
MATH 377 - Honours Number Theory :
The Agrawal-Kayal-Saxena Primality Test

Azeem Hussain

May 4, 2013

1 Introduction

Whether or not a number is prime is one of its most fundamental properties. Many branches
of pure mathematics rely heavily on numbers being prime. Prime numbers are in some
sense the purest. Irreducible (over Z), they are the building blocks of all other numbers.
And yet, determining if a number is prime is not an easy task, certainly not if the number
is very large.

There are various algorithms for primality testing. For example, the Sieve of Eratos-
thenes, developed in Ancient Greece. Reliable, it works on all inputs. The problem is that
it takes very long. The running time is exponential in the size of the input.

Miller devised a test for primality that runs in polynomial time [1]. The problem is
that is assumes the extended Riemann hypothesis.

Rabin adapted Miller’s test to yield a reliable polynomial time primality test, the Miller-
Rabin test [2]. This test works well in practice. The problem is that the test is randomized
and not guaranteed to work. However, the probability or error can be made miniscule
by successive repetition. Nevertheless, to the mathematician, this leaves something to be
desired. Ideally, the test will produce a certificate, a proof that the number is prime. This
test can only say that the number is “probably prime.”

Most primality tests fall into one of these three categories. Either they scale exponen-
tially in time with the input, they rely on some conjecture, or they are randomized. What
we seek is a deterministic, polynomial time algorithm that is guaranteed to work on all
inputs and be able to produce a certificate for primality.

In the early 2000s, at the Indian Institute of Technology Kanpur, computer scientists
Manindra Agrawal, Neeraj Kayal, and Nitin Saxena accomplished exactly that. Their
algorithm is presented here, complete with its proof of correctness and time complexity
analysis.

1

1.1 Notation

Much of the work in this paper involves the ring (Z/nZ)][x]/(h(x)), where h(x) is a monic
polynomial with integer coefficients. Polynomials f(x) will be reduced modulo h(x), n. This
means, given a polynomial with integer coefficients f(x), take the remainder on dividing
by h(x), then for each coefficient, take the remainder on dividing by n. This is the residue
class f(x) (mod h(x), n).

A natural number n is said to be a perfect power if there exist naturals a and b > 1
such that n = ab.

ordr (n) denotes the order of n modulo r ; the least natural t such that nt ≡ 1 (mod r).
log denotes the logarithm to the base 2. Any other base will be explicitly specified.
ϕ(n) denotes Euler’s totient function; the quantity of numbers coprime to n.
O(f(n)) is big oh notation for time complexity analysis. f(n) ∈ O (g (n)) means that

there exist k and c such that if n > k, then f(n) ≤ cg(n).
We define Õ(n) := O(n(log n)O(1)).

2 Approach

Theorem 2.1 (The child’s binomial theorem). Let a ∈ Z, n ∈ N, n ≥ 2, (a, n) = 1. n is
prime if and only if

(x+ a)n = xn + a (mod n). (1)

Proof. Suppose n = p is prime. Then every binomial coefficient other than
(p
0

)
and

(p
p

)
has

a p in its numerator but not in its denominator. Because it is prime, p has no divisors so
it remains in the numerator. As such, all the cross terms are divisible by p. By Fermat’s
little theorem, an = an−1a ≡ a modulo p.

Conversely, suppose n is composite. Let p be a prime factor such that pk||n. Then
pk−1||

(n
p

)
, so n does not divide

(n
p

)
. Hence, the expansion has a cross term xn−pap.

At first glance, this theorem seems like it could be a primality test itself. However, n
coefficients must be evaluated on the left hand side in the worst case, and this gets unwieldy
when n is very large. An alternative is to consider the following equation:

(x+ a)n = xn + a (mod xr − 1, n), (2)

where r is an integer less than n. While this lessens the degree of the polynomials, it
also breaks the “only if” direction of the child’s binomial theorem. For certain values of
a and r, some composite ns can satisfy the congruence. (Such composites are akin to
Carmichael numbers, in that they share a property common to all primes despite being
composite.) One’s first thought might be to find the smallest r such that (2) is guaranteed
to hold if and only if n is prime. This turns out to be an unsolved problem in number
theory [10]. Nevertheless, the algorithm of Agrawal, Kayal, and Saxena is based on these

2

congruences. Find an r “good enough” and such that the composites that will satisfy 2 can
be characterized. Test for these composites first, and then check if (2) is always satisfied.

