
INTRODUCTION TO GAUSS’S NUMBER THEORY

The optional sections

Abstract. These are the first drafts of the many optional sections. Since we are close to the

middle of the semester it seemed to better to provide these now rather than wait any longer.
However they are not complete, and not polished. Nonetheless they will hopefully be useful.

A. Elementary

A1. Fibonacci numbers and linear recurrence sequences. The Fibonacci numbers,
F0 = 0, F1 = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . appear in many places in mathe-
matics and its applications, especially in sequences whose evolution depends on their past.
This is because the rule that the terms in the sequence depend on the sequence’s own
recent history:

Fn = Fn−1 + Fn−2 for all n ≥ 2.

It is not difficult to find a formula for Fn:

(A1.1) Fn =
1√
5

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)
for all n ≥ 0.

Exercise A1.1. Prove this is correct by verifying that it holds for n = 0, 1 and then by induction.

In more generality if a, b, x0, x1 are given and

xn = axn−1 + bxn−2 for all n ≥ 2,

then there exist coefficients cα, cβ such that

(A1.2) xn = cαα
n + cββ

n for all n ≥ 0,

where x2 − ax− b = (x−α)(x− β) assuming that α ̸= β. We determine cα and cβ so that

cα + cβ = x0 and cαα+ cββ = x1.

The result follows by induction on n: It is evidently true for n = 0 and 1 by the definitions
of cα and cβ . For given n ≥ 2, by the induction hypothesis

axn−1 + bxn−2 = a(cαα
n−1 + cββ

n−1) + b(cαα
n−2 + cββ

n−2)

= cαα
n−2(aα+ b) + cββ

n−2(aβ + b)

= cαα
n−2 · α2 + cββ

n−2 · β2 = cαα
n + cββ

n,
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as aα+ b = α2 and aβ + b = β2.

Exercise A1.2. Show that if α ̸= β with x0 = 0, x1 = 1 then xn =αn−βn

α−β
for all n ≥ 0.

Exercise A1.3. Prove that α = β if and only if a2 + 4b = 0, and then α = a/2 and xn = (cn + x0)αn

where c = x1/α− x0. Deduce that if α = β with x0 = 0, x1 = 1 then xn = nαn−1 for all n ≥ 0.

An alternate view on these recurrences is via generating functions:

(1− x− x2)
∑
n≥0

Fnx
n = F0 + (F1 − F0)x+ (F2 − F1 − F0)x

2 + . . .

+ (Fn − Fn−1 − Fn−2)x
n + . . .

= 0 + (1− 0)x+ (1− 1− 0)x2 + . . .+ 0 · xn + . . . = x.

Hence if α = 1+
√
5

2 and β =1−
√
5

2 then

∑
n≥0

Fnx
n =

x

1− x− x2
=

1

α− β

(
αx

1− αx
− βx

1− βx

)

=
1

α− β

∑
m≥1

αmxm −
∑
m≥1

βmxm

 =
∑
m≥1

αm − βm

α− β
xm,

and the result follows, again.
Both of these methods generalize to arbitrary linear recurrences of degree n.

Theorem A1.1. Suppose that a1, a2, . . . , ad and x0, x1, . . . , xd−1 are given, and that

xn = a1xn−1 + a2xn−2 + . . .+ adxn−d for all n ≥ d.

Suppose that Xd − a1X
d−1 − a2X

d−2 + . . .− ad−1X − ad =
∏k

j=1(X − αj)
ej . Then there

exist polynomials P1, . . . , Pk where Pj has degree ej − 1 such that

(A1.3) xn =

k∑
j=1

Pj(n)α
n
j for all n ≥ 0.

Moreover the coefficients of the Pj (and hence the polynomials pj themselves) can all be
determined by solving the linear equations obtained by taking this for n = 0, 1, 2, . . . , d−1.

Exercise A1.4. Prove this one way or another.

Other recurrences. It is easily seen that the recurrence xn+1 = 2xn + 1 with x0 = 0 is
satisfied by xn = 2n − 1.

Exercise A1.5. Find a formula for xn if x0 is given and xn+1 = axn+b. (Hint: If a ̸= 1 write b = (a−1)c

and add c to both sides. Treat the case a = 1 separately.)
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Division sequences. Recall that we saw that the Mersenne number Mr divides Mkr for
all positive integers k and r, so that Mkr is composite.

Exercise A1.6. Show that if M0 = 0,M1 = 1 and Mn = 3Mn−1 − 2Mn−2 then Mn is the nth Mersenne

number.

Any sequence of integers x0, x1, . . . with the property that xm divides xkm for all
positive integers k and m is called a division sequence. We have seen that the Mersenne
numbers from a division sequence; this is true for all second order linear recurrence se-
quences that begin 0, 1:

Proposition A1.2. Suppose that a, b are given integers with x0 = 0 and x1 = 1, and
xn = axn−1 + bxn−2 for all n ≥ 2. Then xm divides xkm for all positive integers k and m.

Exercise A1.7. Proof. First prove, by induction, that xm+ℓ ≡ xm+1xℓ (mod xm) for all ℓ ≥ 0. Then

prove the assertion by induction on k ≥ 1.

Corollary A1.3. Suppose that x0, x1, . . . is a division sequence, and |xn| is increasing as
n→ ∞. If |xn| is prime then n is prime.

Thus, for example, if 2n − 1 or Fn is prime then n is prime.

Proof. Now |x1| > |x0| ≥ 0 and so |x1| ≥ 1. Similarly |x2| ≥ |x1|+1 ≥ 2, and |xm| ≥ m for
allm ≥ 0 by induction. Now if n = mk is composite then |xm| divides |xn|, and so |xn|/|xm|
is an integer, which is > 1 as the sequence increases, and hence |xn| = |xm| · |xn|/|xm| is
composite.

It is conjectured that there are infinitely many Mersenne primes 2p − 1 as well as
Fibonacci primes Fp. There are 33 known Fibonacci primes. The first few are F3 =
2, F4 = 3, F5 = 5, F7 = 13, F11 = 89, F13 = 233, F17 = 1597, F23 = 28657, . . . Notice
that F19 = 4181 = 37× 113 is composite.

We will see later that solutions to Pell’s equation, and the co-ordinates of points on
elliptic curves yield division sequences.

The Fibonacci numbers mod p. If (5/p) = 1 then there exists b mod p such that b2 ≡ 5
(mod p). By induction one easily proves that

Fn ≡ 1

b

((
1 + b

2

)n

−
(
1− b

2

)n)
(mod p) for all n ≥ 0.

In particular note that

Fp−1 ≡1

b
(1− 1) ≡ 0 ≡ F0 (mod p) and Fp ≡1

b

(
1 + b

2
− 1− b

2

)
≡ 1 ≡ F1 (mod p),

by Fermat’s Little Theorem.

Exercise A1.8. Deduce that if (5/p) = 1 then Fn (mod p) is periodic of period dividing p− 1.

We cannot proceed this way when (5/p) = −1.
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Exercise A1.9. Prove that it is impossible for Fn ≡ Fn+1 ≡ 0 (mod p), and so can exclude this case.

There are only p2 − 1 non-zero pairs (Fn, Fn+1) (mod p) and so at least two of the pairs
for n = 0, 1, . . . , p2 − 1 must be the same.

Exercise A1.10. Deduce that if (5/p) = −1 then Fn (mod p) is periodic of period ≤ p2 − 1.

Since each binomial coefficient
(
p
j

)
for 1 ≤ j ≤ p− 1 is divisible by p, hence

(x+ y)p =

p∑
j=0

(
p

j

)
xjyp−j ≡ xp + yp (mod p).

One can apply this, using Euler’s criterion, to note that

(1 +
√
5)p ≡ 1p +

√
5
p

= 1 + 5
p−1
2

√
5 ≡ 1 +

(
5

p

)√
5 ≡ 1−

√
5 (mod p).

Exercise A1.11. Deduce that if (5/p) = −1 Fp ≡ −1, Fp+1 ≡ 0 (mod p), Fp+2 ≡ −1 (mod p) and

then F2p+2 ≡ 0 (mod p), F2p+3 ≡ 1 (mod p) using exercise A1.7. Deduce further that the period of Fn

(mod p) divides 2p+ 2.
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A2. Formulae for sums of powers of integers. As a five year old, Gauss quickly
added up the numbers from 1 to 100, by noting that 1 + 100 = 2 + 99 = 3 + 98 = . . . =
99+ 2 = 100+ 1 = 101, so that 1+ 2+ . . .+100 equals 1

2 of 100 times 101. In general one
has the formula

N−1∑
n=0

n =
(N − 1)N

2
.

Similarly one has

N−1∑
n=0

n2 =
(N − 1)N(2N − 1)

6
and

N−1∑
n=0

n3 =

(
(N − 1)N

2

)2

.

Exercise A2.1. Prove the last formula by induction. Then prove it by replacing n by N − n and using

the previous two identities.

Are there such formulas for the sums of the kth powers of the integers, for every k ≥ 1?
And, if so, can we easily find the formula? Our first hint for such a formula come from

noting that since tk is an increasing function of t, hence
∫ n

n−1
tkdt < nk <

∫ n+1

n
tkdt, so

that

Nk+1

k + 1
=

∫ N

0

tkdt <

N∑
n=1

nk <

∫ N+1

1

tkdt <
(N + 1)k+1

k + 1
,

so we can be sure that the leading term of the polynomial, if it exists, is Nk+1/(k + 1).
In fact such a polynomial does exist, but proving that it does is not so straightforward.

We will begin with an easier proof that such polynomials exist, but in which it is not easy
to identify the polynomials, and then a less intuitive proof that gives the polynomials
explicitly.

We begin with some linear algebra. The polynomials of degree d in R[x] can be viewed
as a vector space over R with basis {1, x, x2, . . . , xd}. There are many other possible bases
for a given vector space; in this case any sequence of polynomials, one of each degree. We

choose the binomial coefficients {
(
x
0

)
,
(
x
1

)
,
(
x
2

)
, . . . ,

(
x
d

)
} (so that

(
x
k

)
:= (x(x−1)...(x−k+1)

k! ).

Therefore there exist rational numbers a0, . . . , ad such that xd =
∑d

j=0 aj
(
x
j

)
.

Exercise A2.2. Prove that
∑N−1

n=0

(n
k

)
=

( N
k+1

)
. One idea is to do so by induction. Another is to study

the coefficients of the identity (1− t)−k−1 · (1− t)−1 = (1− t)−k−2.

We deduce that

N−1∑
n=0

nd =
d∑

j=0

aj

N−1∑
n=0

(
n

j

)
=

d∑
j=0

aj

(
N

j + 1

)
,

which equals a polynomial in N of degree d + 1, once we have written out each binomial
coefficient as a polynomial. To compute our summatory polynomial we therefore need to
understand these coefficients (the Stirling numbers of the first kind), as well as the aj (the
Stirling numbers of the second kind), and how to combine them. We shall not do this as
there is an easier route to the eventual solution.
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To understand the coefficients, we begin by defining the Bernoulli numbers, Bn, as
the coefficients in the power series:

X

eX − 1
=
∑
n≥0

Bn
Xn

n!
.

The first few Bernoulli numbers are B0 = 1, B1 = − 1
2 , B2 =1

6 , B3 = 0, B4 = − 1
30 ,

B5 = 0, B6 = 1
42 , B7 = 0, B8 = − 1

30 , B9 = 0, B10 = 5
66 , . . . From this data one can make

a few guesses as to what they look like.

Exercise A2.3. Prove that the Bernoulli numbers are all rational numbers.

One guesses, from the data that Bn = 0 if n is odd and > 1, and this is easily proved since

∑
n≥0
n odd

2Bn
Xn

n!
=

X

eX − 1
− (−X)

e−X − 1
=

X

eX − 1
− (XeX)

eX − 1
= −X.

Other facts include that (−1)nB2n < 0 for all n ≥ 1 and, the more subtle Von Staudt-
Clausen Theorem that the set of primes dividing the denominator of B2n is precisely the
set of primes p for which p− 1 divides 2n, and that the denominator is always squarefree.
In fact

(A2.1) pB2n +
∑

p prime
p−1|2n

1

p
is an integer for all n ≥ 1.

We will see later that the Bernoulli numbers occur in various different areas of number
theory.

Next we define the Bernoulli polynomials, Bn(t), as the coefficients in the power series:

XetX

eX − 1
=
∑
n≥0

Bn(t)
Xn

n!
,

and therefore Bn(0) = Bn. To verify that these are really polynomials, note that

∑
k≥0

Bk(t)
Xk

k!
= etX · X

eX − 1
=
∑
m≥0

(tX)m

m!
·
∑
n≥0

Bn
Xn

n!
=
∑
m≥0

∑
n≥0

Bnt
m Xm+n

m!n!
.

Here we change variable, writing k = m+ n, and then the coefficient of Xk, times k!, is

Bk(t) =
∑

m,n≥0
m+n=k

k!

m!n!
Bnt

m =
k∑

n=0

(
k

n

)
Bnt

k−n.
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Theorem A2.1. For any integers k ≥ 1 and N ≥ 1 we have

N−1∑
n=0

nk−1 =
1

k
(Bk(N)−Bk)

Proof. If N is an integer ≥ 1 then

∑
k≥0

(Bk(N)−Bk)
Xk

k!
=
X(eNX − 1)

eX − 1
= X

N−1∑
n=0

enX

= X
N−1∑
n=0

∑
j≥0

(nX)j

j!
=
∑
j≥0

(
N−1∑
n=0

nj

)
Xj+1

j!

=
∑
k≥1

(
k

N−1∑
n=0

nk−1

)
Xk

k!

taking k = j + 1. The result follows by comparing the coefficients on both sides.

Exercise A2.4. We shall use Theorem A2.1 to partly prove (A2.1), the von-Staudt Clausen Theorem.

(i) Use Corollary 7.9 to show that 1
k
(Bk(p)− Bk) ≡ 0 (mod p) for each k ≥ 1, unless k > 1 and p− 1

divides k − 1, in which case it is ≡ p− 1 (mod p).

Let us try to prove the result by induction on k ≥ 1. Suppose that the result is proved for all Bn

with n ≤ k − 1 and we now try to prove the result for Bk.
(ii) If p does not divide k then deduce that 1

k
(Bk(p) − Bk) ≡ Bk−1p (mod p), and thence the von

Staudt-Clausen Theorem.

(iii) Explain what remains to be proved.
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A3. The number of distinct roots of polynomials. If f(x) =
∑d

j=0 fjx
j where

fd ̸= 0 then f(x) has degree d, and leading coefficient fd. We say that f(x) is monic if
fd = 1.

Exercise A3.1. (i) Show that if f is monic and has a rational root then that root must be an integer.

(ii) Show that if f has an integer root n then f(n) ≡ 0 (mod m) for any integer m.

(iii) Show that if f has a rational root r/d, where r and d are coprime integers, and (d,m) = 1, then there

exists an integer n such that f(n) ≡ 0 (mod m).

(iv) For each integer m give an example of a polynomial f which has a rational root r/m with (r,m) = 1,

but for which there does not exist an integer n such that f(n) ≡ 0 (mod m). (Hint: f(x) = 3x+1 has the

rational root − 1
3
yet f(n) ≡ 1 (mod 3), for all integers n.)

The Fundamental Theorem of Algebra. If f(x) ∈ C[x] has degree d ≥ 1 then f(x)
has no more than d distinct roots in C.

Proof. By induction. For d = 1 we note that ax+ b has the unique root −b/a. For higher
degree, if f has root α then subtract multiples of x − α from f(x) to find polynomials
q(x), r(x) such that f(x) = (x − α)q(x) + r(x); here we can assume that r(x) has degree
< 1, and so is a constant, which we denote by r. But then r = r(x) = f(α) = 0. Now
q(x) has degree d − 1 so, by induction, has ≤ d − 1 distinct roots, which implies that
f(x) = (x− α)q(x) has ≤ 1 + (d− 1) distinct roots.

Proposition A3.1. Let α ∈ C and f(x) ∈ Z[x] be the polynomial of minimal degree for
which f(α) = 0.1 If g(x) ∈ Z[x] with g(α) = 0 then f(x) divides g(x).

Proof. There exist q(x), r(x) ∈ Z[x] and k ∈ Z with 0 ≤ deg r ≤ deg f − 1, such that
kg(x) = q(x)f(x) + r(x). Hence r(α) = kg(α) − q(α)f(α) = 0 and r has smaller degree
than f , so the only possibility is that r(x) = 0. Hence kg(x) = q(x)f(x) and the result
follows.

Another result that will be useful is:

Lemma A3.2. If f(x), g(x) ∈ Q[x] are monic and f(x)g(x) ∈ Z[x] then f(x) and g(x) ∈
Z[x].

Proof. Suppose that the conclusion is false so that some coefficient of f(x) is not an
integer. Let p be a prime dividing the denominator of a coefficient of f(x). Let pa and pb

be the highest powers of p dividing the denominator of any coefficient of f(x) and g(x),
respectively, so that a ≥ 1 and b ≥ 0. Therefore we may write paf(x) ≡ fdx

d+. . . (mod p)
where fd ̸≡ 0 (mod p), and similarly pbg(x) ≡ gkx

k + . . . (mod p) where gk ̸≡ 0 (mod p).
Now a+ b ≥ 1 and f(x)g(x) ∈ Z[x] so that

0 ≡ pa+bf(x)g(x) ≡ (fdx
d + . . . )(gkx

k + . . . ) ≡ fdgkx
d+k + . . . (mod p),

which implies that p divides fdgk, a contradiction.

1We call f the minimum polynomial for α.



108 ANDREW GRANVILLE

Lagrange’s Theorem. Let f(x) be a polynomial mod p of degree d ≥ 1 (that is, p does
not divide the coefficient of xd in f). There are no more than d distinct roots m (mod p)
of f(m) ≡ 0 (mod p).

Proof. If f(x) has degree 1 then we have seen that the congruence has exactly one root
(mod p) just after (2.1). We proceed by induction on degree d: Suppose now that f(x)
has degree d ≥ 2 and root a (mod p). Let

g(x) = f(x+ a) ≡
d∑

i=0

gix
i (mod p).

Then g0 = g(0) = f(a) ≡ 0 (mod p) so we may write g(x) ≡ xh(x) (mod p) where h(x) has
degree d− 1. Now suppose f(y) ≡ 0 (mod p). Then (y−a)h(y−a) ≡ g(y−a) = f(y) ≡ 0
(mod p), and so either y − a ≡ 0 (mod p) or h(y − a) ≡ 0 (mod p) by Theorem 3.1. But
the number of possible y values (mod p) is then ≤ 1 + (d − 1) = d, by the induction
hypothesis.

Notice how close this proof is to the proof of the Fundamental Theorem of Algebra.

