, if R is a

ring for which there exist homomorphisms  n such that R
 n! Z/pnZ 'n! Z/pn�1Z gives the same map as (or

‘commutes with’) R
 n�1! Z/pn�1Z, 8 n � 1, then there exists a unique homomorphism R ! Zp from which

all the  n are obtained, ie. Zp is the ‘closest’ ring to this system insofar as any other R can only map its
way to each of the Z/pnZ groups in a manner that respects the order of the 'n maps via Zp itself.
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of p to Z
p

, facilitating division by any non-zero element of Z
p

.
Hensel’s motivation for exploring the p-adic numbers was to discover an analogy between

the power series expansion near a given point of a function and the p-adic expansion of
a number.2 Much as power series use local data, viz. values of subsequent derivatives
at a point, to give ‘global’ information about the behaviour of a function on an interval,
Hensel hoped to use the ‘local’ p-adic expansions as well as the real numbers to discover
general properties of the zeroes of certain polynomials. However, Hensel did not employ this
‘local-global’ language in practice. This was properly the approach of Helmut Hasse, whose
generalization of a theorem first proved for the case K = Q by Hermann Minkowski is one
of the masterpieces of twentieth century number theory.

Theorem 1. (Hasse-Minkowski) In order for a quadratic form, ie. a homogeneous poly-
nomial of degree two in n variables, to have a non-trivial zero in a number field K, it is
necessary and su�cient for it to have a non-trivial zero in R and Q

p

, 8 p.

For a proof of this theorem and a far more incisive treatment of everything covered in
this section, I encourage the reader to consult the text by Jean-Pierre Serre mentioned in
the bibliography. What is of interest for our purposes is the matter of convergence.

1.2 The p-adic Norm

The ‘well-behaved’ functions of real analysis are just those whose (infinite) power series
converge to finite values on an interval of interest. Similarly, we should like it if the p-adic
numbers, which we shall see are akin to the reals insofar as they form a ‘metric completion’
of the rationals, were also well-behaved. Consider . . . 111

p

= 1+ p+ p

2 + . . .+ p

n + . . . 2 Z
p

.
With respect to the usual measure of cardinality, the absolute value, we see that since p is
greater than one:

|1 + p+ . . .+ p

n + . . . | =

�����

1X

n=0

p

n

����� ! 1

Indeed, anyone with some background in calculus would hardly find this surprising. The
fantastic insight behind the invention of p-adic analysis is that - algebraically speaking -
there is no ‘intuitive’ notion of size! When our goal is number theoretic, such as that of
Hensel and Hasse, we have no reason for preferring the norm given by the absolute value to
any other. In order to mitigate troublesome sequences such as these, we are charged to find
a norm with respect to which high powers of p are measurably small. This will furnish us
with a metric that judges numbers as being close together not when the magnitude of their
di↵erence, or relative position on the real line, is comparatively small, but when they are
both divisible by a similarly high power of p.

We presume that the reader is already familiar with the definitions of a norm and metric.
Let us define ord

p

: Q ! Z by ord
p

(r) = t : r = p

t

r

o

, where p 6 |r
o

and r 2 Z (if p 6 |r, then
ord

p

(r) = 0). When r = a

b

2 Q, ord
p

(r) = ord
p

(a)�ord
p

(b). If r = 0, we write ord
p

(0) = 1.

2More precisely, he was concerned with the similar role played by prime numbers in number fields and
linear factors in Laurent series of holomorphic functions.
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Definition The p-adic norm, | · |
p

: Q ! R�0

and its metric d

p

(x, y) : Q⇥Q ! R�0

:

|x|
p

=

(
p

�ord

p

(x)

x 6= 0

0 x = 0
d

p

(x, y) =

(
p

�ord

p

(x�y)

x 6= y

0 x = y

For example, |250|
5

= |2 · 53|
5

= 1

5

3 < |35|
5

= |6 · 5|
5

= 1

5

, such that numbers containing high
powers of 5 are smaller than those that do not with respect to | · |

5

. As one might guess,
the topology or spatial structure put on the rationals by such a metric will be quite peculiar
by comparison with that given by the absolute value. For one thing, there is no notion of
‘order’, in terms of which we could arrange our numbers along a line from greatest to least,
ex. |125| < |216| < |250| with the absolute value, yet |125|

5

= |250|
5

< |216|
5

- which goes
first?