3 Algorithm

Algorithm AKS

Input: n ∈ N
1. If n is a perfect power, output composite.
2. Find the smallest r such that ordr (n) > log2 n.
3. If 1 < gcd(a, n) < n for some a ≤ r, output composite.
4. If n ≤ r, output prime.
5. For a = 1 to &

√
ϕ(r) logn',

if (x+ a)n (= xn + a (mod xr − 1, n), output composite.
6. Output prime.

The correctness of the algorithm will now be shown through a sequence of lemmas.

Lemma 3.1. If n is prime, then AKS outputs prime.

Proof. If n is prime, then it is not a perfect power and its gcd with all lesser integers is 1.
Thus Steps 1 and 3 will not return composite. The for loop verifies the child’s binomial
theorem, so by Lemma (2.1), step 5 will not return composite. The only remaining
outputs are prime.

The converse of this lemma will complete the proof of the correctness of the algorithm.
Step 4 will never incorrectly output prime, because Step 3 will catch composite n. It
remains to show that Step 6 will never incorrectly output prime. This will be accomplished
using a little bit of algebra, and a lot of ingenuity.

Now, we address Step 2 of the algorithm.

Lemma 3.2. If n ≥ 6, there exists a prime r ∈ [log5 n, 2 log5 n] such that ordr (n) > log2 n.

Proof. This requires the prime number theorem. A weak version [6] states that for any
natural N , the product of primes between N and 2N is ≥ 2. Now, let n ≥ 6 be given and
define N := log2 n, I := [N, 2N]. Suppose for a contradiction that ordr (n) ≤ log2 n for all
prime r ∈ I. Consider the product of all such r.

3

∏

r∈I
r prime

r divides
∏

i≤N

(ni − 1) =⇒
∏

r∈I
r prime

r ≤
∏

i≤N

(ni − 1)

∴ 2log
5 n = 2N <

∏

r∈I
r prime

r ≤
∏

i≤N

(ni − 1) < n
∑

i≤N i < 2log
5 n

This is a contradiction.

Note that this lemma shows the existence of a prime r, which is stronger than what
AKS requires. Relaxing this restriction, and using the following lemma, it can be shown
that there is an r ≤ *log5 n+ such that ordr (n) > log2 n, using a similar proof to that of
(3.2) [3].

Lemma 3.3 (Nair [5]). For natural number m ≥ 7, the least common multiple of the first
m natural numbers is ≥ 2m.

Having shown that step 2 of the algorithm gets completed, we move on.
The order of n modulo r is > log2 n > 1, so there must exist a prime factor of n such

that ordr (p) > 1. (The factor will be n itself, if n is prime.)
If Step 5 is reached, it is because Steps 3 and 4 failed to classify n, so p > r. Further-

more, (n, r) = 1 ⇒ n ∈ (Z/rZ)×. By its primality, p ∈ (Z/rZ)×. For the remainder of the
section, n, p, r will be fixed. Also, define q := &

√
ϕ(r) logn'.

We assume Step 5 of AKS does not output composite. The objective now is to show
that n cannot be composite. This will be done by constructing a certain group G and,
under the choice of q and r, exhibiting a contradiction on #G on any composite not already
ruled out.

For a = 0, 1, . . . , q,

(x+ a)n ≡ xn + a (mod xr − 1, n)

p|n ⇒ (x+ a)n ≡ xn + a (mod xr − 1, p) (3)

(1) ⇒ (x+ a)p ≡ xp + a (mod xr − 1, p) (4)

(3) and (4) ⇒ (x+ a)
n
p ≡ x

n
p + a (mod xr − 1, p) . (5)

For a polynomial f(x), define the set S := {k ∈ N : (f(x))k ≡ f(xk) (mod xr − 1, p)}
The elements of this set are said to be introspective for f(x). We see that n and n

p are
both introspective for f(x) = x + a. We will extend this family of polynomials, but first,
some lemmas about introspective numbers.