Exercise A3.2. Suppose that f(x) ∈ Z[x] has degree d. Show that f(x) is irreducible if and only if

xdf(1/x) is irreducible. Moreover if α, β, γ, δ ∈ Z with αδ − βγ = 1 show that f(x) is irreducible if and

only if (γx + δ)df(αx+β
γx+δ

) is irreducible. (Remark: The easy way to prove this uses the generators of

SL(2,Z) — see section C5)

Cyclotomic polynomials. Let ζm = e2iπ/m. Then ζm = e2iπ = 1, and so (ζj)m =
(ζm)j = 1 for all integers j. Hence the ζj are all mth roots of unity.

Exercise A3.3. Show that ζi = ζj if and only if i ≡ j (mod m).

Therefore 1, ζ, ζ2, . . . , ζm−1 are distinct and so denote all of the m roots of xm − 1, by the
Fundamental Theorem of Algebra. We call them the mth roots of unity. If α is an mth
root of unity, but not an rth root of unity for any r, 1 ≤ r ≤ m− 1 then α is a primitive
mth root of unity.

Now suppose that α is an mth root of unity and let r be the minimal integer ≥ 1 for
which αr = 1. Selecting integers u, v such that um + vr = gcd(r,m) we have αgcd(r,m) =
(αm)u(αr)v = 1; and so gcd(r,m) = r by the minimality of r, that is r divides m. We
define here (differently from section 7.9) the cyclotomic polynomials

ϕm(x) :=
∏

α a primitive
mth root of unity

(x− α).

Every root of ϕm(x) is a root of xm − 1, and so if d divides m then ϕd(x) divides x
d − 1,

which divides xm − 1. The polynomials ϕd(x) all have distinct roots and so
∏

d|m ϕd(x)

divides xm − 1. On the other hand the roots of xm − 1 are all mth roots of unity, and
hence are each a primitive dth root of unity for some d dividing m. Since xm − 1 has no
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repeated roots (else the root would also be a root of its derivative, mxm−1), we deduce
that

xm − 1 =
∏
d|m

ϕd(x).

In section 7.9 we saw that ϕm(x) has degree ϕ(m). In fact the roots can be written more
explicitly as {ζj : 1 ≤ j ≤ m and (j,m) = 1}.

We call p a primitive prime factor of am − 1 if p divides am − 1 but does not divide
ar − 1 for any 1 ≤ r ≤ m− 1. In other words a has order m mod p and so p ≡ 1 (mod m).
Note also that p divides ϕm(a) but not ϕr(a) for any 1 ≤ r ≤ m− 1.

Proposition A3.3. If prime p divides ϕm(a) then either p ≡ 1 (mod m) or p divides m.

Proof. Suppose that prime p divides ϕm(a). Then p divides am − 1, and hence ordp(a)
divides m by Lemma 7.2. If ordp(a) = m then m = ordp(a) divides p − 1, that is p ≡ 1
(mod m). If, on the other hand, ordp(a) = d < m then p divides ad − 1, and p divides

ϕm(a) which divides am−1
ad−1

. Therefore

0 ≡ am − 1

ad − 1
= 1 + ad + a2d + a3d + . . .+ am−d

≡ 1 + 1 + 1 + . . .+ 1 =
m

d
(mod ad − 1),

and hence mod p, as p divides ad − 1. Hence p divides m/d which divides m.

Exercise A3.4. (i) Prove that ϕm(0) = −1 or 1.

(ii) Show that if p|a then ϕm(a) ≡ ±1 (mod p), and so p̸ |ϕm(a).

(iii) Deduce that if m|a and prime p|ϕm(a) then p ≡ 1 (mod m).

Primitive prime factors of linear recurrence sequences. Suppose that a, b are co-
prime integers with x0 = 0 and x1 = 1, and xn = axn−1 + bxn−2 for all n ≥ 2. Then

(xn, b) = (axn−1, b) = (xn−1, b) = . . . = (x1, b) = 1,

and so
(xn, xn−1) = (bxn−2, xn−1) = (xn−1, xn−2) = . . . = (x1, x0) = 1.

Now
xm = xm+1x0 + xmx1 and xm+1 = xm+1x1 + xmx0,

so that xm+2 = xm+1x2 + xmx1 and hence, by induction,

(A3.1) xm+ℓ = xm+1xℓ + xmxℓ−1 for all ℓ ≥ 1.

Exercise A3.5. Use this to reprove exercise A1.7.

We know that xm|xkm for all k. In the next exercise we show how to understand p-
divisibility of second order linear recurrences that do not begin with 0, 1.
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Exercise A3.6. Suppose (by0, y1) = 1, and yn = ayn−1 + byn−2 for all n ≥ 2.

(1) Show that yr+ℓ = yr+1xℓ + yrxℓ−1 for all r ≥ 0, ℓ ≥ 1.

Suppose that q is an integer which divides xm, yr with m ≥ 1, r ≥ 0 minimal.
(2) Prove that (q, yr+1) = (q, xm−1) = 1.
(3) Deduce that q|yr+n if and only if q|xn, and that q|yn+m if and only if q|yn.
(4) Finally deduce that q|yn if and only if n ≡ r (mod m).
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A4. Binomial coefficients, Lucas’s Theorem etc, self-similarity. One of the first
objects of number theory interest that one encounters are the binomial coefficients(

n

m

)
=

n!

m!(n−m)!
=
n(n− 1) · · · (n−m+ 1)

m(m− 1) · · · 2 · 1
which is the number of different ways of choosing m objects from n. It is surprising that
these counts should give numbers that factor in this way, and that they are the coefficients
in the binomial theorem,

(x+ y)n =

n∑
m=0

(
n

m

)
xn−mym.

This formula implies that each binomial coefficient is a non-negative integer, which is not
obvious when one encounters the definition, above, of one big product divided by another.

Upper bounds. Taking x = y = 1 in the binomial theorem one deduces easily that(
n

m

)
≤

n∑
j=0

(
n

j

)
= 2n.

Exercise A4.1. Use the fact that
(n
m

)
=

( n
n−m

)
to prove that if n ̸= 2m then

(n
m

)
≤ 2n−1. If n = 2m

then prove this inequality by comparing
(n
m

)
with

( n
m−1

)
+

( n
m+1

)
.

Lower bounds. Through somewhat more involved arguments we now give a lower bound
on the same product.

Exercise A4.2. Prove that
( n
m+1

)
≥

(n
m

)
if and only if n −m ≥ m + 1. Deduce that the maximum of(n

m

)
as m varies is attained when m is the closest integer to n/2 (that is m = [n/2] and [(n+ 1)/2]).

Now
(
n
0

)
+
(
n
n

)
= 1 + 1 = 2 ≤

(
n
1

)
≤
(

n
[n/2]

)
if n ≥ 2. Hence

2n =
n∑

m=0

(
n

m

)
≤ 2 +

n−1∑
m=1

(
n

m

)
≤ n

(
n

[n/2]

)
,

by the last exercise.

The prime powers dividing a given binomial coefficient.

Exercise A4.3. Show that there are exactly [n/q] integers m, 1 ≤ m ≤ n that are divisible by q, for any

integers q, n ≥ 1.

Lemma A4.1. The largest power of prime p that divides n! is
∑

k≥1[n/p
k]. In other

words

n! =
∏

p prime

p[
n
p ]+

[
n
p2

]
+
[

n
p3

]
+...

Proof. We wish to determine the power of p dividing n! = 1 · 2 · 3 · · · (n− 1) ·n. If pk is the
power of p dividing m then we will count 1 for p dividing m, then 1 for p2 dividing m, . . . ,
and finally 1 for pk dividing m. Therefore the power of p dividing n! equals the number of
integers m, 1 ≤ m ≤ n that are divisible by p, plus the number of integers m, 1 ≤ m ≤ n
that are divisible by p2, plus etc. The result then follows from the previous exercise.
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Kummer’s Theorem. The largest power of prime p that divides the binomial coefficient(
a+b
a

)
is given by the number of carries when adding a and b in base p.

Example: To recover the factorization of
(
14
6

)
we add 6 and 8 in each prime base ≤ 14:

0101
10002
1101

020
0223
112

11
135
24

06
117
20

06
0811
13

06
0813
11

We see that there are no carries in base 2, 1 carry in base 3, no carries in base 5, 1 carry in
base 7, 1 carry in base 11, and 1 carry in base 13, so we deduce that

(
14
6

)
= 31 ·71 ·111 ·131.

Proof. For given integer k ≥ 1, let q = pk. Then let A and B be the least non-negative
residue of a and b (mod q), respectively, so that 0 ≤ A,B ≤ q − 1. Note that A and B
give the first k digits (from the right) of a and b in base p. If C is the first k digits of
a+ b in base p then C is the least non-negative residue of a+ b (mod q), that is of A+B
(mod q). Now 0 ≤ A+B < 2q:

• If A+B < q then C = A+B and there is no carry in the kth digit when we add a
and b in base p.

• If A+B ≥ q then C = A+B − q and so there is a carry of 1 in the kth digit when
we add a and b in base p.

We need to relate these observations to the formula in the lemma. The trick comes
in noticing that A = a− pk

[
a
pk

]
, and similarly B = b− pk

[
b
pk

]
and C = a+ b− pk

[
a+b
pk

]
.

Therefore[
a+ b

pk

]
−
[
a

pk

]
−
[
b

pk

]
=
A+B − C

pk
=

{
1 if there is a carry in the kth digit;

0 if not;

and so ∑
k≥1

([
a+ b

pk

]
−
[
a

pk

]
−
[
b

pk

])
equals the number of carries when adding a and b in base p. However this equals the exact

power of p dividing (a+b)!
a!b! =

(
a+b
a

)
by lemma A4.1, and the result follows.

Corollary A4.2. If pe divides the binomial coefficient
(
n
m

)
then pe ≤ n.

Proof. There are k + 1 digits in the base p expansion of n when pk ≤ n < pk+1. When
adding m and n − m there can be carries in every digit except the (k + 1)st (which
corresponds to the number of multiples of pk). Therefore that are no more than k carries
when adding m to n−m in base p, and so the result follows from Kummer’s Theorem.

Kummer’s Theorem shows us how to determine what power of prime p divides a given
binomial coefficient, and the next result shows us how to find the value mod p when the
binomial coefficient is not divisible by p. It is convenient to define

(
n
m

)
= 0 when m > n.
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Lucas’ Theorem. Write n = n0 + n1p+ . . .+ ndp
d in base p (so that 0 ≤ nj ≤ p− 1 for

each j) and similarly m = m0 +m1p+ . . .+mdp
d. Then(

n

m

)
≡
(
n0
m0

)(
n1
m1

)
· · ·
(
nd
md

)
(mod p).

Proof. Using Fermat’s Little Theorem (1 + x)p
j ≡ 1 + xp

j

(mod p), and so

n∑
m=0

(
n

m

)
xm = (1 + x)n =

d∏
j=0

(1 + x)njp
j

≡
d∏

j=0

(1 + xp
j

)nj (mod p) ≡
d∏

j=0

nj∑
mj=0

(
nj
mj

)
xmjp

j

=
∑

0≤mj≤nj

for j=0,1,2,... ,d

(
n0
m0

)(
n1
m1

)
· · ·
(
nd
md

)
xm0+m1p+...+mdp

d

(mod p).

The result follows by comparing the coefficient of xm on either side.

We have seen that (x+ 1)p ≡ xp + 1 (mod p). Hence

p−1∑
j=0

(
p− 1

j

)
xj = (x+ 1)p−1 =

(x+ 1)p

x+ 1
≡ xp + 1

x+ 1
=

p−1∑
j=0

(−x)j (mod p),

so that (
p− 1

j

)
≡ (−1)j (mod p).

Another proof simply comes from expanding
(
p−1
j

)
=p−1

1
p−2
2 · · · p−j

j ≡ (−1)j (mod p),

since each p−i
i ≡ −1 (mod p). One nice consequence is that(

p− 1

2

)
!2 = (p− 1)!

/(
p− 1
p−1
2

)
≡ (−1)

p+1
2 (mod p)

using Wilson’s Theorem. Hence if p ≡ 1 (mod 4) then
(
p−1
2

)
! is a square root of −1

(mod p).
The binomial coefficients

(
p
m

)
, 1 ≤ m ≤ p−1 are all divisible by p. If we divide through

by p we obtain

1

p

(
p

m

)
=
(p− 1)(p− 2) . . . (p− (m− 1))

m!
≡ (−1)m−1

m
(mod p).

Therefore

Lp(1− x) :=
(1− x)p − 1 + xp

p
=

1

p

p−1∑
m=1

(
p

m

)
(−x)m ≡ −

p−1∑
m=1

xm

m
(mod p).



114 ANDREW GRANVILLE

For example if x = −1 then 2p−2
p ≡ −

∑p−1
m=1

(−1)m

m (mod p), and also if x = 2 then
2p−2

p ≡ −
∑p−1

m=1
2m

m (mod p). Note that Lp(1 − x) is a truncation of the expansion for

the logarithm function, log (1 − x) = −
∑

m≥1
xm

m . There is a further connection: If

ℓp(x) :=
xp−1−1

p so that xp−1 = 1 + pℓp(x) then

1 + pℓp(ab) = (ab)p−1 = (1 + pℓp(a))(1 + pℓp(b)) ≡ 1 + p(ℓp(a) + ℓp(b)) (mod p2),

and so ℓp(ab) ≡ ℓp(a) + ℓp(b) (mod p), much like the logarithm function. It is not obvious
what the connection is between these two appearances of the logarithm function!
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A5. Taking powers efficiently, P and NP. How can we raise an integer to the nth
power “quickly”, when n is very large? In 1785 Legendre computed high powers mod p by a
method that we now call fast exponentiation: Suppose we have to determine 565 (mod 161).
We begin by writing 65 in base 2, that is 65 = 26 + 21. Let f0 = 5, f1 ≡ f20 ≡ 52 ≡ 25
(mod 161), f2 ≡ f21 ≡ 252 ≡ 142 (mod 161), f3 ≡ 1422 ≡ 39 (mod 161), f4 ≡ 72, f5 ≡
32, f6 ≡ 58 (mod 161) and so 565 = 564+1 ≡ f6 · f0 ≡ 58 · 5 ≡ 129 (mod 161). We have
determined the value of 565 (mod 161) in seven multiplications mod 161, as opposed to 65
multiplications by the more obvious algorithm.

In general to compute an (mod m) quickly: Define f0 = a and then fj ≡ f2j−1

(mod m) for each j = 1, 2, . . . , j1, where j1 is the largest integer for which 2j1 ≤ n.
Writing n in binary, say as n = 2j1 + 2j2 + · · · + 2jℓ with j1 > j2 > · · · > jℓ ≥ 0, let

g1 = fj1 and then gi ≡ gi−1fjimod m for j = 2, 3, . . . , ℓ. Therefore

gℓ ≡ fj1 · fj2 · · · fjℓ ≡ a2
j1+2j2+···+2jℓ = an (mod m).

This involves jℓ+ ℓ− 1 ≤ 2jℓ ≤2 log n
log 2 multiplications mod m as opposed to n by the more

obvious algorithm.

Running time: The inputs into this algorithm are the integers a and m and the exponent
n. We may assume that 1 ≤ a ≤ m, and that all of the residues fj and gi can be taken to
lie in [1,m]. If m has d digits when written down (so that d is proportional to log m) then
the usual multiplication algorithm, multiplying digit by digit, requires roughly d2 steps,
and reducing an integer with no more than 2d+1 digits, mod m, requires about 2d steps.
Therefore the total number of steps in the above algorithm is proportional to

(log m)2 log n.

The length D of the inputs is the number of digits when we write them down (in base 2
or 10), and so is proportional to log (mn). Hence the running time of the algorithm is
no more than some constant times D3, that is a polynomial in D. We therefore call this
a polynomial time algorithm. We cannot hope for an algorithm to take less time than it
takes to read the inputs, so any polynomial time algorithm is considered to be pretty fast.

Exercise A5.1. Show that there are polynomial time algorithms for both addition and multiplication.

Exercise A5.2. Prove that the Euclidean algorithm works in polynomial time.

One should distinguish between the mathematical problem and the algorithm for
resolving the problem. There may be many choices of algorithm and one wishes, of course,
to find a fast one. We denote by P the class of problems that can be resolved by an
algorithm that runs in polynomial time. There are very few mathematical problems which
belong to P.

In section 10.5 we discussed problems that have been resolved and for which the
answer can be quickly checked. For example one can exhibit factors of a given integer n
to give a short proof that n is composite. We also saw Lucas’ short proof that a number is
prime based on the fact that only prime numbers n have primitive roots generating n− 1
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elements. By “short” we mean that the proof can be verified in polynomial time, and
we say that such problems are in the class NP (“non-deterministic polynomial time”2). In
these cases we are not suggesting that the proof can be found in polynomial time, only
that the proof can be checked in polynomial time; indeed we have no idea whether it is
possible to factor numbers in polynomial time, and this is now the outstanding number
theory problem of this area.

By definition P⊆NP; and of course we believe that there are problems, for example the
factoring problem, which are in NP, but not in P; however this has not been proved, and it
is now perhaps the outstanding unresolved question of theoretical computer science. This
is another of the Clay Mathematics Institute’s million dollar problems, and perhaps the
most likely to be resolved by someone with less formal training, since the experts seem to
have few plausible ideas for attacking this question.

It had better be the case that P̸=NP, else there is little chance that one can have safe
public key cryptography (see, e.g., section 10.3) or that one could build a highly unpre-
dictable (pseudo-)random number generator3, or that we could have any one of several
other necessary software tools for computers. Notice that one implication of the “P̸=NP”
question remaining unresolved is that no fast public key cryptographic protocol is, as yet,
provably safe!

Difficult problems: There are only a finite number of possible commands for each line
of a computer program, which therefore induce a finite number of possible states for the
number and values of the variables.4 It is therefore easy to show that most problems need
exponential length programs to be solved:

We consider the set of problems where we input N bits and output one bit, that is
functions

f : {0, 1}N → {0, 1}.

Since there are 2N possible inputs, and for each the function can have two possible outputs,

hence the number of such functions is 22
N

.
If a computer language allows M different possible statements, then the number of

programs containing k lines isMk, and this is therefore a bound on the number of functions
that can be calculated by a computer program that is k lines long. Therefore if k < cM ·2N ,

where cM := log 2
2log M then this accounts for ≤ 22

N−1

functions; hence the vast majority of

such problems require a program of length at least cM ·2N . (Notice here that M , and thus
CM , is fixed by the computer, and N is varying).

Since almost all problems require such long programs, exponential in the length of
the input, one would think that it would be easy to specify problems that needed longish

2Note that NP is not “non-polynomial time”, a common source of confusion. In fact it is “non-
deterministic” because the method for discovering the proof is not necessarily determined.

3So-called “random number generators” written in computer software are not random since they need

to work on a computer where everything is designed to be determined! Thus what are called “random
numbers” are typically a sequence of numbers, determined in a totally predictable manner, but which
appear to be random when subjected to “randomness tests” in which the tester does not know how the
sequence was generated.