A variety of topological curiousities are due to the fact that the p-adic metric is non-
Archimedean: it satisfies a stronger version of the triangle inequality,3 viz.

d

p

(x, y)  max{d
p

(x, z), d
p

(z, y)}, 8 x, y, z 2 Q

Proof. Take x, y, z 2 Q, then x� y = (x� z)+ (z� y) where we can write x� z = p

r1
a

1

and
z�y = p

r2
a

2

such that neither a
1

nor a
2

are divisible by p. So (x�z)+(z�y) = p

r1
a

1

+p

r2
a

2

=
p

min{r1,r2}
k where p 6 |k. Accordingly, ord

p

(x � y) � min{r
1

, r

2

} so p

�ord

p

(x�y) = d

p

(x, y) 
max{p�r1

, p

�r2} = max{d
p

(x, z), d
p

(z, y)}.

We now demonstrate two classic oddities of non-Archimedean metrics on a field.

Proposition 1. “All triangles are isosceles.”

Proof. The triangle inequality takes its name from the fact that in the complex plane with
the usual Euclidean metric, the sum of two sides of a triangle is greater than the third side
(with equality when one point of the ‘triangle’ lies on the line between the other two). The
point of the proposition is that any triangle constructed between three non-collinear points
via a non-Archimedean metric has at least two equal sides.

Let | · | be a non-Archimedean metric with x, y, z 2 F : x, y 6= 0, z = 0, then d(x, y) =
|x� y|  max{|x|, |y|}. Suppose first that |x| < |y|, ie. these two sides have di↵erent length.
By the above inequality, the length of the third side, x�y is thus |x�y|  |y|. Yet consider:

|y| = |x� (x� y)|  max{|x|, |x� y|}

As |y| > |x|, it must be the case that |y|  |x� y|. Therefore, |y| = |x� y|, such that these
two sides are equal.

Proposition 2. “Every point in an open disc is at its centre.”

Proof. Recall that an open disc of radius r 2 R
>0

with centre a 2 F is given by

D(a, r) = {x 2 F : |x� a| < r}
3
d(x, y)  d(x, z) + d(z, y), metrics which satisfy only this inequality are called Archimedean, ex. the

ordinary absolute value.
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We can restate the proposition as follows: if b 2 D(a, r), then D(b, r) = D(a, r).
If x 2 D(a, r), then |x� a| < r; since b 2 D(a, r), |a� b| < r as well. Consider:

|x� b| = |(x� a) + (a� b)|  max{|x� a|, |a� b|} < r

Therefore, x 2 D(b, r) and D(a, r) ✓ D(b, r). We prove the reverse for x 2 D(b, r) in the
exact same way to obtain equality.

In R, the open discs under the absolute value are open intervals on the real line. The
topology of the p-adic numbers is clearly not so easily imagined! See the opening pages of the
text by Koblitz mentioned in the bibliography for an artist’s enchanting conception of the
3-adic unit disc. A consequence of the second proposition is that two non-equal open discs
under a non-Archimedean metric are either disjoint or one is contained within the other.

Our final concern in this section is a bit more technically advanced and deals with con-
nectedness. In a metric space (X, d), that is a non-empty set with a metric in which any two
points have an associated distance or value on that metric, a subset E is said to be open if
every point a within it has a neighbourhood, ie. is the centre of an open disc of some radius,
such that D(a, r) ⇢ E. A point a is called a limit point of E if every neighbourhood of a
contains a point b 6= a : b 2 E; the limit points of typical interest are those on the boundary
of an open set. E is said to be closed if it contains all its limit points, such as the union of
an open set with its boundary, the so-called closure of that open set. Examples in (R, | · |)
are the open discs D(a, r), which have boundary D

0(a, r) = {x 2 R : |x � a| = r}, and the
closed discs D(a, r) = {x 2 R : |x� a|  r}.