Lemma 3.4. The introspective numbers for f(x) are closed under multiplication.

4

Proof. Let j, k ∈ S. Take the introspection equation with k, replace x by xj . As xr − 1|xjr − 1,
the reduction can be peformed modulo (xr − 1, p).

f(xk) = (f(x))k (mod xr − 1, p)

f((xj)k) = (f(xj))k
(
mod (xj)r − 1, p

)

f((xj)k) = (f(xj))k (mod xr − 1, p)

∴ (f(x))jk ≡ (f(x)j)k ≡ (f(xj))k ≡ f((xj)k)) ≡ f(xjk) (mod xr − 1, p) (6)

Lemma 3.5. If k is introspective for f(x) and g(x), then it is introspective for f(x)g(x).

Proof.
((f(x)g(x))k ≡ (f(x))k(g(x))k ≡ f(xk)g(xk) (mod xr − 1, p) (7)

Define the set of integers I := {(np)
ipj : i, j ≥ 0} and the set of polynomials

P := {
∏q

a=0(x+ a)ea : ea ≥ 0}. By Lemmas 3.4 and 3.5, every number in I is introspective
for every polynomial in P . Now, define group H to be the set of residue classes of I modulo
r. Note that from step 3 of AKS, (n, r) = (p, r) = 1, so H is a subgroup of (Z/rZ)× and H
is generated by n and p. For notational convenience, let t := #H. Also, ordr (n) > log2 n
implies that t > log2 n.

To create the group G which will ultimately elicit a contradiction, we call upon the rth

cyclotomic polynomial, Φr(x) =
∏

1≤k≤r(x − ξk), where ξk are the distinct rth primitive
roots of unity, for k = 1, 2, . . . , r. Φr(x) divides xr − 1 and factors into irreducibles over
Fp, the field of p elements. Because of the isomorphism of finite fields, we can view it as
Fp = Z/pZ. Select an irreducible factor h(x). Its degree will be greater than one, because
ordr (p) > 1. Let G be the set of residues of polynomials in P, (mod h(x), p). The set of
all residues is F := (Z/pZ)/(h(x)), generated by x, x+ 1, x+ . . . , [q]p and is the finite field
of pdeg((h(x))) elements, and G is a multiplicative subgroup thereof.

We now find bounds on #G.

Lemma 3.6. #G ≥
(t+q
t−1

)
.

Proof. This proof takes place in the field F. Let f(x), g(x) ∈ P , k ∈ I. Can two polynomials
of degree less than t map to the same element of G? Suppose they can. h(x) divides xr−1
and k is introspective for f(x) and g(x) (mod xr − 1, p), so it follows that

f(xk) ≡ g(xk) (8)

in the field F. Consider their difference ∆(y) = f(y)− g(y). xk will be a root of ∆(y), and
because k ∈ I was arbitrary, (8) holds for all m ∈ H. Because h(x) is a factor of Φr(x) and

5

(k, r) = 1, each xm is a primitive rth root of unity. Thus every element of H corresponds
to a different root of unity, so ∆(y) has #H = t distinct roots. Now,

deg (∆(y)) =

{
max {deg (f(y)) , deg (g(y))} if f(y) (= g(y) in (Z/pZ)[y],
0 if f(y) = g(y) in (Z/pZ)[y].

However, f(x) and g(x) are both of degree less than t by hypothesis. So ∆(y) ≡ 0
which implies f(x) and g(x) are identical. Each distinct polynomial in P therefore maps
to a different element of H.

We now turn our attention to x+ a for a = 0, 1, . . . , q.
q = &

√
ϕ(r) logn' <

√
r log n < r < p, so x+a is a different element of F for 0 ≤ a ≤ q.

Furthermore, none of these are congruent to zero in F because deg (h(x)) > 1. Therefore,
there are at least

((t−1)+(q+1)
t−1

)
=

(t+q
t−1

)
polynomials of degree less than t in G.

#G can also be bounded above, provided n is not a power of p. This condition, as we
will see, is critical.

Lemma 3.7. If n is not a power of p, then #G ≤ n
√
t.