4Here we are talking about a classical computer. As yet impractical quantum computers face less
restrictions and thus, perhaps, will allow more things to be computed rapidly.
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programs. However this is a wide open problem. Indeed even finding specific problems
that cannot be resolved in polynomial time is open, or even problems that really require
more than linear time! This is the pathetic state of our knowledge on lower bounds for
running times, in practice. So if you ever hear claims that some secret code is provably
difficult to break, that your secrets are perfectly safe, then either there has been a major
scientific breakthrough, or you are hearing salesmanship, not mathematical proof.
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A6. Solving the cubic. The roots of a quadratic polynomial ax2 + bx+ c = 0 are

−b±
√
b2 − 4ac

2a
.

The easy way to prove this is to put the equation into a form that is easy to solve. One
begins by dividing through by a, to get x2+(b/a)x+c/a = 0, so that the leading coefficient
is 1. Next we make a change variable, letting y = x+ b/2a to obtain

y2 − (b2 − 4ac)/4a2 = 0.

Having removed the y1 term, we can simply take square-roots to obtain the possibilities
for y, and hence the possible values for x.

We call ∆ := b2 − 4ac the discriminant of our polynomial. Note that if f(x) =
ax2 + bx + c then f ′(x) = 2ax + b. We apply the Euclidean algorithm on these two
polynomials: 2f(x)−xf ′(x) = bx+2c and so 2a(bx+2c)− b(2ax+ b) = −∆, which yields

∆ = −4a(ax2 + bx+ c) + (2ax+ b)2.

Thus ∆ is the smallest positive integer in the ideal generated by f and f ′ over Z[a, b, x].

Can one similarly find the roots of a cubic? We can certainly begin the same way.

Exercise A6.1. Show that we can easily deduce the roots of any given cubic polynomial, from the roots

of some cubic polynomial of the form x3 + ax+ b.

We wish to find the roots of x3 + ax+ b = 0. This does not look so easy since we cannot
simply take cube roots unless a = 0. Cardano’s trick (1545) is a little surprising: Write
x = u+ v so that

x3 + ax+ b = (u+ v)3 + a(u+ v) + b = (u3 + v3 + b) + (u+ v)(3uv + a).

This equals 0 when u3 + v3 = −b and 3uv = −a; in other words

(1) u3 + v3 = −b and u3v3 = −a3/27.

Hence (X − u3)(X − v3) = X2 + bX − a3/27 and so, using the formula for the roots of a
quadratic polynomial, yields

u3, v3 =
−b±

√
b2 + 4a3/27

2

Taking cube roots yield values for u and v for which (1) holds but it is not clear that
3uv = −a. Indeed what we do have is that if α = −3uv/a then α3 = −27u3v3/a3 = 1 by
(1), and so α is one of the three cube roots of unity, and not necessarily 1. To rectify this
we replace v by α2v. Hence the roots of x3 + ax+ b are given by

u+ v, ωu+ ω2v, ω2u+ ωv,
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where ω is a primitive cube root of unity. Now the discriminant is

∆ := 4a3 + 27b2 = (6ax2 − 9bx+ 4a2)(3x2 + a)− 9(2ax− 3b)f(x),

where f(x) = x3 + ax+ b, the smallest positive integer in the ideal generated by f and f ′

over Z[a, b, x], and so u3, v3 =
−b±

√
∆/27

2 .

The important thing to notice here is that the solution to a cubic is given in terms of
both cube roots and square roots, not just cube roots.

How about the roots of a quartic polynomial? Can these be found in terms of fourth
roots, cube roots and square roots? And similarly roots of quintics and higher degree
polynomials?

The general quartic: We begin, as above, by rewriting the equation in the form
x4 + ax2 + bx+ c = 0. Following Ferrari (1550s) we add an extra variable y to obtain the
equation

(x2 + a+ y)2 = (a+ 2y)x2 − bx+ ((a+ y)2 − c),

and then select y to make the right side the square of a linear polynomial in x (and so
we would have (x2 + a + y)2 = (rx+ s)2 and hence x can be deduced as a root of one of
the quadratic polynomials (x2 + a + y) ± (rx + s)). The right side is a square of a linear
polynomial if and only if its discriminant is 0, that is b2− 4(a+2y)((a+ y)2 − c) = ∆ = 0.
But this is a cubic in y, and we have just seen how to find the roots of a cubic polynomial.

Example: We want the roots of X4 + 4X3 − 37X2 − 100X + 300. Letting x = X + 1
yields x4 − 43x2 − 18x + 360. Proceeding as above leads to the cubic equation 2y3 −
215y2 + 6676y − 64108 = 0. Dividing through by 2 and then changing variable y =
t + 215/6 gives the cubic t3 − (6169/12)t − (482147/108) = 0. This has discriminant
−4(6169/12)3 + 27(482147/108)2 = −(2310)2. Hence u3, v3 = (482147± 27720

√
−3)/216.

Unusually this has an exact cube root in terms of
√
−3; that is u, v = ω∗(−37±40

√
−3)/6.

Now −3(−37 + 40
√
−3)/6 · (−37 − 40

√
−3)/6 = −6169/12 = a. Therefore we can take

u, v = (−37± 40
√
−3)/6, and the roots of our cubic are t = u+ v = −37/3, ωu+ ω2v =

157/6, ω2u+ωv = −83/6 so that y = 47/2, 62, 22. From these Ferrari’s equation becomes
(x2−39/2) = ±(2x+9/2) for y = 47/2 and so the possible roots −5, 3;−4, 6; or (x2+19) =
±(9x + 1) for y = 62 and so the possible roots −5,−4; 3, 6; or (x2 − 21) = ±(x + 9) for
y = 22 and so the possible roots −5, 6; 3,−4. For each such y we get the same roots
x = 3,−4,−5, 6, yielding the roots X = 2,−5,−6, 5 of the original quartic.

Example: Another fun example is to find the fifth roots of unity. That is those x satisfying

ϕ5(x) =
x5−1
x−1 = x4 + x3 + x2 + x+ 1 = 0. Proceeding as above we find the roots

√
5− 1±

√
−2

√
5− 10

4
,
−
√
5− 1±

√
2
√
5− 10

4
.

Example: Gauss’s favourite example was the expression in surds was for cos 2π
2k
, which we

will denote by c(k). A double angle formula states that cos 2θ = 2 cos2 θ−1, and so taking
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θ = 2π/2k we have c(k − 1) = 2c(k)2 − 1, or c(k) = 1
2

√
2 + 2c(k − 1). Note that c(k) ≥ 0

for k ≥ 2 and c(2) = 0. Hence c(3) = 1
2

√
2, c(4) = 1

2

√
2 +

√
2, c(5) = 1

2

√
2 +

√
2 +

√
2

and, in general,

cos

(
2π

2k

)
=
1

2

√√√√
2 +

√
2 +

√
2 +

√
2 + . . .

√
2︸ ︷︷ ︸

k−2 times

for each k ≥ 3.

Why surds? (A surd is a number of the form n1/k where n and k are positive integers.)
Why do we wish to express roots of all polynomials in terms of square roots, cube roots,
etc.? That is, surds. After all, is a solution in terms of

√
7 any more enlightening then in

terms of the second-largest root of x5 − 3x2 +2x− 11? By this I mean we have an expres-
sion that gives each of these numbers “exactly”, though that expression is not something
that is a solid integer, just something that one can approximate speedily and accurately.
But there are methods to quickly approximate the roots of any given polynomial to any
desired level of accuracy, so why the obsession with surds? The answer is more aesthetic
than anything else – we have a comfort level with surds that we do not have with more
complicated expressions. One can rephrase the question: Can we describe the roots of any
given polynomial, xd+a1x

d−1+ . . .+ad as a polynomial, with rational coefficients, in roots
of polynomials of the form xk−n? One can see that this is probably wishful thinking since
we wish to express a root that is given in terms of d coefficients, in terms of something
much simpler, and it is perhaps miraculous that we have succeeded with all polynomials
where d ≤ 4. After this discussion it may not come as such a surprise that there are degree
five polynomials whose roots cannot be expressed as a rational expression in surds. This
was understood by Gauss in 1804, but waited for a magnificent proof by Galois in 1829 at
the age of 18. More on that in a moment.

The theory of symmetric polynomials. It is difficult to work with algebraic num-
bers since one cannot necessarily evaluate them precisely. However for many of the rea-
sons we use them we do not need to actually work with complex numbers, but rather
we work with the set of roots of a polynomial. It was Sir Isaac Newton who recog-
nized the following result. We say that P (x1, x2, . . . , xn) is a symmetric polynomial if
P (xk, x2, . . . , xk−1, x1, xk+1, . . . , xn) = P (x1, x2, . . . , xn) for each k.

Exercise A6.2. Show that for any permutation σ if 1, 2, . . . , n and any symmetric polynomial P we have

P (xσ(1), xσ(2), . . . , xσ(n)) = P (x1, x2, . . . , xn).

The fundamental theorem of symmetric polynomials. Let f(x) =
∏d

i=1(x− αi) =∑d
i=0 aix

i be a monic polynomial with integer coefficients. Then any symmetric polynomial
in the roots of f can be expressed as a polynomial in the ai.

Let us see the idea. First, we know by multiplying out
∏d

i=1(x− αi) that∑
i

αi = −a1,
∑
i<j

αiαj = a2,
∑

i<j<k

αiαjαk = −a3, . . . , α1α2 . . . αn = ±an.
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Now define sk :=
∑d

i=1 α
k
i . Since

f ′(x)
f(x) =

∑d
i=1

1
x−αi

have

∑d
j=0 jajx

d−j∑d
i=0 aix

d−i
=
xd−1

xd−1
· f

′(1/x)

xf(1/x)
=

d∑
i=1

1

1− αix
=

d∑
i=1

∑
k≥0

(αix)
k =

∑
k≥0

skx
k.

This implies that
∑d

j=0(d− j)ad−jx
j =

∑d
i=0 ad−ix

i ·
∑

k≥0 skx
k, so that, comparing the

coefficients of xk, we obtain (as ad = 1)

sk = −
min{d,k}∑

i=1

ad−isk−i +

{
(d− k)ad−k if k < d;

0 if k ≥ d.

Hence, by induction on k, we see that the sk are polynomials in the aj .

Exercise A6.3. If f is not monic, develop analogous results by working with g(x) defined by g(adx) =

ad−1
d f(x).

Now that we have obtained the sk, we can prove Newton’s result for arbitrary sym-
metric polynomials, by showing that every symmetric polynomial is a polynomial in the
sk, which implies the theorem. We proceed by induction on the number of variables in
the monomials of the symmetric polynomial. The result for the sk is precisely the case
where each monomial has one variable. Now, for the proof by induction, suppose that
the symmetric polynomial under question has monomial αk1

i1
αk2
i2
. . . αkr

ir
with each ki ≥ 1

and summed over all possibilities of i1, i2, . . . , ir being distinct elements of 1, 2, . . . , n. We
subtract sk1sk2 . . . skr ,

5 and we are left with various cross terms, in which two or more
of the variables αj are equal. Hence in the remaining expression each monomial contains
fewer variables and the result follows by induction.

Example: Look at
∑

i,j,k αiα
2
jα

3
k. Subtract s1s2s3 and we have to account the cases where

i = j or i = k or j = k. Hence what remains is −
∑

i,k α
3
iα

3
k −
∑

i,j α
4
iα

2
j −
∑

i,j αiα
5
j +2s6

where in the first sum we have i = j, in the second i = k, then j = k and i = j = k.
Proceeding the same way again we have

∑
i,j α

4
iα

2
j = s4s2− s6,

∑
i,j αiα

5
j = s1s5− s6 and∑

i,k α
3
iα

3
k = (s23 − s6)/2, the last since in s23 the cross term α3

iα
3
k appears also as α3

kα
3
i .

Collecting this all together yields
∑

i,j,k αiα
2
jα

3
k = s1s2s3−s1s5−s2s4−s23/2+9s6/2. Notice

that in each term here the sum of the indices is 6, the degree of the original polynomial.

Some special cases: If α is a root of an irreducible polynomial f(x) = a
∏d

i=1(x− αi)
then there are two particular symmetric polynomials of the roots of special interest:

The trace of α is α1 + α2 + . . .+ αd, the sum of the roots of f .

The norm of α is α1α2 . . . αd, the product of the roots of f .

5Actually this is only really correct if the kj are distinct. To correct we divide through by
∏

imi!
where mi is the number of kj that equal i.
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A7. Constructibility. The ancient Greeks were interested in what could be constructed
using only an unmarked ruler (i.e. a straight edge) and a compass. Three questions
stumped them:

(1) Quadrature of the circle: Draw a square that has area equal to that of a given
circle.

(2) Duplication of the cube: Construct a cube that has twice the volume of a given
cube.

(3) Trisection of the angle: Construct an angle which is one third the size of a given
angle.

Let us formulate these problems algebraically.
(1) The area of the square is π, so we need to be able to find a root of x2 − π.
(2) Starting with a cube of side length 1, the new cube would have side length 21/3;

in other words we need to find the real root of x3 − 2.
(3) Constructing an angle θ as is difficult as constructing a right angled triangle

containing that angle, and so the triangle with side lengths sin θ, cos θ, 1. Hence if we
start with angle 3θ and wish to determine θ, we will need to be able to determine cos θ
from cos 3θ and sin 3θ. But these are linked by the formula cos 3θ = 4 cos3 θ− 3 cos θ, that
is we need to find the root x = 2 cos θ of x3 − 3x − A where A = 2 cos 3θ. So if θ = π/9
this yields the equation x3 − 3x− 1.

The first is impossible because π is transcendental (something we may prove later).
The next two, whether we can construct the roots of the polynomials x3−2 and x3−3x−1,
we shall discuss now:

Our first goal is to understand the algebra of a new point constructed from given
points and lengths.

Proposition A7.1. Given a set of known points on known lines, and a set of lengths,
any new points that can be constructed using ruler and compass will have coordinates that
can be determined as roots of degree one or two polynomials whose coefficients are rational
functions of the already known coordinates.

Proof. Lines are defined by pairs of points: Given the points A = (a1, a2) and B = (b1, b2)
the line between them is (b1 − a1)(y − a2) = (b2 − a2)(x− a1).

Exercise A7.1. Show that the coefficients of the equation of this line can be determined by a degree one

equation in already known coordinates.

Exercise A7.2. Prove that any two (non-parallel) lines intersect in a point that can be determined by a

degree one equation in the coefficients of the equations of the lines.

Given a point C = (c1, c2) and a radius r, we can draw a circle (x−c1)2+(y−c2)2 = r2.

Exercise A7.3. Prove that the points of intersection of this circle with a given line can be given by a

degree two equation in already known coordinates. (Hint: Substitute the value of y given by the line, into

the equation of the circle.)

Exercise A7.4. Prove that the points of intersection of two circles can be given by a degree two equation

in already known coordinates. (Hint: Subtract the equations for the two circles.)
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So to show that one cannot duplicate the cube, or trisect an angle, we need to have
a theory that shows that the roots of irreducible polynomials of degree three cannot be
determined in terms of a (finite) succession of roots of linear or quadratic polynomials
whose coefficients are already constructed. This is the beginning of Galois theory.

Fields. A field is a set of objects amongst which we can apply the usual operations of
arithmetic (i.e. addition, subtraction, multiplication and division).6 In number theory, the

basic field is the set of rationals, Q. We can adjoin an irrational to Q, like
√
2, to obtain

Q(
√
2), the set of all arithmetic expressions in

√
2 with rational coefficients.

Exercise A7.5. Show that Q(
√
2) = {r + s

√
2 : r, s ∈ Q}.

One can even adjoin several irrationals toQ, for example to obtainQ(21/2, 31/3, 51/5, 71/7).
One might ask whether there exists α such that this field can be written as Q(α) (so that
every element of the field can be given as a polynomial in α with rational coefficients)?
If so then the field extension is simple, but this is not always the case. In our cases of
interest, like in the example of the fifth roots of unity, we start with K = Q(

√
5), and then

the fifth roots of unity all live in L = K(
√
−2

√
5− 10,

√
2
√
5− 10). In fact if we call these

two elements α, β then αβ = 4
√
5 ∈ K, and so L = K(α) so L/K is a simple extension.

Exercise A7.6. Verify that
√
5 = −α2/2 − 5 and show how to find β as a function of α with rational

coefficients. Deduce that L/Q is a simple extension.

The degree of the field extension Q(α) of Q is the degree of the minimal polynomial
for α over Q. Since any field extension K of Q can be obtained as K = Q(α1, α2, . . . , αn),
let K0 = Q, K1 = Q(α1), K2 = K1(α2), . . . ,Kn = K, we obtain the degree of K/Q as
the product of the degrees of Kj+1/Kj . If L is a subfield of K then we can find numbers
β1, . . . , βm such that K = L(β1, . . . , βm).

With this we can give a more precise description of constructibility: A number γ is
constructible (by ruler and compass) if there exists a field K such that γ ∈ K and K can
be written as K = Q(α1, α2, . . . , αn) where each Kj+1/Kj has degree 2. Hence the degree
of K of Q is a power of 2. Let L = Q(γ). We see from the above that the degree of L/Q,
times the degree of K/L equals the degree of K/Q, which is a power of 2. Hence the degree
of L/Q must itself be a power of 2; that is the degree of the minimum polynomial of γ
must be a power of 2. We deduce that if the minimum polynomial of γ has degree 3 then
γ is not constructible.

Exercise A7.7. Deduce that one cannot duplicate the cube nor trisect the angle π/3. (You will need to

show that the relevant cubic polynomials are irreducible over Z. To do this you might use Lemma A3.2.)

As we have discussed in section 11.3, an algebraic number is a number α ∈ C which
satisfies a polynomial with integer coefficients. An algebraic integer is a number α ∈ C
which satisfies a monic polynomial with integer coefficients.

Exercise A7.8. Let f(x) be a polynomial in Z[x] of minimal degree for which f(α) = 0, where the gcd of
the coefficients of f is 1.

(1) Show that if g(x) ∈ Z[x] with g(α) = 0 then f(x)|g(x).

6Technically, the objects are organized into both additive and multiplicative groups — see section
B4 for more details.
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(2) Deduce that f(x) is well-defined and unique, and so can be called the minimum polynomial of α.
(3) Show that if f has leading coefficient a then aα is an algebraic integer.

(4) Show that if g(x) ∈ Z[x] with g(α) = 0 is monic then α is an algebraic integer.

If α is an algebraic integer then so is mα + n for any integers m,n; for if f(x) is the
minimal polynomial of α and has degree d then F (x) := mdf(x−n

m ) is a monic polynomial
in Z[x] with root mα+ n.

Suppose that α and β are algebraic integers with minimal polynomials f and g. Then∏
u: f(u)=0
v: g(v)=0

(x− (u+ v)) =
∏

u: f(u)=0

g(x− u).

By the fundamental theorem of symmetric polynomials this has rational coefficients, and
so α+ β is an algebraic number.