Definition Two subsets A,B of a metric space are said to be separated if both A \ B and
A \ B are empty, ie. if no point of A lies in the closure of B and vice versa.

A set E ⇢ X is connected if E is not a union of two non-empty separated sets.

The reader is encouraged to consult the text by Rudin mentioned in the bibliography if
they are unfamiliar with these notions. What should be straightforward is to remark that
any open interval on the real line is connected (try to find a separation of (0, 1) = A [ B

according to the definition above if you are unconvinced). In the non-Archimedean case,
however, there are no non-trivial (ie. containing more than a single point) connected sets.
We say such a space, ex. (Q

p

, | · |
p

), is totally disconnected.

Lemma 2. D(a, r) ⇢ X, a non-Archimedean metric space, is both open and closed.

Proof. Assure yourself via the definition above that D(a, r) is indeed an open set. Suppose
x 2 X is a limit point ofD(a, r) and choose a number s  r, then 9 y 2 D(a, r)\D(x, s) (any
neighbourhood of x contains a point in D(a, r)), which means |y�a| < r and |y�x| < s  r.
By the non-Archimedean inequality:

|x� a|  max{|x� y|, |y � a|} < max{s, r}  r

Therefore, x 2 D(a, r) and the open disc contains all its limit points; it is closed.

Theorem 2. X is totally disconnected, ie. if a 2 X, the largest subset C ⇢ X : a 2 C and
C is connected is just {a}.
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Proof. Suppose C ) {a}, for arbitrary a. We can choose r > 0 : D(a, r) \ C 6= C. Without
loss of generality, C is closed.4 Consider:

C = (D(a, r) \ C) [ (D(a, r)c \ C)

Where D(a, r)c is the complement of D(a, r), ie. the set of all points not in D(a, r). D(a, r)
is closed and, noting that the intersection of a closed set with a closed set is closed, so is
D(a, r) \ C. D(a, r) is open and, noting that the complement of an open set is closed,
D(a, r)c \ C is closed. We have thus expressed C as the disjoint union of two closed sets,
which contradicts our assumption that C was connected. Therefore C = {a}.

2 Constructing Q
p

2.1 Ostrowski’s Theorem

Recall that R is the metric completion of Q with respect to the absolute value. That is,
we can use the equivalence classes of Cauchy sequences5 on | · | to ‘fill in the gaps’ between
rational and irrational numbers (like

p
2). As will be shown, Q

p

is also a complete metric
space containing Q, but of course Q

p

is nothing like R. Despite the many startling di↵erences
between Archimedean and non-Archimedean metric spaces, as far as norms on the rationals
are concerned, our choices are surprisingly limited. The proof of this fact, viz. Ostrowski’s
theorem, is extremely compelling - albeit challenging - and we will first need some facts about
equivalent norms to provide it. Two norms are equivalent if they establish the same topology
(ie. sets open with respect to one norm are open with respect to the other). However, this
is not an extremely useful definition for our purposes, so we use the following lemma.

Lemma 3. For | · |
1

, | · |
2

non-trivial norms6 on a field F, the following are equivalent:

i) | · |
1

and | · |
2

are equivalent.

ii) |x|
1

< 1 i↵ |x|
2

< 1, 8 x 2 F

iii) There exists ↵ 2 R
>0

: |x|
1

= |x|↵
2

, 8 x 2 F.