Proof. Define Î ⊂ I as follows:

Î :=

{(
n

p

)i

pj ; 0 ≤ i, j ≤ &
√
t'
}
.

If n is not a power of p, then #Î = (&
√
t'+1)2 > t = #G. The pigeonhole principle implies

that two elements of Î are equivalent modulo r. Let these be k1, k2. Let f(x) ∈ P . Then,

[f(x)]k1 ≡ f(xk1) ≡ f(xk2) ≡ [f(x)]k2 (mod xr − 1, p) ,

which implies [f(x)]k1 ≡ [f(x)]k2 in F. Hence f(x) ∈ G is a root of Q(y) = yk1 − yk2 in F.
By a similar argument to that used in Lemma 3.6, Q(y) has at least #G distinct roots in
F.

deg (Q(y)) = max {k1, k2} ≤
((

n

p

)
p

)&
√
t'
≤ n

√
t,

therefore #G ≤ n
√
t.

These lemmas all culminate in the proof of the correctness of the algorithm.

Theorem 3.8. AKS outputs prime if and only if n is prime.

6

Proof. If n is prime, then AKS outputs prime, as proven in Lemma 3.1.
If n is composite, then from Lemma 3.6,

#G ≥
(
t+ q

t− 1

)

≥
(
q + 1 + &

√
t log n'

&
√
t log n'

)
∵ t >

√
t log n

≥
(
2&
√
t log n'+ 1

&
√
t log n'

)
∵ q = &

√
ϕ(r) logn' > &

√
t log n'

≥
(
2&
√
t log n'+ 1

&
√
t log n'

)&
√
t logn'

∵
(
n

k

)
>

(n
k

)k

=

(
2 +

1

&
√
t log n'

)&
√
t logn'

= 2
log

((
2+ 1

"
√
t logn$

)"
√
t logn$

)

= 2
&
√
t logn' log

((
2+ 1

"
√
t logn$

))

> 2
√
t logn ∵ &

√
t log n' > &log2 n' ≥ 1

= n
√
t.

So #G > n
√
t which contradicts Lemma 3.7, unless n is a power of a p. In this case,

Step 1 of AKS will output composite. Therefore, AKS will output prime only if n is
indeed prime.

4 Time Complexity Analysis

The algorithm runs in time Õ(log10.5 n). After a few facts about computer arithmetic, we
will be ready to prove this.

Let m be the number of bits (binary digits) of an integer. Addition and subtraction can
be performed in O(m). Multiplication can be performed in O(m logm log logm) = Õ(m)
using the fastest known multiplication algorithm, the Fast Fourier Transform[9]1. Modular
reduction of integers can also be performed in Õ(m). Given two polynomials of degree at
most d with coefficients with at most m bits, their product can be computed in Õ(md).
Hence, reducing a polynomial f(x) (mod xr − 1, n) can also be done in Õ(md). Using
exponentiation by squaring, raising to the power n takes at most log n steps.

With this knowledge, we analyze the time complexity of AKS.

1The Fast Fourier Transform relies on primitive roots of unity, and may be of interest to those with
some knowledge of number theory.

7

Step 1. Perfect powers can be detected in Õ(log n) [7]. The idea behind this is cal-
culating higher and higher roots using Newton’s method, but to achieve this time bound,
one must be precarious. This is not the bottleneck step though. A natural way permits
this step in Õ(log3 n).

Step 2. To find the least r such that ordr (n) > log2 n, check if nk (= 1 (mod r) for
every k ≤ log2 n. Increment r and try again until this is so. There are at most O(log2 n)
multiplications modulo r for each value of r, so Õ(r log2 n) for these nested loops. Lemma
3.2 guarantees that r ≤ *log5 n+, so Step 2 runs in Õ(log7 n).

Step 3. At most r gcd computations. Using the Euclidean algorithm, each gcd(a, n)
can be found in at most 5 log10 a steps, where a < n [8]2. Again, given the size of r, this
step runs in Õ(log7 n).