Exercise A7.9. Prove that αβ is an algebraic number.

In the fundamental theorem of arithmetic we ignored negative integers. If we seek
to generalize the fundamental theorem then we cannot do this. The right way to think
about this is that every non-zero integer is of the form un where n is a positive integer
and u = −1 or 1. These two values for u are the only integers that divide 1, and it is
for this reason they are a bit exceptional. In general we define a unit to be an algebraic
integer that divides 1, that is an algebraic integer u is a unit if and only if there exists an
algebraic integer v such that uv = 1.

Exercise A7.10. Show that if f(x), the minimum polynomial for u, has degree d, then xdf(1/x) is the

minimum polynomial for 1/u. Deduce that u is a unit if and only if f(0) equals 1 or −1.
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A8. Resultants and Discriminants. (should be in section B) In Theorem 3.8 we
showed that all solutions m,n to am+ bn = c are given by

m = r + ℓ
b

(a, b)
, n = s− ℓ

a

(a, b)
where ℓ is an integer,

given some initial solution r, s. Are there solutions with (m,n) = 1? The first thing to note
is that (m,n) divides am+ bn = c, so (m,n) = 1 if and only if for each prime factor p of c
we have that p̸ |m or p̸ |n. Now ( a

(a,b) ,
b

(a,b) ) = 1 so p does not divide at least one of them,

say p̸ | a
(a,b) . Then, by the remarks are Corollary 3.6, there exists a residue class ℓp (mod p)

such that s−ℓp a
(a,b)≡ 1 (mod p). (And there is an analogous construction when p ̸ | b

(a,b) .)

Now taking ℓ ≡ ℓp (mod p) for each prime p dividing c, we will obtain pairwise coprime
integers m,n for which am + bn = c. Or, given one solution m,n, we can find infinitely
many solutions to aM + bN = c with (M,N) = 1, by taking M = m+ bck, N = n− ack
for any integer k, since (M,N) = (M,N, c) = (m,n, c) = 1.

Suppose that we have two polynomials f(x) = f0x
D+ . . . and g(x) = g0x

d+ . . . ∈ Z[x]
where D ≥ d and f0, g0 are non-zero. We can apply the Euclidean algorithm even in Z[x],
subtracting an appropriate polynomial multiple of the polynomial of smaller degree, from a
constant multiple of the polynomial of larger degree, to reduce the degree of the polynomial
of larger degree; that is take h(x) = g0f(x)− f0x

D−dg(x) to get a new polynomial in Z[x]
of degree < D. Moreover if we define gcd(f(x), g(x)) to be the polynomial in Z[x] of largest
degree that divides both f(x) and g(x), then the same proof as in the integers yields that
gcd(f(x), g(x)) = gcd(g(x), h(x)), so we can iterate our procedure until one of the two
entries is 0. Evidently gcd(f(x), 0) = f(x). Hence this implies (as in the integers) that we
have polynomials a(x), b(x) ∈ Z[x] such that

a(x)f(x) + b(x)g(x) = R gcdZ[x](f(x), g(x))

for some constant R. One can show that deg a < deg g and deg b < deg f
The most interesting case for us is when gcd(f(x), g(x)) = 1, that is when f and g

have no common root, and we divide any common integer factors out from the three terms,
to obtain

a(x)f(x) + b(x)g(x) = R,

where R is the resultant of a and b. Now, let us suppose that there exists an integer m
such that f(m) ≡ g(m) ≡ 0 (mod p). Substituting in x = m we see that p divides R. This
argument can be generalized, using some algebraic number theory, to show that if f and
g have any common factor mod p (not just a linear polynomial) than p divides R.

Now suppose that prime p divides R so that a(x)f(x) ≡ −b(x)g(x) (mod p). Hence
f(x) divides b(x)g(x) (mod p), but f has higher degree than b and so it must have some
factor in common with g(x) (mod p). Thus we have an “if and only if” criterion:

Proposition A8.1. Suppose that f(x), g(x) ∈ Z[x] have no common roots. Then prime
p divides the resultant of f and g if and only if f and g have a common polynomial factor
mod p.
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A particularly interesting special case of Proposition A8.1 is where we take g(x) =
f ′(x). The resultant of f and f ′ is the discriminant of f . Let us check this: If f(x) =
ax2 + bx+ c then f ′(x) = 2ax+ b and so

(2ax+ b)(2ax+ b)− 4a(ax2 + bx+ c) = b2 − 4ac.

If f(x) = x3 + ax+ b then f ′(x) = 3x2 + a and so

9(3b− 2ax)(x3 + ax+ b) + (6ax2 − 9bx+ 4a2)(3x2 + a) = 4a3 + 27b2.

Corollary A8.2. Suppose that f(x) ∈ Z[x] has no repeated roots. Then prime p divides
∆, the discriminant of f if and only if f has a repeated polynomial factor mod p.

We should also note that the polynomial common factor of highest degree of f and f ′

can be obtained by using the Euclidean algorithm but can also be described as

gcdZ[t](f(t), f
′(t)) = c′

k∏
i=1

(t− αi)
ei−1,where f(t) = c

k∏
i=1

(t− αi)
ei

and c′ divides c. In the case that f(x) has no repeated roots, so that gcdZ[t](f(t), f
′(t)) ∈ Z,

let us write
a(x)f(x) + b(x)f ′(x) = ∆

so that f ′(x) = c
∑d

j=1

∏
1≤i≤d, i ̸=j(x − αi). Hence f ′(αj) = c

∏
i: i̸=j(αj − αi) and note

that ∆ = b(αj)f
′(αj) so that f ′(αj) divides ∆. In fact one can determine the discriminant

of f as

±c2d−2
∏

1≤i<j≤d

(αi − αj)
2 = ±cd−2

d∏
j=1

f ′(αj).

Exercise A8.1. By multiplying f(x) through by a constant, establish that if such a formula is true then

one must have an initial terms of a2d−2.

Exercise A8.2. Show that if f(t) =
∏k

i=1(t− αi)
ei then

∏d
j=1 f

′(αj) is an integer, by using the theory

of symmetric polynomials.
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A9. Möbius transformations: Lines and circles go to lines and circles. In both
the Euclidean algorithm and in working with binary quadratic forms we have seen maps
(x, y) → (αx + βy, γx + δy). These linear transformations have various nice properties,
one of which is that a line is mapped to a line under such transformations.

A Möbius transformation acts on the complex plane (plus the “point” ∞). It is a map
of the form

z → αz + β

γz + δ
where αδ − βγ ̸= 0.

Hence we see that ∞ → α/γ (and ∞ → ∞ if γ = 0), and −δ/γ → ∞.

Exercise A9.1 Show that if one composes two Möbius transformations one gets another one.

Exercise A9.2 Show that the Möbius transformations z → z + 1, z → −1/z and z → λz compose to give

all Möbius transformations.

Let’s study the two basic shapes, a line and a circle, and how they map under Möbius
transformations. Certainly under translations z → z + k, and dilations z → λz, it is clear
geometrically that lines map to lines and circles map to circles.

We now focus on the map z → −1/z. Notice that if we apply the map twice then
we get back to the original point: A circle centered at the origin of radius r has equation
|z| = r, and is mapped to the circle, |z| = 1/r, centered at the origin of radius 1/r.

Exercise A9.3 Show that A line through the origin has equation z = αz where |α| = 1. Hence this gets

mapped to the line z = (1/α)z.

Exercise A9.4 Show that any line in the complex plane that does not go through the origin can be viewed

as the set of points equi-distant from 0 and some other point α ̸= 0.

This last exercise implies that any line that does not go through the origin may be
written as |z| = |α − z| for some α ̸= 0. Under the map z → −1/z we get |z − β| = |β|
where β = −1/α, the circle centered at −1/α that goes through the origin. Applying the
map again we find that any circle that goes through the origin gets mapped back to a line
that does not pass through the origin.

Finally we must deal with circles that do not pass through the origin nor have their
centers at the origin; that is |z − α| = r, where |α| ̸= 0, r. Under the map z → −1/z this
goes to |z − β| = t|z| where β = −1/α and t = r/|α| ̸= 1.

Exercise A9.5 Show that if β = −(t2 − 1)γ with t ̸= 1 then |z − β| = t|z| is the same as |z − γ| = t|γ|,
and is therefore a circle.

Exercise A9.6 Prove that to determine a Möbius transformation one need only know the pre-images of

0, 1 and ∞.
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A10. Egyptian fractions. The ancient Egyptians represented all fractions as a sum of
distinct fractions of the form 1/n. It is amusing to determine how difficult it is to represent
fractions a/b with (a, b) = 1, as a sum of Egyptian fractions. For example if n is odd and
n+ 1 = 2m then

2

n
=

1

m
+

1

mn
.

Exercise A10.1. Show that a/b may be written as
∑k

i=1 1/ni with the ni distinct. (Hint: One method

is to proceed by induction on a. If the result is true for a − 1 then write a/b as 1/b plus (a − 1)/b, and

proceed from there.)

Our goal is to find the shortest such representation.

Note that if a/b =
∑k

i=1 1/ni then a/ℓb =
∑k

i=1 1/ℓni so we can focus on prime
denominators.

There can be many ways to write a fraction as a sum of Egyptian fractions, for since
1 = 1

2 + 1
3 + 1

6 , we can replace 1/n by 1/2n+ 1/3n+ 1/6n.
For two term representations we have denominators gr and gs, say, with (r, s) = 1.

We let k = (r + s, g) so that r + s = ka and g = kb where (a, b) = 1 and therefore
1
gr + 1

gs = a
brs where (a, brs) = 1. Hence if n is coprime to a then a/n can be written

as the sum of two Egyptian fractions if and only if n has coprime divisors r, s such that
a|r + s. If a = 3 and n is a prime ≡ 1 (mod 3) then no such r, s exist and so we see that
there are fractions 3/n that cannot be written as the sum of two Egyptian fractions.

Writing 3/n, with n > 2, as the sum of three Egyptian fractions, or less, is easy:
– If 3|n then we have 3

n=
1
m where n = 3m.

– If n has an odd prime divisor 2m− 1 with m > 1 then, writing n = r(2m− 1), we
have 3

n = 1
rm + 1

n + 1
nm , which are distinct as rm < n < nm.

– If n = 2k+2 with k ≥ 0 then we divide 3
4=

1
2 + 1

6 + 1
12 through by 2k.

The Erdős-Strauss conjecture states that 4/n can always be written as the sum of
three Egyptian fractions or less. This remains open, though it is know to be true for all
n < 1014. We may restrict our attention to when n = p is prime since then any 4/mp
can be represented as 1/m times the representation of 4/p. We can get representations in
several cases:

– If p = 4m− 1 we have 4
p = 1

m + 1
4m2 + 1

4m2p .

– If p = 3m− 1 then 4
p = 1

p + 1
m + 1

mp .

We are left with only with the primes p ≡ 1 (mod 12).
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B. Basics

B1. Linear congruences (material from Gauss).

Composite moduli. If the modulus m is composite then we can solve any linear con-
gruence question, “one prime at a time”, as in the following example: To solve

19x ≡ 1 (mod 140)

we first do so (mod 2) to get x ≡ 1 (mod 2). Substituting x = 1 + 2y into the original
equation we get

38y ≡ −18 (mod 140) or, equivalently, 19y ≡ −9 (mod 70).

Since 2 divides 70 we again view this (mod 2) to get y ≡ 1 (mod 2). Substituting y = 1+2z
into this equation we get

38z ≡ −28 (mod 70) and thus 19z ≡ −14 (mod 35).

Viewing this (mod 5) gives −z ≡ 1 (mod 5), and so substitute z = −1 + 5w to get

95w ≡ 5 (mod 35) so that 5w ≡ 19w ≡ 1 (mod 7).

Therefore we get w ≡ 3 (mod 7) which implies, successively that

z ≡ −1 + 5 · 3 ≡ 14 (mod 35), y ≡ 1 + 2 · 14 ≡ 29 (mod 70)

and x ≡ 1 + 2 · 29 ≡ 59 (mod 140).

If (a,m) = 1 then we can (unambiguously) express the root of ax ≡ b (mod m) as
b/a (mod m); we take this to mean any integer ≡ b/a (mod m). For example 19/17 ≡ 11
(mod 12). Such quotients share all the properties described in Lemma 2.2.

Linear congruences with several unknowns. We will restrict our attention to the
case that there are as many congruences as there are unknowns. That is we wish to find
all integer (vector) solutions x (mod m) to Ax ≡ b (mod m), where A is a given n-by-n
matrix of integers, and b is a given vector of n integers.

Let ai be the ith column vector of A. Let Vj = {v ∈ Rn : v · ai = 0 for all i ̸= j}.
Basic linear algebra gives us that Vj is itself a vector space of dimension ≥ n− (n−1) = 1,
and has a basis made up of vectors with only integer entries. Hence we may take a non-zero
vector in Vj with integer entries, and divide through by the gcd of those entries to obtain a
vector cj whose entries are coprime. Therefore cj ·ai = 0 for all i ̸= j. Let dj = cj ·aj ∈ Z.
Let C be the matrix with ith row vector ci, and D be the diagonal matrix with (j, j)th
entry dj . Then

Dx = (CA)x = C(Ax) ≡ Cb = y (mod m), say.

This has solutions if and only if there exists a solution xj to djxj ≡ yj (mod m) for each
j. As we saw earlier there are solutions if and only if (dj ,m) divides (yj ,m) for each j,
and we have also seen how to find all solutions.
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Example: Given

 1 3 1
4 1 5
2 2 1

x1
x2
x3

 ≡

 1
7
3

 (mod 8). Therefore we have

−15 0 0
0 15 0
0 0 15

x =

 9 1 −14
6 −1 −1
6 4 −11

 1 3 1
4 1 5
2 2 1

x

≡

 9 1 −14
6 −1 −1
6 4 −11

 1
7
3

 =

−26
−4
1

 (mod 8),

so that x ≡

−2
4
−1

 (mod 8). This gives all solutions mod 8.

Example: Given

 3 5 1
2 3 2
5 1 3

x1
x2
x3

 ≡

 4
7
6

 (mod 12) we have

 4 0 0
0 7 0
0 0 28

x =

 1 −2 1
1 1 −1

−13 22 −1

 3 5 1
2 3 2
5 1 3

x

≡

 1 −2 1
1 1 −1

−13 22 −1

 4
7
6

 =

−4
5
96

 (mod 12),

and so x1 ≡ −1 (mod 3), x2 ≡ −1 (mod 12), x3 ≡ 0 (mod 3). To obtain all solutions
mod 12 we substitute x1 = 2+3t, x2 = −1, x3 = 3u into the original equations, we obtain 3 1

2 2
5 3

( t
u

)
≡

 1
2
−1

 (mod 4) which is equivalent to t ≡ u − 1 (mod 4). So we end

up with x3 ≡ 0 (mod 3) with x1 ≡ x3 − 1, x2 ≡ −1 (mod 12).
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B2. The Chinese Remainder Theorem in general.

When the moduli are not coprime. We began section 3.5 by considering two moduli
that are not necessarily coprime, but then proved the Chinese Remainder Theorem for
pairwise coprime moduli. If we drop the assumption that the moduli are pairwise coprime
then the statement of the Theorem becomes more complicated (though one can see that
it is a direct generalization of Lemma 3.9):

The Chinese Remainder Theorem revisited. Suppose that m1,m2, . . . ,mk are a set
of positive integers. For any set of residue classes a1 (mod m1), a2 (mod m2), . . . , ak
(mod mk), there exist integers x such that x ≡ aj (mod mj) for each j if and only if
ai ≡ aj (mod (mi,mj)) for all i ̸= j. In this case the integers are those that belong to a
unique residue class mod m = lcm[m1,m2, . . . ,mk].

Proof. By induction on k ≥ 2. It is proved for k = 2 in Lemma 3.9. If there is a solution
then ai ≡ x ≡ aj (mod (mi,mj)) for all i ̸= j. If so then by the induction hypothesis there
exists a unique residue class a0 mod m0 := [m2, . . . ,mk], for which a0 ≡ aj (mod mj)
for each j ≥ 2. Now a1 ≡ aj ≡ a0 (mod (m1,mj)) for all j ≥ 2, and so, by exercise
3.1.10 the lcm of the (m1,mj) : j ≥ 2, which equals (m1,m0), divides a1 − a0. Hence
a0 ≡ a1 (mod (m0,m1)) and so, by Lemma 3.9, there exists a unique residue class x
mod lcm[m0,m1] = m, such that x ≡ a1 (mod m1) and x ≡ a0 (mod m1) which is ≡ aj
(mod mj) for each j ≥ 2.

Example: Can one find integers z for which z ≡ 17 (mod 504), z ≡ −4 (mod 35), z ≡ 1
(mod 16) ? The first two congruences combine to give z ≡ 521 (mod 2520). Combining
this with the congruence z ≡ 1 (mod 16), we get z ≡ 3041 (mod 5040).

Given a1 (mod m1), a2 (mod m2), . . . , ak (mod mk), how do we find that x mod
m = [m1,m2, . . . ,mk] such that x ≡ aj (mod mj) for each j ? One idea is to re-write
each congruence x ≡ aj (mod mj) as the set of congruences

x ≡ aj (mod p
ej,1
1 ), x ≡ aj (mod p

ej,2
2 ), . . . , x ≡ aj (mod pej,rr ),

where p1, . . . , pr are the distinct primes dividing m, and mj =
∏r

i=1 p
ej,i
i . Now for each i,

we have the set of congruences

x ≡ a1 (mod p
e1,i
i ), x ≡ a2 (mod p

e2,i
i ), . . . , x ≡ ak (mod p

ek,i

i ),

and evidently, if ei := max{ej,i : 1 ≤ j ≤ k} = ej(i),i, then there exists such an x if and

only if aj ≡ aj(i) (mod p
ej,i
i ) for each j. If so then this holds exactly for those x ≡ aj(i)

(mod peii ), and we now have coprime moduli (the peii ) so can use the algorithm described
in section 3.5 to construct the congruence class for x (mod m).

Using this technique on our earlier example, the congruences may be re-written as

z ≡ 17 (mod 504) ⇔ z ≡ 17 (mod 8), z ≡ 17 (mod 9) & z ≡ 17 (mod 7);

z ≡ −4 (mod 35) ⇔ z ≡ −4 (mod 5) & z ≡ −4 (mod 7);

z ≡ 1 (mod 16) ⇔ z ≡ 1 (mod 16).
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For each prime we need to verify that the congruences to that prime’s powers can all be
satisfied simultaneously. We thus get

z ≡ 1 (mod 16), z ≡ −1 (mod 9), z ≡ 1 (mod 5), z ≡ 3 (mod 7)

which are consistent with all six congruences above and, with these, we now obtain

z ≡ 3041 (mod 5040) where 5040 = 16 · 9 · 5 · 7.