Proof. As follows:

i) ) ii) One consequence of equivalence is that a sequence that converges with respect to | · |
1

will do so on |·|
2

as well. Consider the sequence {xn}, convince yourself that, regardless
of the metric chosen:

lim
n!1

x

n = 0 , |x| < 1

For the implication to the right, test the claim for " < 1; to the left, notice |x| 2 R
>0

means |x| = 1

1+s

for some s 2 R
>0

and apply Bernoulli’s inequality. Then |x|
1

< 1

4
C is in fact a connected component, which means it is a closed subset of X; C = {a} is indeed closed.

5A sequence {an} in a metric space is Cauchy if for any " > 0, 9 N 2 N : m,n � N implies d(an, am) < ".

6The trivial norm is just |x| =
(
1 x 6= 0

0 x = 0
.
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implies the above limit goes to zero with respect to | · |
1

, which means it does so for
| · |

2

by their equivalence and thus that |x|
2

< 1.

ii) ) iii) First take any x

o

2 F : |x
o

|
1

6= 1 (such an element must exist, otherwise | · |
1

is the
trivial norm). If |x

o

|
1

> 1, as we are in a field, x�1

o

2 F and |x�1

o

|
1

= |x
o

|�1

1

< 1, so we
can assume that |x

o

|
1

< 1. By ii), |x
o

|
2

< 1, so there exists some ↵ 2 R : |x
o

|
1

= |x
o

|↵
2

and thus that |xn

o

|
1

= |xn

o

|↵
2

, 8 n 2 N. The trick is to show that this ↵ works for any
x 2 F.
Next take x 2 F : x 6= x

o

. If |x|
1

= |x
o

|
1

, claim |x|
2

= |x
o

|
2

and suppose otherwise.
If |x|

2

< |x
o

|
2

, then | x

x

o

|
2

< 1, meaning | x

x

o

|
1

< 1, which is clearly not the case. If

|x|
2

> |x
o

|
2

, then
��xo

x

��
2

< 1, giving the same contradiction. Thus our choice of ↵ holds
for such x. If |x|

1

= 1, then |x|
2

= 1 by an argument identical to the one above for
|x

o

|
2

= 1 and the choice of ↵ holds trivially. Take x 2 F : |x|
1

6= 1, |x|
1

6= |x
o

|
1

, as
before we can assume that |x|

1

< 1 and so |x|
2

< 1 and there is some � 2 R : |x|
1

= |x|�
2

and |xn|
1

= |xn|�
2

. For n,m 2 N, we have that:

|x|m
1

< |x
o

|n
1

,
����
x

m

x

n

o

����
1

< 1 ,
����
x

m

x

n

o

����
2

< 1 , |x|m
2

< |x
o

|n
2

Take logarithms of the first and last inequalities above.

m ln |x|
1

< n ln |x
o

|
1

, m ln |x|
2

< n ln |x
o

|
2

Rearranging the results, we obtain:

n

m

>

ln |x
o

|
1

ln |x|
1

, n

m

>

ln |x
o

|
2

ln |x|
2

Thus, the set of fractions n

m

that are bigger than the quotient on the left is exactly
the same as the set of those bigger than that on the right. Since n,m were arbitrary,
this set is just Q

>0

, which is dense in R
>0

, ie. the image of the logarithm, and we can
conclude that the two quotients are in fact equal. Keeping in mind that |x

o

|
1

= |x
o

|↵
2

and |x|
1

= |x|�
2

, consider the following:

ln |x
o

|
1

ln |x|
1

=
ln |x

o

|
2

ln |x|
2

, ln |x
o

|
1

ln |x
o

|
2

=
ln |x|

1

ln |x|
2

, ln |x
o

|↵
2

ln |x
o

|
2

=
ln |x|�

2

ln |x|
2

, ↵ = �

Which gives the desired result.

iii) ) i) By iii), we see that:

|x� a|
1

< r , |x� a|↵
2

, |x� a|
2

< r

1
↵

Therefore any open disc with respect to | · |
1

is also an open disc on | · |
2

. The topology
on a metric space is actually established via its open discs, so this is su�cient to prove
that | · |

1

and | · |
2

are equivalent.
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Theorem 3. (Ostrowski) Every non-trivial norm on Q is equivalent to | · |
p

for some p or
else the ordinary absolute value (the so-called p = 1 case)7.