Step 4. O(log n).
Step 5. Note that the totient of r is difficult to compute. If it is known, the for loop will

have fewer iterations, but it does not affect the asymptotic running time. Each congruence
involves multiplication of degree r polynomials with coefficients in O(log n). The for loop
has &

√
ϕ(r) logn' iterations, so this step takes

Õ(&
√
ϕ(r) logn'(r log n)) = Õ(r

√
ϕ(r) log3 n) ∈ Õ(r

√
r log3 n) = Õ(log10.5 n).

Step 5 is the bottleneck, so AKS runs in Õ(log10.5 n). As claimed, this is a completely
deterministic primality test that runs in polynomial time.

5 Evolution

The algorithm presented above is not the original algorithm that Agrawal, Kayal, and
Saxena devised. Their landmark paper PRIMES is in P was in preprint for a while as
many improvements were made from other contributors. Below is a version of the algorithm
dated back to August 2002 (publication of the algorithm above was in 2004) [4].

2This was shown by Gabriel Lamé in 1844 and is considered the first publication on computational
complexity.

8

Algorithm AKS-2002

Input: n ∈ N
1. If n is a perfect power, output composite.
2. Find prime r < n such that for q the largest prime factor of r − 1,

q ≥ 4
√
r log n) and (n

r−1
q (= 1 (mod r)).

3. If n ≤ r, output prime.
4. For a = 1 to 2

√
r log n,

if (x− a)n (= xn − a (mod xr − 1, n), output composite.
5. Output prime.

This version of the algorithm might look a bit peculiar. In particular, Step 2 requires
that r be prime, which seems demanding for a primality testing algorithm. Furthermore,
the largest prime factor of r − 1 is needed. Factoring is also a hard problem (harder than
identifying primes), so this part of the algorithm is a bit unsettling. Such r exist in the
interval [c1 log

6 n, c2 log
6 n], where c1, c2 can be found using results from analytic number

theory on prime counting functions. Note that the for loop in Step 4 requires more than
twice as many iterations to ensure the group G is large enough. The algorithm runs in
Õ(log12 n).

The lower bound on #G given in 3.6 was discovered by Hendrik Lenstra Jr. It greatly
simplified the proof of the correctness, and it improved the running time [4]. Other re-

sults arose to improve the running time to Õ(log9
9
11 n) (Goldfeld), Õ(log7.5 n) (Fouvry),

Õ(log7.49 n) (Baker and Harman) [6].
The running time was improved, once again, due to work by Hendrik Lenstra Jr. He

and Carl Pomerance were able to improve the running time to Õ(log6 n) by generating rings
using Gaussian periods, instead of roots of unity. Their proof relies on recently developed
results in both analytic and additive number theory [10]. Though a great acheivement, one
cannot help but be impressed by the algorithm of Agrawal, Kayal, and Saxena presented in
Section 3. Using scantly more than the tools acquired in a first course in abstract algebra,
they solved an age-old problem in six steps.

References

[1] G.L. Miller, Riemann’s hypothesis and test for primality, J. Comput. Sys. Sci. 13
(1976), 300-317.

[2] M.O. Rabin, Probabilistic algorithm for testing primality, J. Number Theory 12,
(1980) 128-138.

9

[3] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, PRIMES is in P, Ann. Math. 160
(2004), no. 2, 781-793.

[4] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, Primes is in P,
Preprint (http://www.cse.iitk.ac.in/users/manindra/algebra/primality original.pdf),
August 2002.

[5] M. Nair, On Chebyshev-type inequalities for primes, Amer. Math. Month., 80 (1982),
no. 2, 126-129.

[6] Andrew Granville, It is easy to determine whether a given integer is prime,
Bull. Amer. Math. Soc. 42 (2004), no. 1, 3-38.

[7] Daniel J. Bernstein, Detecting perfect powers in essentially linear time, Math. of Com-
putation 67 (1998), no. 223, 1253-1283.

[8] William J. LeVeque, Fundamentals of Number Theory, Dover Publications, New York
1977.

[9] Jon Kleinberg and Éva Tardos, Algorithm Design, Pearson, New York 2006.

[10] H.W. Lenstra jr. and Carl Pomerance, Primality testing with Gaussian periods,
Preprint (http://www.math.dartmouth.edu/∼carlp/aks041411.pdf), April 2011.

10