The big problem with the method just described is that we need to factor the moduli
mj to construct our congruence class mod m. It is possible to proceed without factoring,
which is preferable since factoring large numbers can often be difficult (as discussed in
section 10.3). We show how to do this with two moduli; more moduli can be added by
iterating this algorithm:

Suppose that we wish to combine the pair of congruences x ≡ a (mod A) and x ≡ b
(mod B). We have seen that there is a solution if and only if a ≡ b (mod g) where
g = (A,B). If so then we determine, using the Euclidean algorithm, integers r and s for

which Ar+Bs = g. Now let c = a+ (b−a)
g ·Ar and C = [A,B]. Evidently c ≡ a (mod A),

and also c = b+ (a−b)
g ·Bs ≡ b (mod B). Hence x ≡ a (mod A) and x ≡ b (mod B) if and

only if x ≡ c (mod C).

Exercise B2.1. Prove that a ≡ b (mod m) if and only if a
m

− b
m

is an integer. With an abuse of our

notation we can write this as a
m

≡ b
m

(mod 1); or even that a
m

= b
m

in R/Z (that is, R (mod Z))

Going back to the Chinese Remainder Theorem, we see that (3.5) is equivalent to the
equation

x

m
≡ a1b1

m1
+
a2b2
m2

+ . . .+
akbk
mk

in R/Z.

If the difference between the two sides is k (which must be an integer) then we can replace
a1b1 by a1b1 + km in the first fraction on the right side so that the two sides are equal
numbers in R. This shows us how we can always decompose a fraction with a composite
denominator

∏
p p

ep into a sum of fractions whose denominators are the prime powers pep ,
and whose numerators are fixed mod pep .
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B3. Combinatorics and the multiplicative group mod m.

Card Shuffling. The cards in a 52 card deck can be arranged in 52! ≈ 8× 1067 different
orders. Between card games we shuffle the cards, in order to make the order of the cards
unpredictable. But what if someone can shuffle perfectly? How unpredictable will the
order of the cards become? Let’s analyze this, by carefully figuring out what happens in a
“perfect shuffle”: In a riffle shuffle one splits the deck in two, places the two halves in either
hand and then drops the cards, using one’s thumbs, in order to more-or-less interlace the
cards from the two decks.

If that is all done perfectly, one cuts the cards into two 26 card halves, one half with
the cards that were in positions 1 through 26, the other half with the cards that were
in positions 27 through 52; one then interlaces the two halves so that the new order of
the cards becomes (from the top) those that were in positions 1, 27, 2, 28, 3, 29, 4, 30, . . .
Viewed the other way around, the cards that were in positions 1, 2, 3, . . . 26 go to positions
1, 3, 5, . . . 51, that is k → 2k − 1 for 1 ≤ k ≤ 26; and the cards that were in positions
27, 28, . . . 52 go to positions 2, 4, . . . 52, that is k → 2k − 52 for 27 ≤ k ≤ 52. Note that
the top and bottom cards do not move, that is 1 → 1 and 52 → 52, so we focus on
understanding the permutation of the other fifty cards:

Let us define σ so that 1 +m → σ(1 +m) for 1 ≤ m ≤ 50. Whether m is even or
odd, we find that σ(1 +m) ≡ 1 + 2m (mod 51) in either case. We can change this “≡”
to “=” if we take 2m (mod 51) to be the least positive residue of 2m mod 51. So what
happens after two or more shuffles? Card 1 remains at the top of deck, card 52 remains
at the bottom. For the others, note that σ2(1 +m) = σ(σ(1 +m)) ≡ σ(1 + 2m) ≡ 1 + 4m
(mod 51); σ3(1+m) ≡ σ(1+4m) ≡ 1+8m (mod 51); and in general σr(1+m) ≡ 1+2rm
(mod 51) for all r ≥ 1. Now 28 ≡ 1 (mod 51), and so σ8(1 +m) ≡ 1 +m (mod 51). In
other words eight perfect riffle shuffles returns the deck to its original state – so much for
the 52! possible orderings!

One should note that 8 more perfect riffle shuffles will also return the deck to its
original state, a total of 16 perfect riffle shuffles, and also 24, or 32, or 40, etc. Indeed any
multiple of 8. So we see that the order of 2 (mod 51) is 8, and that 2r ≡ 1 (mod 51) if
and only if r is divisible by 8. This shows, we hope, why the notion of order is interesting
and exhibits one of the key results about orders.

The “necklace proof” of Fermat’s Little Theorem. In a bead shop there are beads
of a different colours. You wish to make a necklace with p beads, using as many beads
of each colour as you like. How many different necklaces can be made? To understand
what is meant by “different” we note that the necklace “Red-Blue-Green” is the same as
the necklace “Green-Red-Blue”, since these are the same three colours in the same order
when written around a circle. So if we start with all of the ap ordered sequences of p
beads, we need to determine which sequences yield the same necklace. Omitting the a
necklaces where the a beads are all the same colour, we claim that for all of the remaining
sequences there are exactly p sequences which yield the same necklace. Let c be such a
sequence, with elements c(1), . . . , c(p), where c(j), represented by a number between 1
and a, corresponds to the colour of the jth bead in the sequence. We define ci to be the
sequence of coloured beads in which the jth bead has the same colour as the bead in the
ℓth place of c, where ℓ is the least positive residue of i + j (mod p). Hence ci yields the
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same necklace as c with the beads rotated i places; we write ci(j) = c(j + i (mod p)). We
claim the ci, 0 ≤ i ≤ p− 1 are all distinct for if ci = ck then

c(j + i (mod p)) = c(j + k (mod p)) for all j;

taking d = k − i and j = nd− i we have

c((n+ 1)d (mod p)) = c(nd (mod p)) for all n,

and so c(nd (mod p)) = c(0) by an induction argument. Therefore as d ̸≡ 0 (mod p) we
have c(m) = c(0) for all m (by the remarks after Corollary 3.6) and hence the beads on
the necklace c all have the same colour, which is false.

We deduce that the total number of different necklaces in which the beads do not
all have the same colour, is the total number, ap − a, of such sequences, divided by the
number that yield the same necklace, that is

ap − a

p
,

and therefore this must be an integer. That is p divides ap − a for all a, as desired.

Exercise B3.1 By noticing that if we reverse the order of the beads we also get the same necklace prove

that 2p divides ap − a if p ≥ 3.
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B4. Groups. We discuss the abstract notion of a group because it is a structure that
occurs often in number theory (and throughout mathematics). We can prove results for
groups in general, and then these results apply for all examples of groups that arise (one
can waste a lot of energy giving the same proof, with minor variations, in each case that
a group arises). Many of the main theorems about groups were first proved in a number
theory context and then found to apply elsewhere. The main examples of groups are
additive groups such as the integers, the rationals, the complex numbers, the integers mod
p, the polynomials of given degree, matrices of given size, etc, and multiplicative groups
such as the rationals, the complex numbers, the integers mod p, invertible matrices of
given dimensions, but not the integers or polynomials.

A group is defined to be a set of objects G, and an operation, call it ∗, such that:
(i) If a, b ∈ G, then a ∗ b ∈ G. We say that G is closed under ∗.
(ii) If a, b, c ∈ G, then (a ∗ b) ∗ c = a ∗ (b ∗ c); that is, when we multiply three elements

of G together it does not matter which pair we multiply first. We say that G is associative.
(iii) There exists an element 0 ∈ G such that for every a ∈ G we have a ∗ 0 = a. We

call 0 the identity element of G for ∗.
(iv) For every a ∈ G there exists b ∈ G such that a ∗ b = b ∗ a = 0. We say that b is

the inverse of a. We sometimes write −a or a−1.

One can check that the examples of groups given above satisfy these criteria. We see
that there are both finite and infinite groups. However, there is one property that one is
used to with numbers and polynomials that is not used in the definition of the a group,
and that is that a ∗ b = b ∗ a, that a and b commute. Although this often holds, there are
some simple counterexamples, for instance 2-by-2 matrices:(

1 1
0 1

)(
1 0
−1 2

)
=

(
0 2
−1 2

)
whereas

(
1 0
−1 2

)(
1 1
0 1

)
=

(
1 1
−1 1

)
We develop the full theory for 2-by-2 matrices at the end of this subsection. If all pairs of
elements of a group commute then we call the group commutative or abelian.

A given group G can contain other, usually smaller, groups H, which are called sub-
groups. Every group G contains the subgroup given by the identity element, {0}, and also
the subgroup G. It can also contain others. For example the additive group of integers mod
6 with elements {0, 1, 2, 3, 4, 5} contains the four subgroups {0}, {0, 3}, {0, 2, 4}, {0, 1, 2, 3, 4, 5}.
Note that every group, and so subgroup, contains the identity element. Infinite groups can
also contain subgroups, indeed

C ⊃ R ⊃ Q ⊃ Z.

If H is a subgroup of G then we define a left coset to be the set a∗H = {a∗h : h ∈ H} for
any a ∈ G. (Right cosets are analogously defined, and the two types are indistinguishable
if G is a commutative group). In Theorem 7.3 we saw the prototype of the following result:

Proposition B4.1. Let H be a subgroup of G. The left cosets of H in G are disjoint.
Moreover if G is finite then they partition G, and hence the size of H, |H|, divides |G|.

Proof. Suppose that a∗H and b∗H have a common element c. Then there exists h1, h2 ∈ H
such that a∗h1 = c = b∗h2. Therefore b = a∗h1∗(h2)−1 so that b ∈ a∗H as h1∗(h2)−1 ∈ H
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since H is closed. Writing b = a ∗ k, k ∈ H, suppose that g ∈ b ∗ H so that g = b ∗ h
for some h ∈ H. Then g = (a ∗ k) ∗ h = a ∗ (k ∗ h) ∈ a ∗H by associativity and closure
of H. Hence b ∗ H ⊂ a ∗ H. By an analogous proof we have a ∗ H ⊂ b ∗ H, and hence
a ∗H = b ∗H. Therefore any two left cosets of H in G are either disjoint or identical.

Suppose that G is finite, and let a1 ∗H, a2 ∗H, . . . , ak ∗H be a maximal set of disjoint
cosets of H inside G. If their union does not equal G then there exists a ∈ G which is in
none of these cosets. But then the coset a ∗ H is disjoint from these cosets (by the first
part), and this contradicts maximality.

We have encountered the cosets of the subgroup Z of the additive group R. Since
the cosets look like a + Z, they are all represented by a number in [0, 1), that is by {a},
the fractional part of a. We write R/Z which is also an additive group. This can be
represented by wrapping the real numbers around the unit circle; the line segment from
0 to 1 representing one complete revolution. Hence to find the coset representation of a
given real number t we simply go round the circle this many times. We are familiar with
this when working with the exponential function, since e2iπt = e2iπ{t} as e2iπ = 1. (For
convenience we will often write e(t) in place of e2iπt.)

In exercise B2.1 we saw that a ≡ b (mod m) if and only if a
m = b

m in R/Z; that is
a/m and b/m belong to the same coset of R/Z.
Exercise B4.1. Prove that if H is a subgroup of a finite abelian group G then the cosets a∗H themselves

form a group. We call this the quotient group G/H. (We just encountered the example R/Z.) Show that

every element G can be written in a unique way as a ∗ h where h ∈ H and a ∈ G/H, which we write as

G ∼= H⊕G/H (we say that G is the direct sum of H and G/H). If G is finite show that |G/H| = |G|/|H|.

The most common type of group encountered in number theory is the additive group
of integers mod m. One way to view this is as a map from the integers onto the residue
classes mod m, from integer a to its congruence class mod m. We write this Z → Z/mZ.
Here mZ denotes “m times the integers”, that is the integers divisible by m, each of
which map to 0 (mod m). The Chinese Remainder Theorem states that there is a 1-to-1
correspondence between the residue classes a (mod m), and the “vector” of residue classes
(a1 (mod m1), a2 (mod m2), . . . , ak (mod mk)), when the mis are pairwise coprime and
their product equals m. This is usually written

Z/mZ ∼= Z/m1Z ⊕ Z/m2Z ⊕ . . .⊕ Z/mkZ
a (mod m) ↔ (a1 (mod m1), a2 (mod m2), . . . , ak (mod mk)).

The beauty of this is that most arithmetic operations mod m can be “broken down”
into the same arithmetic operations modulo each mi performed componentwise. This is
particularly useful when m =

∏
p p

ep and then the mi are the individual pep , since some
arithmetic operations are much easier to do modulo prime powers than modulo composites.
Besides addition the most important of these operations is multiplication. Thus the above
correspondence gives a 1-to-1 correspondence between the reduced residue classes mod m,
and the reduced residue classes mod the mi; we write this as

(Z/mZ)∗ ∼= (Z/m1Z)∗ ⊕ (Z/m2Z)∗ ⊕ . . . ⊕ (Z/mkZ)∗,
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considering these now as groups under multiplication; and again the operation (of multi-
plication) can be understood componentwise. Typically we write 0 for the identity of an
additive group, and 1 for the identity of a multiplicative group.

We say that two groups G and H are isomorphic, and write G ∼= H if there is a 1-to-1
correspondence ϕ : G → H such that ϕ(a ∗G b) = ϕ(a) ∗H ϕ(b) for every a, b ∈ G, where
∗G is the group operation in G, and ∗H is the group operation in H.

Exercise B4.2. Let H be a subgroup of (Z/mZ)∗.
(1) Prove that if n is an integer coprime to m but which is not in a residue class of H, then n has a

prime factor which is not in a residue class of H.
(2) Show that if integers q = p1 · · · pk and a are coprime to m then there are infinitely many integers

n ≡ a (mod m) such that (n, q) = 1.

(3) Prove that if H is not all of (Z/mZ)∗ then there are infinitely many primes which do not belong
to any of the residue classes of H. (Hint: Modify the proof(s) of exercises 5.3.3,4,5.)

Proposition B4.1 implies the following generalization of Fermat’s Little Theorem:

Corollary B4.2. (Lagrange’s Theorem) For any element a of any finite multiplicative
group G we have a|G| = 1.

Proof. Let m be the order of a in G; that is, the least positive integer for which am = 1.

Exercise B4.3. Prove that H := {1, a, a2, . . . , am−1} is a subgroup of G.

By Proposition B4.1 we know that m = |H| divides |G|, and so

a|G| = (am)|G|/m = 1|G|/m = 1.

To deduce Euler’s Theorem let G = (Z/mZ)∗ so that |G| = ϕ(m).

Exercise B4.4. Deduce that if |G| is a prime then G is cyclic.

Exercise B4.5. Show that the product of the elements in the cyclic group H in exercise B4.3 is a if m is

even, and 1 if a is odd.

Wilson’s Theorem for finite abelian groups. The product of the elements of any
given finite abelian group equals 1 unless the group contains exactly one element, ℓ, of
order two, in which case the product equals ℓ.

Proof. As in the proof of Wilson’s Theorem we partition the elements, each element with
its inverse, providing that they are distinct, since these multiply together to give 1, and
hence the product of all of them gives 1. This leaves the product of the elements which are
their own inverses; that is the roots of x2 = 1 in the group. Now if ℓ ̸= 1 and ℓ2 = 1 then
we partition these elements into pairs, x, ℓx. The product of each such pair equals ℓ, and
therefore the product of all the 2N roots of x2 = 1 equals ℓN . Now if N is even this equals
1, as ℓ2 = 1, and if N is odd then this equals ℓ. In this case the only roots of x2 = 1 are 1
and ℓ, for if m2 = 1, m ̸= 1, ℓ, then the product would also equal m and hence m = ℓ, a
contradiction.
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The group Z/mZ, sometimes written Cm, is called the cyclic group of order m, which
means that the elements of the group are precisely {0 · a, 1 · a, 2 · a, . . . , (m − 1) · a}, the
multiples of the generator a (in this case we can take a = 1). We now find the structure
of all finite abelian groups:

Fundamental Theorem of Abelian Groups. Any finite abelian group G may be writ-
ten as

Z/m1Z⊕ Z/m2Z⊕ . . .Z/mkZ.

In other words every element of G may be written in the form ge11 g
e2
2 . . . gekk where gj has

order mj. We write G = ⟨g1, g2, . . . , gk⟩.

Proof. By induction on the size of G. Let a be the element of highest order in G, say of
order m. By exercise B4.3 we know that H := {1, a, a2, . . . , am−1} is a subgroup of G. If
1 < m < |G| then, by induction, both H and G/H can be written as the direct sum of
cyclic groups, and therefore G since G ∼= H ⊕G/H by exercise B4.1.

We saw above that we can write each of the Z/m1Z as a direct sum of cyclic groups
of prime power order. Hence, by the Fundamental Theorem of Abelian Groups, we can
write any finite abelian group as a direct sum of cyclic groups of prime power order. For
each given prime we can put the powers of that prime in descending order, that is the
p-part of the group is Z/pe1Z ⊕ Z/pe2Z ⊕ . . .Z/peℓZ where e1 ≥ e2 ≥ . . . Now if we take
the components of largest prime power orders we can recombine these, and then those of
second highest order, etc, that is we can write

⊕p Z/perZ ∼= Z/nrZ

for r = 1, 2, 3, . . . so that

G ∼= Z/n1Z⊕ Z/n2Z⊕ . . .Z/nℓZ where nℓ|nℓ−1| . . . |n2|n1.

Explicit decomposition of (Z/mZ)∗ as a direct sum of cyclic groups We saw above that,
via the Chinese Remainder Theorem, this is the direct sum of groups of the form (Z/prZ)∗
for each prime power pr∥m.

In Theorem 7.13 we saw that if p is an odd prime then there exists a primitive root
g mod pr. That is (Z/prZ)∗ = {gk : 1 ≤ k ≤ ϕ(pr)}, and when we multiply two reduced
residues together we have ga · gb ≡ gk (mod pr) where k ≡ a + b (mod ϕ(pr)). Hence to
understand the group action in (Z/prZ)∗ we can simply focus on the indices, and then we
can work entirely in the additive group mod ϕ(pr). This proves that

(Z/prZ)∗ as a multiplicative group ∼= Z/ϕ(pr)Z as an additive group.

Hence any (Z/prZ)∗, where p is an odd prime, is a cyclic group, and its generators are the
primitive roots.

In section D2 we will see that if r ≥ 3 then the elements of (Z/2rZ)∗ can all be written
in the form ±gk (mod 2r) for some integer k, 0 ≤ k ≤ 2r−2 − 1, for some integer g ≡ ±3
(mod 8) which has order 2r−2 mod 2r. This implies that

(Z/2rZ)∗ as a multiplicative group ∼= Z/2r−2Z⊕ Z/2Z as an additive group.
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When we study (Z/mZ)∗ through the Fundamental Theorem of abelian groups, we
see that λ(m), the largest order of an element mod m, equals m1 (where mk| . . . |m2|m1).
Hence (Z/mZ)∗ has a primitive root, that is it is cyclic, if and only if k = 1. From our
construction above this can happen only if no prime appears twice when we decompose
(Z/mZ)∗ into prime power cyclic groups. Just considering the 2-power cyclic subgroups,
we easily prove, as in section 7.5, that m must equal 2, 4 or pr or 2pr. In those cases we
see above that m is indeed a cyclic group.