Proof. In all that follows | · | is some non-trivial norm. (| · |1 is the absolute value.)
Case 1: Suppose there exists n 2 N : |n| > 1. By well-ordering, there is a least such n,

call it n
o

. Since |n
o

| > 1, we can find (using logarithms) some ↵ 2 R
>0

: |n
o

| = n

↵

o

Take any
n 2 N, write it to the base n

o

and take its norm.

n = a

0

+ a

1

n+ a

2

n

2 + . . .+ a

s

n

s, where 0  a

i

< n

o

, a

s

6= 0

|n|  |a
0

|+ |a
1

|n↵

o

+ |a
2

|n2↵

o

+ . . .+ |a
s

|ns↵

Since a

i

< n

o

and n

o

is the least integer to have norm greater than one, |a
i

|  1, 1  i  s.

|n|  1 + n

↵

o

+ n

2↵

o

+ . . .+ n

s↵

o

= n

s↵

o

(1 + n

�↵

o

+ n

�2↵

o

+ . . .+ n

�s↵

o

 n

↵

1X

i=0

✓
1

n

↵

o

◆
i

Where, since a

s

6= 0, n � n

s

o

. As n↵

o

> 1, the above sum converges to a finite constant, call
it C. It is thus the case that |n|  Cn

↵

, 8 n 2 N. Take N 2 N, consider:

|nN | = |n|N  C(nN)↵ = C(n↵)N , |n| 
⇣

N

p
C

⌘
n

↵

Fix n and let N ! 1, then we see that |n|  n

↵.
Take n in its base n

o

expansion as before, then n

s+1

o

> n � n

s

o

. As |ns+1

o

| = |n+n

s+1

o

�n| 
|n|+ |ns+1

o

�n|, we have that |n| � |ns+1

o

|� |ns+1

o

�n| � n

(s+1)↵

o

� (ns+1

o

� n)↵. Since n � n

s

o

:

|n| � n

(s+1)↵

o

�
�
n

s+1

o

� n

s

o

�
↵

= n

(s+1)↵

o


1�

✓
1� 1

n

o

◆
↵

�
� C

0
n

↵

As ns+1

o

> n, for some constant C 0 that does not depend on n. Substituting in n

N and taking
the limit of N th-root as before, we see that |n| � n

↵ and accordingly that |n| = n

↵. For
x = n

m

2 Q
>0

:
���
n

m

��� =
|n|
|m| =

⇣
n

m

⌘
↵

By the multiplicative property of norms. If n 2 Z or x 2 Q is negative, the fact that | · | is
a norm entails |n|, |x| � 0 (with equality i↵ n = x = 0) and the above still holds when we
note that the equality is in fact |x| = |x|↵1, which by the lemma means | · | is equivalent to
the absolute value.

Case 2: Suppose that |n|  1, 8 n 2 N. As | · | is non-trivial, there is a least such
n : |n| < 1, call it n

o

. Claim that n
o

must be prime and suppose otherwise, viz. n
o

= n

1

·n
2

.
Since n

1

, n

2

< n

o

, |n
1

| = |n
2

| = 1 and so |n
o

| = 1, contradicting the above. Let n
o

= p.

7Although John Conway has contested that, insofar as Ostrowski has given us a kind of fundamental
theorem of arithmetic for norms, the absolute value should instead be thought of as the case when p = �1.
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Claim next that |q| = 1 for any prime q 6= p. Suppose otherwise, then |q| < 1 and we
can find some M,N 2 N large enough: |qN | = |q|N <

1

2

and |pM | < 1

2

. As gcd(pM , q

N) = 1,
9m,n 2 N : mp

M + nq

N = 1. Consider:

1 = |1| = |mp

M + nq

N |  |mp

M |+ |nqN | = |m| · |pM |+ |n| · |qN |  |pM |+ |qN | < 1

2
+

1

2
= 1

Where we used the fact that |m|, |n|  1. Evidently 1 < 1 is a contradiction, so |q| = 1.
Take a 2 N, by the fundamental theorem of arithmetic:

a = p

s1
1

· psr
r

) |a| = |p
1

|s1 · |p
r

|sr =
(
1 p is not a factor of a

|p
i

|si where p

i

= p

Let c = |p|�1, then |a| = c

�ord

p

(a). As above, multiplicativity and positivity of the norm give
us the same equality for x 2 Q. Solving c

�ord

p

(x) =
�
p

�ord

p

(x)

�
↵

, for ↵ 2 R, we find that:

|x| = |x|
ln c

ln p

p

Alexander Ostrowski proved this theorem in 1916 when he was nearing twenty-three years
old. Hasse gave the proof of his theorem in his dissertation five years later, about the time
that he was twenty-three as well! The implications of the former result, that in studying
functions on Q or perhaps any other number field, one should consider their behaviour with
respect to the absolute value and p-adic norms, and thus on R and Q

p

, seem clear to the
development of the latter.

2.2 Q
p

is Complete

A metric space is complete if every Cauchy sequence of elements of that space converges
such that each limit is an element of the space. As was said earlier, Q is not complete with
respect to the absolute value. Nor is it with respect to the p-adic norm; to start to convince
yourself of this fact, find a p such that x2� 2 has a solution in Z/p Z and use it to construct
a coherent sequence in Z

p

using Hensel’s lemma. In other words, show that
p
2 2 Q

p

for
said p. To show that Q

p

is complete, we will first sketch the construction of Q
p

as the set of
equivalence classes of Cauchy sequences with respect to | · |

p

.

Definition For | · |
p

: Q ! R�0

, let C = {(x
n

) : x
i

2 Q, (x
n

) is Cauchy with respect to | · |
p

}.
Note that C is a ring with identity which containsQ under the inclusion x 7! (x), the constant
sequence.

Let N = {(x
n

) : lim |x
n

|
p

= 0} ⇢ C be the set of sequences tending to zero. Note that N
is a maximal ideal of C, ie. any ideal generated by (x

n

) 2 C �N and N is in fact all of C.
Finally, we define the field of p-adic numbers as the quotient of C by N :

Q
p

= C/N

9



The p-adic norm extends to Q
p

as follows. For � 2 Q
p

represented by the Cauchy sequence
(x

n

), we define:
|�|

p

= lim
n!1

|x
n

|
p

We remark formally that this last definition is sound because any (x
n

) 2 C�N eventually
stabilises. That is, there exists N 2 N : |x

n

|
p

= |x
m

|
p

whenever m,n � N .

Proof. (x
n

) does not tend to zero, so there exists c,N

1

: n � N

1

implies |x
n

| � c > 0.
However, there exists N

2

: n,m � N

2

entails |x
n

� x

m

| < c. Let N = max{N
1

, N

2

}, then for
n,m � N , we have that |x

n

�x

m

|  max{|x
n

|, |x
m

|} and is also less than c, yet |x
n

|, |x
m

| � c.
|x

n

| = |x
m

| accordingly.

Elements of C which di↵er by an element of N should presumably converge to the same
limit and so we identify them in Q

p

. As well, Q
p

still contains Q under the inclusion
(x) 7! (x)+N , since two distinct constant sequences di↵er only by another constant sequence
and so they remain distinct in Q

p

. However, we can say even more than this.

Proposition 3. The image of Q under its inclusion is a dense subset8 of Q
p

.

Proof. Suppose � 2 Q
p

is represented by the Cauchy sequence (x
n

) and has neighbourhood
D(�, "). Then there exists N 2 N : n,m � N entails |x

n

� x

m

|
p

< ". Let y = x

N

and
consider the constant sequence (y) 2 Q

p

. Claim that (y) 2 D(�, "), ie. |� � (y)|
p

< ".
Notice that �� (y) is represented by the sequence (x

n

� y), where |(x
n

� y)|
p

= lim |x
n

� y|
p

.
However, for any n � N , |x

n

� y|
p

= |x
n

�x

N

|
p

< ". Taking the limit gives the result, where
" was arbitrary.