Exercise B4.6. Show that the product of the reduced residues mod m is −1 (mod m) when there is a

primitive root mod m, and 1 (mod m) otherwise.

H := G2 = {g2 : g ∈ G} =

{
a (mod p) :

(
a

p

)
= 1

}
,

is a subgroup of G = (Z/pZ)∗ of size (p− 1)/2, partitioning G into two cosets H and nH,
where (n/p) = −1. If a ∈ H then (a/p) = 1, and if a ∈ nH then (a/p) = −1. Hence
the Legendre symbol distinguishes between the two equivalence classes in G/H which is
isomorphic to Z/2Z written in the multiplicative form with representatives −1 and 1. We
will develop these ideas in the next subsection, which is on Dirichlet characters.

As promised we finish this section by determining What commutes with a given 2-by-2
matrix? We will now explore which 2-by-2 matrices commute with a given 2-by-2 matrix,
M .

Exercise B4.7. Prove that if A and B commute with M then so does rA + sB for any real numbers r

and s.

It is evident that I and M commute with M , and hence any linear combinations of I
and M . We will show that this is all, unless M is a multiple of the identity. Let M2 be
the set of 2-by-2 matrices with entries in C.

Proposition B4.3. Given M ∈ M2, let C(M) := {A ∈ M2 : AM = MA}. If M = aI
for some constant a then C(M) = M2. Otherwise C(M) = {rI + sM : r, s ∈ C}.

Proof. Let M =

(
a b
c d

)
. If A ∈ C(M) then so is B = A− rI − sM for any r and s ∈ C.

Exercise B4.8. Prove that if a ̸= d then we can select r and s so that the diagonal of B is all 0s.

If a ̸= d then write B =

(
0 x
y 0

)
, so that

(
cx dx
ay by

)
=

(
0 x
y 0

)(
a b
c d

)
= BM =MB =

(
a b
c d

)(
0 x
y 0

)
=

(
by ax
dy cx

)
.

The off diagonal terms yield that x = y = 0 and so A = rI + sM .
Now suppose that a = d and M ̸= aI. If b ̸= 0 then we can select r and s so that the

top row of B is all 0s; that is B =

(
0 0
x y

)
; then the top row of MB = BM yields that

x = y = 0 and so A = rI + sM . Otherwise c ̸= 0 and an analogous argument works.
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Exercise B4.9. Prove that the units form a multiplicative group.
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B5. Dirichlet characters. We saw in chapter 8 how useful the Legendre and Jacobi
symbols are. The key is that they are multiplicative functions defined on the integers
modulo some integer m. By this we mean that χ(rs) = χ(r)χ(s) for all integers r and s,
and χ(a +m) = χ(a) for all integers a. We now wish to find all such non-zero functions,
which we call Dirichlet characters, and we begin by reducing to the case of prime powers
using the Chinese Remainder Theorem:

Proposition B5.1. If (r, s) = 1 then the characters mod rs are in 1-to-1 correspondence
with the pairs of character mod r and mod s.

Proof. Given χ (mod m), let ρ be the function mod r where we define ρ(a) := χ(A) where
we choose A ≡ a (mod r) and ≡ 1 (mod s); and similarly let σ be the function mod s
where we define σ(b) := χ(B) where we choose B ≡ 1 (mod r) and ≡ b (mod s).

Exercise B5.1. Verify that ρ and σ are characters.

Given n (mod m), if n ≡ A (mod r) and ≡ B (mod s) then n ≡ AB (mod m) and so
χ(n) = χ(A)χ(B) = ρ(n)σ(n). Hence every character modm can be written as the product
of a character mod r and a character mod s.

Exercise B5.2. Verify that ρ and σ are the unique such characters.

On the other hand given characters ρ (mod r) and σ (mod s), we can always construct
the character χ (mod m), given by χ = ρσ.

We already saw this idea that one can multiply together characters of different moduli
when we created the Jacobi symbol.

Following this Proposition we can focus on characters mod pr for some prime p.

Exercise B5.3. Prove that χ(0) = 0, χ(p) = 0 and χ(1) = 1. (Hint: Use that a · 1 = a for some a with

χ(a) ̸= 0.) Prove that χ(−1) = ±1.

Exercise B5.4. Deduce that for any Dirichlet character mod m we have χ(b) = 0 if (b,m) > 1.

If p is an odd prime then we know that there exists a primitive root g mod pr by
Theorem 7.13. Now every reduced residue a (mod pr) can be written as a ≡ gk (mod pr)
for some integer k, and therefore χ(a) = χ(gk) = χ(g)k, that is χ is completely determined
by the value of χ(g). What restrictions are there on the value of χ(g)? The key one is that

χ(g)ϕ(p
r) = χ(gϕ(p

r)) = χ(1) = 1, so that χ(g) is a ϕ(pr)th root of unity. Let γ = e
(

1
ϕ(pr)

)
be a primitive ϕ(pr)th root of unity.

Lemma B5.2. If p is an odd prime and g is a primitive root mod pr then the set of
Dirichlet characters χj (mod pr) are given by χj(g) = γj for j = 0, 1, 2, . . . , ϕ(pr)− 1.

Note that if a ≡ gk (mod pr) then χj(a) = χj(g
k) = χ1(g)

jk = χ1(g
k)j = χ1(a)

j ;

that is one can write χj = χj
1. But then the characters (mod pr) form a cyclic group of

order ϕ(pr) with generator χ1; that is the character group is isomorphic to the group of
reduced residues mod pr. By the construction in the Proposition B5.1, this is also true for
the characters mod m, whenever m is odd. In the character group, the element of order 1
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is the principal character denoted χ0; in fact

χ0(a) =

{
1 if (a,m) = 1,

0 if (a,m) > 1.

These cyclic groups of characters (mod pr) are isomorphic to the group of reduced
residues, and so have a unique element of order 2 by Theorem 7.7. We have already
encountered the character (mod p) of order two; the Legendre symbol. In fact Proposition
8.4 tells us that this is also how to recognize squares mod pr; in other words, the Legendre
symbol also is a character mod pr.

The Jacobi symbol arises as a character in two ways. Firstly
(

.
m

)
is a character mod

m. Secondly if m is odd then
(
m
.

)
is a character mod m or mod 4m, as m ≡ 1 or 3

(mod 4), by the law of quadratic reciprocity.
The above arguments work mod 2 and mod 4, but there is no primitive root mod 2r

with r ≥ 3. In that case we saw in the previous subsection that all reduced residues take
the form ±gk (mod 2r) for some residue g of order 2r−2.

Exercise B5.5. Prove that the set of characters χ mod 2r can be given as χi,j with i = 0 or 1, and

0 ≤ j ≤ 2r−2 − 1, defined by χi,j(−1) = (−1)i and χi,j(g) = γj where γ = e
(

1
ϕ(2r−2)

)
. Deduce that the

character group mod 2r is isomorphic to the group of reduced residues mod 2r. Finally deduce that for

every positive integer m, the character group mod m is isomorphic to the group of reduced residues mod

m.

Exercise B5.6. (i) Prove that if χ ̸= χ0 then there exists a (mod m) for which χ(a) ̸= 0 or 1. (ii) Prove

that if (a,m) = 1 and a ̸≡ 1 (mod m) then there exists a character χ (mod m) for which χ(a) ̸= 0 or 1.

The same ideas work for any finite abelian group G with the same proof that the
character group of G is isomorphic to G.

Suppose that q divides m, that ψ a character (mod q) and χ0 the principal character
(mod m). The character χ := ψχ0 is a character (mod lcm[q,m]). In fact χ(a) = ψ(a) if
(a,m) = 1 and χ(a) = 0 if (a,m) > 1, so we say that χ is induced by ψ. Note that there
are always ϕ(q) characters mod m that are induced by characters mod q. Any character
that is not induced by a character with a smaller modulus is called primitive. The modulus
for a character is sometimes called the conductor of the character.

Exercise B5.7. A real character is a character that only takes on real values. Prove that χ is a real

character if and only if it has order one or two. Prove that if the conductor m is odd then the real

characters are the principal character, and the characters induced by Jacobi symbols modulo the divisors

of m.

A complex character is a character that is not a real character. The conjugate χ of χ is
that character for which χ(n) = χ(n) for all integers n. Notice that χ = χ if and only if χ
has order 1 or 2; i.e. χ is a real character.

Now suppose that χ (mod q) is a character of orderm (which must divide λ(q)). Then
for each reduced residue a (mod q) we have χ(a)m = (χm)(a) = χ0(a) = 1, and so χ(a) is
an mth root of unity. Then

H := {a (mod q) : χ(a) = 1}
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is a subgroup of G := (Z/qZ)∗. For 0 ≤ j ≤ m − 1 select some bj (mod q) such that

χ(bj) = e( j
m ). Then b0H = H, b1H, b2H, . . . , bm−1H partition the reduced residues mod

q, and bjH = {a (mod q) : χ(a) = e( j
m )}. This all in direct analogy with the comments

about the Legendre symbol near the end of the last subsection.
The main reason to develop the theory of Dirichlet characters is to identify the ele-

ments of an arithmetic progression a (mod q), when (a, q) = 1, using the following identity:

(B5.1)
1

ϕ(q)

∑
χ (mod q)

χ(n) =

{
1 if n ≡ 1 (mod q)

0 otherwise.

To prove this note first that if n ≡ 1 (mod q) then χ(n) = 1 and the result follows.
Otherwise select a character ψ (mod q) such that ψ(n) ̸= 1 (as in exercise B5.6). As the
characters form a group, we have

{ψχ : χ (mod q)} = {χ : χ (mod q)}.

(This is analogous to the ‘set of reduced residues” proof of Fermat’s Little Theorem in
section 7.1.) Hence

ψ(n)
∑

χ (mod q)

χ(n) =
∑

χ (mod q)

(ψχ)(n) =
∑

χ (mod q)

χ(n),

and the result follows.
We now use (B5.1) to identify integers n that are ≡ a (mod q) when (a, q) = 1. The

idea is that m ≡ n/a (mod q) then m ≡ 1 (mod q) if and only if n ≡ a (mod q), and
moreover χ(m) = χ(a)χ(n). Hence

(B5.2)
1

ϕ(q)

∑
χ (mod q)

χ(a)χ(n) =

{
1 if n ≡ a (mod q)

0 otherwise.

Therefore if P is some set of integers n with associated weights w(n) then∑
n∈P

n≡a (mod q)

w(n) =
∑
n∈P

w(n)
1

ϕ(q)

∑
χ (mod q)

χ(a)χ(n)

=
1

ϕ(q)

∑
χ (mod q)

χ(a)

(∑
n∈P

χ(n)w(n)

)
,(B5.3)

so long as all the sums converge absolutely. We have thus changed our problem to several
new weighted sums over elements of P , but now we no longer have to concern ourselves
with the relatively difficult restriction to an arithmetic progression.

Exercise B5.8. Prove the following “dual” identity to (B5.1):

(B5.4)
1

ϕ(q)

∑
a (mod q)

χ(a) =

{
1 if χ = χ0

0 otherwise.
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One final observation. Corollary 8.2 generalizes rather beautifully to: If m|p− 1 then

(B5.5) #{b (mod p) : bm ≡ a (mod p)} = 1 +
∑

χ (mod p)
χm=χ0, χ ̸=χ0

χ(a).

Exercise B5.9. First establish this for a = 0. Now let g be a primitive root (mod p) and a ≡ gk (mod p),

and note that 1 = χ0(a).

(1) Show that there exists a character ψ of order m for which ψ(g) = e( 1
m
).

(2) Show that {χ : χm = χ0} = {ψj : 0 ≤ j ≤ m− 1}.
(3) Show that the right side of (B5.5) is m if m|k, otherwise it equals 0.
(4) Show that the left side of (B5.5) is m if m|k, otherwise it equals 0.

Additive characters. Dirichlet characters mod q respect the multiplicative group mod
q (that is, they are an homomorphism from (Z/qZ)∗ to C). One might ask whether there
are characters that respect the additive group mod q, and whether they end up being as
useful. So to formulate our problem we want a function with the property that f(a) = f(b)
if a ≡ b (mod q), and such that f(a+b) = f(a)f(b). We immediately deduce that f(0) = 1,
and since the groups Z/qZ are cyclic, generated by 1, so f(a) = f(1)a for all a, so the
function depends entirely on the value of f(1). Now f(1)q = f(q) = 1 and so f(1) is a qth
root of unity; it turns out that any qth root of unity will do. Let ψ(1) = e(1/q), so that
ψ(n) = e(n/q). The set of possible additive characters are

ψa(n) := e

(
an

q

)
for 0 ≤ n ≤ q − 1,

defined for 0 ≤ n ≤ q − 1. Note that ψa = ψa

In section B5 we saw how to pick out terms of the arithmetic progression a (mod q),
when (a, q) = 1 using Dirichlet characters. These characters are a homomorphism on
the multiplicative group mod q. There is another way to pick out terms of the arith-
metic progression a (mod q), whether or not (a, q) = 1, using additive characters, that is
homomorphisms on the additive group mod q. These are simply the functions

Ea(n) := e

(
an

q

)
for 0 ≤ a ≤ q − 1.

If we define ep = E1 then Ea = eap for each a.
The additive characters can also be used to pick out arithmetic progressions, since the

sum of the distinct qth roots of unity equals 1.

Exercise B5.10. Prove that for any a we have

1

q

q−1∑
m=0

e

(
−ma
q

)
e

(
mn

q

)
=

{
1 if n ≡ a (mod q)

0 otherwise.

Deduce that ∑
n∈P

n≡a (mod q)

w(n) =
1

q

q−1∑
m=0

e

(
−ma
q

)∑
n∈P

w(n)e

(
mn

q

) .
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B6. Insolvability of the quintic. Suppose that α is the root of the irreducible poly-
nomial f(x) which has integer coefficients. Most equations involving α can be written in
the form G(α) = 0, and so f(x) divides G(x) by Proposition A3.1. Now, if β is any other
root of f then G(β) = 0 also, since f(x) divides G(x). We call β a conjugate of α. Since
the actual root of f that we are using is irrelevant, we might as well be working in Z[x]
mod f(x), which is often written as Z[x]/(f(x)).

One might ask if one can extend this. For example ifH(x, y) ∈ Z[x, y] andH(α, β) = 0
for two given roots α, β of f , is it true that H(α′, β′) = 0 for any other two given roots
α′, β′ of f? The answer in general is no. For example the roots of x4 + 1 can be written
as α, α3, α5, α7 or ±1±i√

2
, and if H(x, y) = xy − 1 then H(α, α7) = H(α3, α5) = 0, but

H(α, α3) = −2 and H(α, α5) ̸= 0. However it is evidently interesting to discover which
roots can by replaced by which other roots to keep satisfying an equation. For example
given H(x1, x2, x3, x4) with H(α, α3, α5, α7) = 0 we can simply let g(t) = H(t, t3, t5, t7)
so that g(α) = 0. Therefore g(α3) = g(α5) = g(α7) = 0 by the remarks of the pre-
vious paragraph, and so H(α3, α, α7, α5) = g(α3) = 0 and similarly H(α5, α7, α, α3) =
H(α7, α5, α3, α) = 0. The key to better understanding solutions to equations, is to un-
derstand how the solutions to such polynomials can be mapped. More precisely, if f(x) is
irreducible of degree d, with roots α1, . . . , αd then let G be the set of permutations σ of
1, 2, . . . , d for which H(ασ(1), . . . , ασ(d)) = 0 for every H(x1, . . . , xd) ∈ Z[x1, . . . , xd] for
which H(α1, . . . , αd) = 0.

Exercise B6.1. Prove that G is a group (which is called the Galois group associated to f).

For “most” polynomials f , the associated Galois group is the set of all permutations of
the roots.

Solvability in terms of surds. The ideas used to determine constructibility can also be
developed to try to understand when the root of a polynomial can be determined in terms
of surds. The set of mth roots of n are given by n1/m times each of the mth roots of 1. If
α is a number that can be expressed in terms of surds then it must belong to some field
created out of surds. The details of how one can find α for which this is impossible are
discussed in any good book on Galois theory. Here we will just sketch the main ideas.

The key trick that Galois came up with was to study the Galois group as above. Let α
be a primitive mth root of unity. The roots of ϕm(x) are αk, 1 ≤ k ≤ m, (k,m) = 1 (as we
saw at the end of section A3). Now if G(x, y) = xy−1 then G(α, αm−1) = 0 but G(α, αk) ̸=
0 for all other such k. Hence we see that our group, for surds, is very limited. Without
getting into the (complicated) details of the definition, the group associated to extensions
created by surds is always solvable. Moreover all subfields of extensions created by surds
also have groups that are solvable. The easiest group that is not solvable is the set of all
permutations on five elements, and then one shows that there are irreducible polynomials
of degree five such that the field created by adjoining the roots of this polynomial to Q,
has this group – for example x5 − 6x+ 3.
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C. Algebra

C1. Ideals. Let R be a set of numbers that is closed under addition and subtraction; for
example Z,Q,R or C, but not N. We define the ideal generated by a1, . . . , ak over R, to
be the set of linear combinations of a1, . . . , ak with coefficients in R; that is

IR(a1, . . . , ak) = {r1a1 + r2a2 + . . .+ rkak : r1, . . . , rk ∈ R}.

(Note a1, . . . , ak are not necessarily in R.) In Corollary 1.6 and the exercise 1.2.6 we saw
that any ideal over Z can be generated by just one element. The reason we take such
interest in this definition is that this is not necessarily true when the ai are taken from
other domains. For example if R = Z[

√
−5], that is the numbers of the form u + v

√
−5

where u and v are integers, then the ideal IR(2, 1+
√
−5) cannot be generated by just one

element, as we will see below. A principal ideal is an ideal that can be generated by just
one element.

Ideals in quadratic fields. We saw that any ideal in Z may be generated by just one
element. We will now prove that any ideal in a quadratic ring of integers:

R := {a+ b
√
d : a, b ∈ Z}

can be generated by at most two integers. Suppose an ideal I ⊂ R is given. Either I ⊂ Z
in which case it is a principal ideal, or there exists some element u+ v

√
d ∈ I with v ̸= 0.

We may assume that v > 0 by replacing u+ v
√
d with −(u+ v

√
d) if v was negative.

Now select that r + s
√
d ∈ I with s > 0 minimal. Such an s exists since it must be a

positive integer in {1, 2, . . . |v|}. Note that if u+ v
√
d ∈ I then s divides v, for if not select

k, ℓ ∈ Z for which ks+ ℓv = g := gcd(s, v) and then

(kr + ℓu) + g
√
d = k(r + s

√
d) + ℓ(u+ v

√
d) ∈ I

contradicting the minimality of s.
If u+v

√
d ∈ I then let m = v/s, so that (u+v

√
d)−m(r+s

√
d) = u−mr. Therefore

every element of the ideal I may be written as m(r+ s
√
d) + n where n ∈ I ∩Z, and m is

an arbitrary integer. Now I ∩ Z is an ideal in Z so must be principal, generated by some
integers g ≥ 1. Therefore

I = {m(r + s
√
d) + ng : m,n ∈ Z} = IZ(r + s

√
d, g).

So we have achieved our goal, I has been shown to be generated by just two elements;
and better yet we have proved that we only need to take linear combinations of those two
elements with coefficients in Z to obtain the whole of I. However, we can simplify even
more:

Since
√
d ∈ R, hence g

√
d ∈ I and sd + r

√
d ∈ I, and so s divides both g and r.

Therefore r = sb and g = sa for integers a and b. Finally s(b2 − d) = (r+ s
√
d)(b−

√
d) ∈

I ∩ Z and so s(b2 − d) is a multiple of g = sa; hence a divides b2 − d. Therefore

I = IZ(s(b+
√
d), sa) which we write as s · IZ(b+

√
d, a),

for some integers s, a, b where a divides b2 − d.
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Non-principal ideals. Let R = Z[
√
−d] with d ≥ 2. Which ideals I := IR(p, r + s

√
−d)

are principal, where p is a prime in Z that divides r2 + ds2, but does not divide s? (This
includes the example IR(2, 1 +

√
−5)).

Theorem C1.1. Let R = Z[
√
−d] with d ≥ 2. Suppose that p is a prime in Z which

divides r2 + ds2 but not s. Then the ideal I := IR(p, r + s
√
−d) is principal if and only if

p = IR(a+ b
√
−d) where p = a2 + db2 with a, b ∈ Z (and a/b ≡ r/s (mod p)).

We will use the following result:

Lemma C1.2. If integer prime p equals the product of two elements of Z[
√
−d] then it is

either as (±1) · (±p), or as p = (a+ b
√
−d)(a− b

√
−d) where p = a2 + db2.

Proof of Lemma C1.2. Suppose that p = (a+ b
√
−d)(u+ v

√
−d) where a, b, u, v ∈ Z. Now

gcd(a, b) · gcd(u, v) divides p, then at least one of these gcds equals 1, say (a, b) = 1. Now
p = (au − dbv) + (av + bu)

√
−d, so the coefficient of the imaginary part is av + bu = 0.

Therefore a|bu and therefore a|u as (a, b) = 1. Writing u = ak we have v = −bk and
therefore p = k(a+ b

√
−d)(a− b

√
−d) = k(a2 + db2).

Now a2 + db2 is a positive divisor of p so must equal either 1 or p. If b ̸= 0 then
a2 + db2 ≥ d > 1, and so if a2 + db2 = 1 then a = ±1, b = 0. Otherwise a2 + db2 = p.

Proof of Theorem C1.1. Suppose that I := IR(p, r + s
√
−d) is principal, say, I = IR(g)

where g ∈ R. Then we can write p as the product of two elements of Z[
√
−d], including

g, and so by the lemma, g = ±1 or ±p or a ± b
√
−d where p = a2 + db2. We cannot

have g = ±p for if r + s
√
−d = ±p(u+ v

√
−d) then we would have that p divides r and s

contrary to the hypothesis.
Now let t ≡ 1/s (mod p) and m ≡ rt (mod p) so that m +

√
−d ≡ t(r + s

√
−d)

(mod p), and r + s
√
−d ≡ s(m +

√
−d) (mod p) as sm ≡ rst ≡ r (mod p). Moreover

m2 + d ≡ t2(r2 + ds2) ≡ 0 (mod p), so that I = IR(p,m+
√
−d). This is presented in the

form at the end of the last subsection and so I = IZ(p,m+
√
−d). Notice that ±1 is not

in this ideal (since it is not divisible by p).
We are left with the only possibility that g = a ± b

√
−d. In this case (mb)2 − a2 =

b2(m2 + d) − (a2 + db2) ≡ 0 (mod p) so that p divides (mb − a)(mb + a). Hence either
m ≡ a/b or −a/b (mod p), and we choose the sign of b so that a ≡ bm (mod p). Therefore
a+ b

√
−d ≡ b(m+

√
−d) (mod p) and so a+ b

√
−d ∈ I.

Example: Both IR(2, 1 +
√
−5) and IR(3, 1 +

√
−5) are non-principal since there do not

exist integers a, b for which a2 + 5b2 = 2 or 3.
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C2. Continued Fractions.

C2.1. The Euclidean Algorithm: The Matrix version. We return to the continued
fraction description given in section 1.3. The equation

a

b
= q+

r

b
= q+

1
b
r

can be re-written as (
a
b

)
=

(
q 1
1 0

)(
b
r

)
,

especially if we adopt the convention that the matrix

(
a
b

)
represented a

b . But with this

representation, it is easy to see what happens when we iterate the algorithm: If we write
a0 = q = [a/b], and then a1 = [b/r] so that b = a1r + s, and define a2, a3, . . . iteratively
(as in section 1.3), then(

a
b

)
=

(
a0 1
1 0

)(
b
r

)
=

(
a0 1
1 0

)(
a1 1
1 0

)(
r
s

)
= . . . =

=

(
a0 1
1 0

)(
a1 1
1 0

)
. . .

(
ak 1
1 0

)(
1
0

)
,

since the Euclidean algorithm ends with the pair (gcd(a, b), 0) = (1, 0). Noting that

(
1
0

)
is the first column of I, we can define(

pj pj−1

qj qj−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
. . .

(
aj 1
1 0

)
so that a = pk and b = qk. Taking determinants we have

pjqj−1 − pj−1qj = (−1)j+1;

in particular au + bv = 1 where u = (−1)k−1qk−1 and v = (−1)kpk−1. This gives a
compact, straightforward way to formulate the Euclidean algorithm.

C2.2. Tiling a rectangle with squares. Given, say, a 9-by-7 rectangle we will tile it,
greedily, with squares. The largest square that we can place inside a 9-by-7 rectangle is
the 7-by-7 square. If we place a 7-by-7 square at one end, then it goes across the breadth
of the rectangle and most of the length, leaving 2 units at the end. That is, we have yet
to tile the remaining 7-by-2 rectangle. The largest square that can be placed inside this
rectangle is a 2-by-2 square, in fact we have room for three of them, leaving us with a
1-by-2 rectangle which we can cover with two 1-by-1 squares. Hence we have tiled the
9-by-7 rectangle by one 7-by-7, three 2-by-2, and two 1-by-1 squares. The area of the
rectangle can be computed in term of the areas of each of the squares, that is

9 · 7 = 1 · 72 + 3 · 22 + 2 · 12.



GAUSS’S NUMBER THEORY 149

What has this to do with the Euclidean algorithm? At a given step we have an a-by-b
rectangle, with a > b ≥ 1, and then we can remove q b-by-b squares, where a = qb + r
with 0 ≤ r ≤ a − 1 leaving an r-by-a rectangle, and so proceed by induction. Writing
9 = 1 · 7 + 2, 7 = 3 · 2 + 1 and 2 = 2 · 1 + 0 yields the example above.

Exercise C2.2.1. Given an a-by-b rectangle show how to write a · b as a sum of squares, as above, in

terms of the quotients and partial convergents of the continued fraction for a/b.7

C2.3. Continued fractions for real numbers. One can define the continued fraction
for any real number α = α0: Let a0 := [α0]. If α0 − a0 = 0, that is α0 is an integer
we stop; otherwise we repeat the process with α1 = 1/(α0 − a0). This yields a unique
continued fraction for each real number α. In fact αj − aj = αj − [αj ] = {αj} ∈ [0, 1), so
that each αj+1 ≥ 1 for all j ≥ 0. Hence aj is a positive integer for each j ≥ 1.

Exercise C2.3.1. Prove that if α has a finite length continued fraction then the last term is an integer

≥ 2.

To determine the value of [a0, a1, a2, . . . , ], where the integer a0 ≥ 0 and each other
integer ai ≥ 1, we define the convergents pn/qn := [a0, a1, . . . , an] for each n ≥ 0 as
above by (

pn pn−1

qn qn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
. . .

(
an 1
1 0

)
.

Note that pn = anpn−1+pn−2 and qn = anqn−1+ qn−2 for all n ≥ 2, so that the sequences
p1, p2, . . . and q1, q2, . . . are increasing. Taking determinants yields that

(C2.1)
pn
qn

− pn−1

qn−1
=
(−1)n+1

qn−1qn

for each n ≥ 1.

Exercise C2.3.2. Deduce that

p0

q0
<
p2

q2
< . . . <

p2j

q2j
< . . . . . . <

p2j+1

q2j+1
< . . . <

p3

q3
<
p1

q1
;

and that pn/qn tends to a limit as n→ ∞.

We have proved that if n is finite then the value given by the continued fraction is
indeed α, but this is not so obvious if n is infinite (i.e. α is irrational). We now prove
this, and as a consequence one can deduce that the positive real numbers are in 1-to-1
correspondence with the continued fractions.

Exercise C2.3.3. Show that if a, b, A,B, u, v are positive reals then au+Av
bu+Bv

lies between a
b
and A

B
.

Now α = [a0, a1, a2, . . . , an, αn+1], so that α = R/S where(
R pn
S qn

)
=

(
pn pn−1

qn qn−1

)(
αn+1 1
1 0

)
,

7I would like to thank Dusa MacDuff and Dylan Thurston for bringing my attention to this beautiful
application.
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and hence

(C2.2) α =
R

S
=
αn+1pn + pn−1

αn+1qn + qn−1

lies between pn−1

qn−1
and pn

qn
for each n ≥ 1, by the previous exercise.

Exercise C2.3.4. Deduce that α = limn→∞ pn/qn.

Exercise C2.3.5. Also deduce that
∣∣∣α− pn

qn

∣∣∣ ≤ 1
qnqn+1

for all n ≥ 0.

Now π = [3, 7, 15, 1, 292, 1, . . . ] which leads to the convergents

3 <
333

106
< . . . < π < . . . <

355

113
<
22

7
.

Archimedes knew that |π− 355
113 | < 3 · 10−7.8 The continued fraction for e displays an

interesting pattern: e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ]. One can generalize the notion of
continued fractions to obtain

π

4
=

1

1+ 12

2+ 32

2+ 52
2+...

or π =
4

1+ 12

3+ 22

5+ 32
7+...

.

By (C2.2) and then (C2.1) we have

α− pn
qn

=
αn+1pn + pn−1

αn+1qn + qn−1
− pn
qn

=
(−1)n

qn(αn+1qn + qn−1)
.

Now an+1 ≤ αn+1 < an+1+1 and so qn+1 ≤ αn+1qn+ qn−1 < qn+1+ qn < 2qn+1, yielding

(C2.3)
1

2qnqn+1
<

∣∣∣∣α− pn
qn

∣∣∣∣ ≤ 1

qnqn+1
.

This is a good approximation, but are there better? Lagrange showed that there are not:

Theorem C2.1. If 1 ≤ q < qn+1 then |qnα− pn| ≤ |qα− p|.

Proof. Let x = (−1)n(pqn+1 − qpn+1) and y = (−1)n(pqn − qpn), so that pnx− pn+1y = p
and qnx−qn+1y = q as pnqn+1−qnpn+1 = (−1)n. We observe that x ̸= 0 else qn+1 divides
qn+1y = −q so that qn+1 ≤ q contradicting the hypothesis.

8Around 1650 B.C., ancient Egyptians approximated π by regular octagons obtaining 256/81, a
method developed further by Archimedes in the third century B.C. and Liu Hui in China in the third
century A.D. In 1168 B.C. the Talmudic scholar Maimonides asserted that π can only be known approxi-
mately, perhaps a claim that it is irrational. In the ninth century B.C. the Indian astronomer Yajnavalkya

arguably gave the approximation 333/106 in Shatapatha Brahmana; in the 14th century A.D., Madhava
of the Kerala school in India indicated how to get arbitrarily good approximations to π.
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Now qnx = qn+1y + q where q < qn+1 ≤ |qn+1y| if y ̸= 0, and so qnx and qn+1y have
the same sign, and therefore x and y have the same sign. We saw earlier that qnα−pn and
qn+1α− pn+1 have opposite signs, and so x(qnα− pn) and y(qn+1α− pn+1) have opposite
signs. Now qα− p = x(qnα− pn)− y(qn+1α− pn+1) and so

|qα− a| = |x(qnα− pn)|+ |y(qn+1α− pn+1)| ≥ |qnα− pn|,
with equality implying that |x| = 1 and y = 0, so that {p, q} = {pn, qn}.

Exercise C2.3.6. Deduce that if 1 ≤ q < qn then
∣∣∣α− pn

qn

∣∣∣ < ∣∣∣α− p
q

∣∣∣.
Corollary C2.2. If

∣∣∣α− p
q

∣∣∣ < 1
2q2 then p

q is a convergent for α.

Proof. If qn ≤ q < qn+1 then |qnα− pn| < 1/2q by Theorem C2.1. Hence p/q = pn/qn else

1

qqn
≤
∣∣∣∣pq − pn

qn

∣∣∣∣ ≤ ∣∣∣∣α− p

q

∣∣∣∣+ ∣∣∣∣α− pn
qn

∣∣∣∣ < 1

2q2
+

1

2qqn
,

which is impossible.

Suppose that we have a solution to Pell’s equation, that is p2−dq2 = ±4 with p, q > 0.
Therefore |

√
d+ p/q| >

√
d so that∣∣∣∣√d− p

q

∣∣∣∣ = |p2 − dq2|
q2(

√
d+ p/q)

<
4√
dq2

.

If d ≥ 64 then this < 1/2q2 and so p/q is a convergent for
√
d.

Exercise C2.3.7. Show that if 0 < p2 − dq2 ≤
√
d with p, q ≥ 1 then p/q is a convergent for

√
d.

Exercise C2.3.8. Suppose that p, q ≥ 1 and −
√
d ≤ p2 − dq2 < 0. Show that −1 < p/q −

√
d < 0.

Deduce that if 0 < −(p2 − dq2) ≤
√
d− 1

2
then p/q is a convergent for

√
d.

Lemma C2.3. The inequality
∣∣∣α− p

q

∣∣∣ ≤ 1
2q2 is satisfied for at least one of p/q = pn/qn or

pn+1/qn+1 for each n ≥ 0.

Proof. If not then, since α− pn

qn
and α− pn+1

qn+1
have opposite signs, hence

1

qnqn+1
=

∣∣∣∣pnqn − pn+1

qn+1

∣∣∣∣ = ∣∣∣∣α− pn
qn

∣∣∣∣+ ∣∣∣∣α− pn+1

qn+1

∣∣∣∣ > 1

2q2n
+

1

2q2n+1

,

which is false for any positive reals qn, qn+1.

Hurwitz showed that for at least one of every three convergents one can improve this
to ≤ 1/(

√
5q2) and that this is best possible, since this is the constant for the golden ratio

1+
√
5

2 :

Exercise C2.3.9. Show that 1+
√

5
2

= [1, 1, 1, 1, . . . ] and so the convergents are Fn+1/Fn where Fn is the
nth Fibonacci numbers. By using the general formula for Fibonacci numbers, determine how good these
approximations are; i.e. prove a strong version of the formula at the end of chapter 11:∣∣∣∣∣1 +

√
5

2
−
Fn+1

Fn
+

(−1)n
√
5F 2

n

∣∣∣∣∣ ≤
1

2F 4
n

.
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C2.4. Quadratic irrationals and periodic continued fractions. We just saw that

the continued fraction for 1+
√
5

2 is just 1 repeated infinitely often. What are the values of
continued fractions in which the entries are periodic? We use the notation

α = [a0, a1, . . . , an] to mean α = [a0, a1, . . . , an, a0, a1, . . . , an, a0, a1, . . . , an, . . . ] is
periodic with period a0, a1, . . . , an. This means that α = [a0, a1, a2, . . . , an, α]; that
is αn+1 = α and so, as above,

(C2.4) α =
αpn + pn−1

αqn + qn−1
.

This implies that qnα
2 +(qn−1 − pn)α− pn−1 = 0, that is α satisfies a quadratic equation.

This equation must be irreducible, that is α is irrational, else the continued fraction would
be of finite length (as we saw in section 1.3).

If γ = [an, an−1, . . . , a0] then, since

(
an 1
1 0

)(
an−1 1
1 0

)
. . .

(
a0 1
1 0

)
=

((
a0 1
1 0

)
. . .

(
ak 1
1 0

))T

=

(
pk qk
pk−1 qk−1

)
,

hence γ = γpn+qn
γpn−1+qn−1

and so pn−1γ
2 + (qn−1 − pn)γ − qn = 0, which implies that

qn(−1/γ)2 + (qn−1 − pn)(−1/γ) − pn−1 = 0; that is −1/γ satisfies the same quadratic
equation as α. However these are two distinct roots since both α > 0 > −1/γ. We call
−1/γ the conjugate of α.

It may be that α = [a0, a1, a2, . . . , am, b0, b1, . . . , bn] is eventually periodic. In

that case β := [b0, b1, . . . , bn] is quadratic irrational, and hence so is α =βpm+pm−1

βqm+qm−1
.

Let us suppose that α = u+v
√
d, with d squarefree, has a periodic continued fraction

of period m. Then (C2.4) is satisfied whenever n is a multiple of m. Hence

(C2.5) u+ v
√
d = α =

pn − qn−1 +
√
(qn−1 − pn)2 + 4pn−1qn

2qn
,

so that (qn−1 + pn)
2 + 4(−1)n = (qn−1 − pn)

2 + 4pn−1qn = d(2qnv)
2. Since the left side is

an integer, so is the right side, and so we have infinitely many solutions to Pell’s equation

x2 − dy2 = ±4.

A continued fraction β = [b0, . . . , bm, a0, a1, . . . , an], for any m ≥ 0 is called
eventually periodic. Note that if α = [a0, a1, . . . , an] then

β =
αpm + pm−1

αqm + qm−1
.
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Theorem C2.4. Any quadratic irrational real number has a continued fraction that is
eventually periodic.

Proof. Suppose that α has minimal polynomial ax2 + bx+ c = a(x−α)(x−β), and define

f(x, y) := ax2 + bxy + cy2 = (x y )

(
a b/2
b/2 c

)(
x
y

)
.

By (C2.4),

(
α
1

)
= κ

(
pn pn−1

qn qn−1

)(
αn+1

1

)
for some κ ̸= 0, and so if we define

(
An Bn/2
Bn/2 Cn

)
:=

(
pn qn
pn−1 qn−1

)(
a b/2
b/2 c

)(
pn pn−1

qn qn−1

)
(so that b2 − 4ac = B2

n − 4AnCn by taking determinants of both sides) then

Anα
2
n+1 +Bnαn+1 + Cn = (αn+1 1 )

(
An Bn/2
Bn/2 Cn

)(
αn+1

1

)
= (αn+1 1 )

(
pn qn
pn−1 qn−1

)(
a b/2
b/2 c

)(
pn pn−1

qn qn−1

)(
αn+1

1

)
= κ2 (α 1 )

(
a b/2
b/2 c

)(
α
1

)
= κ2f(α, 1) = 0.