This mirrors the situation where Q is dense in R.

Theorem 4. Q
p

is complete with respect to | · |
p

.

Proof. Take (�
n

), a Cauchy sequence of elements of Q
p

, such that each �

i

2 Q
p

is itself a
Cauchy sequence in Q up to equivalence. First construct a candidate limit for (�

n

).
By the density of the inclusion of Q in Q

p

, for each �

i

2 Q
p

, there exists a constant
sequence (y(i)) 2 Q

p

: |�
i

�(y(i))|
p

< p

�i. Accordingly, for any " > 0, there is N >> 0 : n � N

entails |�
n

� (y(n))|
p

< p

�n

< ". Conclude that

lim
n!1

|�
n

� (y(n))|
p

= 0

Next show that y(1), . . . , y(n), . . . is a Cauchy sequence in Q. Let �
i

2 Q
p

be represented

by (x(i)

n

). Similar to the above, notice:

|�
i

� (y(i))|
p

= |(x(i)

n

)� (y(i))|
p

= |(x(i)

n

� y

(i))|
p

= lim
n!1

|x(i)

n

� y

(i)|
p

< p

�i

Since (�
n

) is Cauchy, there exists M 2 N : for j, k � M we have

|�
j

� �

k

|
p

= |(x(j)

n

)� (x(k)

n

)|
p

= |(x(j)

n

� x

(k)

n

)|
p

= lim
n!1

|x(j)

n

� x

(k)

n

|
p

< p

�M

8Any open neighbourhood of a point in Qp contains an element of Q.
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By the non-Archimedean inequality for | · |
p

:

|y(r) � y

(s)|
p

 max{|y(r) � x

(r)

n

|
p

, |x(r)

n

� y

(s)|
p

}
|x(r)

n

� y

(s)|
p

 max{|x(r)

n

� x

(s)

n

|
p

, |x(s)

n

� y

(s)|
p

}

) |y(r) � y

(s)|
p

 max{|x(r)

n

� y

(r)|
p

, |x(r)

n

� x

(s)

n

|
p

, |x(s)

n

� y

(s)|
p

}

Given the above results, any of these three magnitudes can be made smaller than an arbitrary
negative power of p for r, s su�ciently large. Conclude that the sequence is Cauchy.

Let � 2 Q
p

be the element corresponding to the sequence (y(n)), where we let n vary.
Consider:

|�
n

� �|
p

= |(x(n)

m

)� (y(m))|
p

= |(x(n)

m

� y

(m))|
p

= lim
m!1

|x(n)

m

� y

(m)|
p

As |x(n)

m

� y

(m)|
p

 max{|x(n)

m

� x

(m)

m

|
p

, |x(m)

m

� y

(m)|
p

}, we see that, given n su�ciently large
and letting m ! 1, either of the two magnitudes approaches zero. Conclude that:

lim
n!1

�

n

= �

Since an arbitrary Cauchy sequence in Q
p

converges to a limit in Q
p

, it is complete.

With this new understanding of Q
p

, we can actually reformulate the p-adic integers as
Z

p

= {a 2 Q
p

: |a|
p

 1}. It should also be said that the p-adic expansion of any element
of Q

p

, while permitting of infinitely many terms with positive powers of p, has only finitely
many with negative powers.

My motivation to provide a proof - however laborious - of the fact that Q
p

is complete
came from its absence in the texts mentioned in the bibliography by Gouvêa and Koblitz,
although the proof follows a program outlined by the former. Having some theoretical grasp
of the foundations of p-adic analysis, I urge the reader to consult these texts in order to
explore its techniques more thoroughly. For all its topological curiousities, one discovers
that many results from calculus translate fluidly in the p-adic universe (with the marked
exception of the mean-value theorem) and, thanks to the non-Archimedean inequality, are
often easier to prove!
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