Therefore fn(x) := Anx
2+Bnx+Cn has root αn+1. Now An = f(pn, qn) and Cn = An−1.

By (C2.3),
∣∣∣α− pn

qn

∣∣∣ < 1
q2n
≤ 1, and

∣∣∣β− pn

qn

∣∣∣ ≤ |β − α|+
∣∣∣α− pn

qn

∣∣∣ ≤ |β − α|+ 1, so that

|An| = |f(pn, qn)| = aq2n

∣∣∣∣α− pn
qn

∣∣∣∣ ∣∣∣∣β− pn
qn

∣∣∣∣ ≤ a(|β − α|+ 1),

Since the An are all integers, there are only finitely many possibilities for the values of
An and Cn. Moreover, given these values there are only two possibilities for Bn, as
B2

n = b2−4ac+4AnCn. Hence there are only finitely many possible triples fn(x) and each
corresponds to at most two roots, so one such root must repeat infinitely often. That is,
there exists m < n such that αm = αn.

Exercise C2.4.1 Deduce that the continued fraction for α is eventually periodic.

Proposition C2.5. Suppose that α is a real quadratic irrational number with conjugate
β. Then α has a periodic continued fraction if and only if α > 1 and 0 > β > −1.

Proof. By Theorem C2.4 the continued fraction of α is eventually periodic. This implies
that each αn > an ≥ 1 for all n ≥ 1 and we now show that if 0 > β > −1 then
0 > βn > −1 for all n ≥ 1 by induction. Since αn−1 = an−1 + 1/αn by definition, we have
βn−1 = an−1 + 1/βn by taking conjugates. This means that an−1 = −1/βn + βn−1 is an
integer in (−1/βn−1,−1/βn) and so an−1 = [−1/βn] and hence −1/βn > 1 implying that
0 > βn > −1. Since the continued fraction for α is periodic, there exists 0 ≤ m < n with
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αm = αn; select m to be the minimal integer ≥ 0 for which such an n exists. Then m = 0
else taking conjugates gives βm = βn, so that am−1 = [−1/βm] = [−1/βn] = an−1 and
hence αm−1 = am−1 + 1/αm = an−1 + 1/αn = αn−1, contradicting the minimality of m.

On the other hand if the continued fraction is purely periodic of period n then, as
above f(x) := qnx

2 + (qn−1 − pn)x − pn−1 = 0 for x = α and β. Now f(0) = −pn−1 < 0
and f(−1) = (qn − qn−1) + (pn − pn−1) > 0, and so f has a root in (−1, 0). This root
cannot be α which is ≥ a0 = an ≥ 1 so must be β.

C2.5. Pell’s equation. Here are some examples of the continued fraction for
√
d:√

2 = [1, 2],
√
3 = [1, 1, 2],

√
5 = [2, 4],

√
6 = [2, 2, 4],

√
7 = [2, 1, 1, 1, 4],√

8 = [2, 1, 4],
√
10 = [3, 6],

√
11 = [3, 3, 6],

√
12 = [3, 2, 6],

√
13 = [3, 1, 1, 1, 1, 6], . . .

These examples seem to suggest that
√
d = [a0, a1, . . . , an] where an = 2a0 = 2[

√
d]. Let

us suppose, for now, that this is true, so that
√
d + [

√
d] and 1/(

√
d − [

√
d]) are (purely)

periodic.

Exercise C2.5.1. Show that
√
d+ [

√
d] is indeed periodic.

If
√
d = [a0, a1, . . . ] then

√
d + [

√
d] = [2a0, a1, . . . , an−1] for some n, by exercise

C2.5.1, so that
√
d = [a0, a1, . . . , an] where an = 2a0 (as suggested by the examples).

Now if Pk/Qk are the convergents for
√
d + [

√
d] then we deduce from the coefficients in

(C2.5) that

(Qn−2 + Pn−1)
2 − d(2Qn−1)

2 = 4(−1)n and Pn−1 −Qn−2 = 2a0Qn−1.

Exercise C2.5.2. Show that Pk/Qk = pk/qk + a0 for all k (Hint: Use matrices to evaluate the
Pk, Qk, pk, qk.); that is Qk = qk and Pk = pk + a0qk. Deduce from this and the last displayed equa-
tion that Qn−2 + Pn−1 = 2pn−1 and so

p2n−1 − dq2n−1 = (−1)n.

Hence we have seen, in exercise C2.3.7, that if d ≥ 64 and p2−dq2 = ±4 with p, q ≥ 1
then p/q is a convergent to

√
d. Now we see that each period of the continued fraction of√

d gives rise to another solution of the Pell equation.
If one takes a slightly larger example like

√
43 = [6, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12] one cannot

help but notice that the period is symmetric, that is aj = an−j for j = 1, 2, . . . , n − 1.
To prove this is straightforward: At the beginning of section C2.4 we saw that if we
have γ = [an−1, an−2, . . . , a1, 2a0], then −1/γ is the conjugate of

√
d + [

√
d], that is

1/γ =
√
d− [

√
d] and therefore

[2a0, a1, . . . , an−1] =
√
d+ [

√
d] = 2a0 + 1/γ

= [2a0, an−1, . . . , a1, 2a0] = [2a0, an−1, . . . , a1].

Remark: We have yet to show that the solutions to Pell’s equation are precisely those that
come from the period.
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C2.6. The size of solutions to Pell’s equation. As in the proof of Theorem C2.4 but

now noting that
∣∣∣α− pn

qn

∣∣∣ < 1
qnqn+1

< 1
anq2n

since qn+1 = anqn + qn−1 > anqn, we obtain that

1 ≤ |An| = aq2n

∣∣∣∣α− pn
qn

∣∣∣∣ ∣∣∣∣β− pn
qn

∣∣∣∣ ≤ aq2n·
1

qnqn+1
(|β − α|+ 1) <

(a+
√
d)

an
;

as (a(β−α))2 = b2−4ac = d. For α =
√
d+[

√
d] we have a = 1, and so 1 ≤ an ≤ 2

√
d+1,

for all n ≥ 1. This allows us to deduce upper and lower bounds on pn and qn:

Exercise C2.6.1. Suppose that xn+1 = anxn + xn−1 for all n ≥ 1, with x0, x1 positive integers, not

both 0.

(i) Use that each an ≥ 1 to deduce that xn ≥ Fn for all n ≥ 0.

(ii) Use that each an ≤ B (=
√
d+ 1) to deduce that xn ≤ (B + 1)n−1(x1 + x0) for all n ≥ 1.

Hence if the continued fraction for
√
d has period ℓ and this gives rise to a solution

x, y to Pell’s equation, then ϕℓ ≪ ϵd := x + y
√
d ≪ (

√
d + 1)ℓ where ϕ = 1+

√
5

2 . Hence
there is a direct link between the size of the smallest solution to Pell’s equations and the
length of the continued fraction.

C2.7. More examples of Pell’s equation. Here we give only the longest continued
fractions and the largest fundamental solutions.

√
2 = [1, 2], 12 − 2 · 12 = −1

√
3 = [1, 1, 2], 22 − 3 · 12 = 1

√
6 = [2, 2, 4], 52 − 6 · 22 = 1

√
7 = [2, 1, 1, 1, 4], 82 − 7 · 32 = 1

√
13 = [3, 1, 1, 1, 1, 6], 182 − 13 · 52 = −1

√
19 = [4, 2, 1, 3, 1, 2, 8], 1702 − 19 · 392 = 1

√
22 = [4, 1, 2, 4, 2, 1, 8], 1972 − 22 · 422 = 1

√
31 = [5, 1, 1, 3, 5, 3, 1, 1, 10], 15202 − 31 · 2732 = 1

√
43 = [6, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12], 34822 − 43 · 5312 = 1

√
46 = [6, 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12], 243352 − 46 · 35882 = 1

√
76 = [8, 1, 2, 1, 1, 5, 4, 5, 1, 1, 2, 1, 16], 577992 − 76 · 66302 = 1

√
94 = [9, 1, 2, 3, 1, 1, 5, 1, 8, 1, 5, 1, 1, 3, 2, 1, 18], 21432952 − 94 · 2210642 = 1

√
124 = [11, 7, 2, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 2, 7, 22], 46207992 − 124 · 4149602 = 1

√
133 = [11, 1, 1, 7, 5, 1, 1, 1, 2, 1, 1, 1, 5, 7, 1, 1, 22], 25885992 − 133 · 2244602 = 1

√
139 = [11, 1, 3, 1, 3, 7, 1, 1, 2, 11, 2, 1, 1, 7, 3, 1, 3, 1, 22], 775632502 − 139 · 65788292 = 1.
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These are the champions up to 150. After that we list the continued fraction lengths and
the fundamental solutions for the champions up to 1000:

Length = 20 : 17281480402 − 151 · 1406346932 = 1

Length = 22 : 17009025652 − 166 · 1320156422 = 1

Length = 26 : 2783543736502 − 211 · 191627053532 = 1

Length = 26 : 6953591899252 − 214 · 475337756462 = 1

Length = 26 : 58833925376952 − 301 · 3391131082322 = 1

Length = 34 : 27855898014439702 − 331 · 1531098626345732 = 1

Length = 37 : 440424456968214182 − 421 · 21464974635307852 = −1

Length = 40 : 840560915469529337752 − 526 · 36650197573242955322 = 1

Length = 42 : 1811243550616307861302 − 571 · 75798183506289825872 = 1

Length = 44 : 59729912963116831992 − 604 · 2430375690639517202 = 1

Length = 48 : 489615753129986500355602 − 631 · 19491295375751510364272 = 1

Length = 52 : 72933184667948824244189602 − 751 · 2661369706772060244567932 = 1

Length = 54 : 77435245930576558516377652 − 886 · 2601487964640241948503782 = 1

Length = 60 : 44816030109371194515512637202 − 919 · 1478344423965367597814995892 = 1

Length = 60 : 3795164009068119306380148960802 − 991 · 120557357903313594474425387672 = 1

Notice that the length of the continued fractions here are around 2
√
d, and the size of the

fundamental solutions 10
√
d.
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C3. Unique Factorization. The proof of the Fundamental Theorem of Arithmetic
appears to use very few ideas, and so one might expect that it generalizes into all sorts of
other domains. For example, do polynomials factor in a unique way into irreducibles? Or
numbers of the form {a+ b

√
d : a, b ∈ Z}? Or other simple arithmetic sets?

One good example is the set of positive integers, F , which are ≡ 1 (mod 4). We
note that F is closed under multiplication by exercise 3.1.2 and contains 1 (just like the
positive integers). We know that this is an artificial set, in the sense that 21 factors over
the integers into 3 · 7, but not in F since neither 3 nor 7 belongs to F .9 Indeed 21 is not
the product of two smaller elements of F and so we call it irreducible in F .10 We ask
whether factorization into irreducibles is unique in F ? A few calculations and we find
that the answer is “no”, since

441 = 9 · 49 = 21 · 21 or 693 = 9 · 77 = 21 · 33,

and each of 9, 21, 33, 49 and 77 are irreducible in F . What has gone wrong? What is
the structural difference between F and Z ? One key difference is that Z has an additive
structure (that is, any two elements of Z add to another), whereas F does not. So even
though factorization is a multiplicative property, it somehow needs additive structure to
be unique.

Before embarking on the next example we need to exclude examples like 3 = (−1)·(−3)
and −3 = (−1)·3, which make it appear that every integer can be factored into at least two
others. The issue here is that one of the factors, −1, divides 1 in Z, that is (−1) · (−1) = 1,
so division by such a number does not really reduce the size of numbers that we are working
with. Elements of a ring that divide 1 are called units and will be excluded from the notion
of factorization.

How about rings like {a + b
√
d : a, b ∈ Z} which have are closed under addition as

well as multiplication? In R := {a+ b
√
−5 : a, b ∈ Z} we have the example

6 = 2 · 3 = (1 +
√
−5) · (1−

√
−5).

Now suppose that prime p = (a+b
√
−5)(c+d

√
−5) for p = 2 or 3. Then (a, b)(c, d) divides

p, so at least one of these gcds equals 1, say (a, b) = 1. The coefficient of the imaginary
part is ad + bc = 0, and so a|bc and therefore a|c. Writing c = ak we have d = −bk and
therefore p = k(a+b

√
−5)(a−b

√
−5) = k(a2+5b2). Therefore a2+5b2 = 1, 2 or 3, so that

b = 0, a = ±1, yielding the uninteresting factorization (±1)(±p), and hence neither 2 nor
3 can be factored in R. Therefore 2 and 3 are irreducible in R. Also, by taking complex
conjugates 1+

√
−5 = (a+b

√
−5)(c+d

√
−5) if and only if 1−

√
−5 = (a−b

√
−5)(c−d

√
−5),

and hence 6 = (1 +
√
−5)(1 −

√
−5) = (a + b

√
−5)(c + d

√
−5)(a − b

√
−5)(c − d

√
−5) =

(a2 + 5b2)(c2 + 5d2). Since a2 + 5b2 and c2 + 5d2 are both positive and ̸= 2 or 3, with
product 6, one must equal 1, the other 6, say |a| = |b| = |c| = 1, d = 0, which shows that
1 +

√
−5 and 1−

√
−5 are both irreducible in R. So we do not have unique factorization

of elements of R.

9However, one might similarly argue that just as F ⊂ Z so Z ⊂ Q, and thus we could argue 3 reduces

further as 2 · (3/2).
10Since we hesitate to use the word “prime” in this context.
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Ideals, again. Let us suppose that in the ring R = Z[
√
−d] := {a + b

√
−d : a, b ∈ Z},

where d > 1, there are two ways of factoring an integer of R into irreducibles, say

p · q = (a+ b
√
−d)(a− b

√
−d),

where p and q are distinct primes of Z. If we had such an equation over the integers, say
pq = rs we might proceed by first computing g = gcd(p, r) (that is the (unique) generator
of IZ(p, r)), and then writing p = gP, r = gR so that Pq = Rs where (P,R) = 1. Hence
P |Rs and (P,R) = 1 so that P |s. Writing s = PS we obtain q = RS. Hence pq = rs
further factors as gPRS = (gP )(RS) = (gR)(PS).

If we proceed like this in R then we need that the ideal generated by p and a+ b
√
−d,

namely IR(p, a+ b
√
−d), is principal (so we can divide through by the generator). We saw

in the Theorem above, that either p divides a and b, whence p2|a2 + db2 = pq which is
impossible, or p can be written as u2+dv2 where u/v ≡ a/b (mod p) and IR(p, a+b

√
−d) =

IR(u+ v
√
−d).

Let us write a+b
√
−d = (u+v

√
−d)(ℓ+m

√
−d), so that a−b

√
−d = (u−v

√
−d)(ℓ−

m
√
−d) by taking complex conjugates. Substituting in above we have

q =
pq

u2 + dv2
=
a+ b

√
−d

u+ v
√
−d

· a− b
√
−d

u− v
√
−d

= (ℓ+m
√
−d)(ℓ−m

√
−d) = ℓ2 + dm2.

Hence pq = (a+ b
√
−d)(a− b

√
−d) factors further as(

(u+ v
√
−d)(u− v

√
−d)

)
·
(
(ℓ+m

√
−d)(ℓ−m

√
−d)

)
=
(
(u+ v

√
−d)(ℓ+m

√
−d)

)
·
(
(u− v

√
−d)(ℓ−m

√
−d)

)
.

Exercise C3.1. Show that the only units of R are 1 and −1. What if we allow d = 1?

Factoring into ideals. We need arithmetic to work in R = Z[
√
−d] even though, as we

have seen we cannot always factor uniquely into irreducibles. It turns out that the way to
proceed is to replace all the numbers in the ring by the ideals that they generate. To do
so we need to be able to multiply ideals, and it is easy to show from their definition that
this works out by multiplying generators: For any α, β, γ, δ ∈ R we have

IR(α, β) · IR(γ, δ) = IR(αγ, αδ, βγ, βδ).

Therefore if n = ab in R then IR(n) = IR(a)IR(b). There are several desirable properties
of ideals: All issues with units disappear for if I is an ideal and u a unit then I = uI.
Ideals can be factored into prime ideals in a unique way; in all “number rings” R we get
unique factorization. Note though that primes are no longer elements of the ring, or even
necessarily principal ideals of the ring.

In our example 6 = 2 · 3 = (1+
√
−5) · (1−

√
−5) above, all of 2, 3, 1+

√
−5, 1−

√
−5

are irreducibles of Z[
√
−5] but none generate prime ideals. In fact we can factor the ideals
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they generate into prime ideals as

IR(2) = IR(2, 1 +
√
−5) · IR(2, 1−

√
−5)

IR(3) = IR(3, 1 +
√
−5) · IR(3, 1−

√
−5)

IR(1 +
√
−5) = IR(2, 1 +

√
−5) · IR(3, 1 +

√
−5)

IR(1−
√
−5) = IR(2, 1−

√
−5) · IR(3, 1−

√
−5).

None of these prime ideals are principal by Theorem *.*. We do call an element of R prime
if it generates a prime ideal.

Here we see that the notion of “irreducible” and “prime” are not in general the same.
In fact any prime of R is irreducible, but not vice-versa. One fun question of Davenport
is to determine the most prime ideal factors an irreducible integer can have in R.
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Maybe we should have Lenstra’s brilliant example for x2 + 19 = y3.

C4. Binary quadratic forms with positive discriminant, and continued frac-
tions. When d > 0, Gauss defined ax2 + bxy + cy2 to be reduced when

(C4.1) 0 <
√
d− b < 2|a| <

√
d+ b.

This implies that 0 < b <
√
d so that |a| <

√
d and therefore there are only finitely many

reduced forms of positive discriminant d. Note that ax2 + bxy+ cy2 is reduced if and only
if cx2 + bxy + ay2 is. The first inequality implies that ac = (b2 − d)/4 < 0.

Let ρ1 := −b+
√
d

2a and ρ2 := −b−
√
d

2a be the two roots of at2 + bt+ c = 0. Then (C4.1)
holds if and only if |ρ1| < 1 < |ρ2| and ρ1ρ2 < 0.

Forms ax2 + bxy + cy2 and cx2 + b′xy + c′y2 are neighbours (and equivalent) if they
have the same discriminant and b+ b′ ≡ 0 (mod 2c), since they are equivalent under the

transformation

(
x
y

)
→
(
0 −1
1 k

)(
x
y

)
where b+ b′ = 2ck.

The reduction algorithm proceeds as follows: Given ax2 + bxy + cy2 we select a
neighbour as follows: Let b′0 be the least residue in absolute value of −b (mod 2c) so that
|b′0| ≤ c.

• If |b′0| >
√
d then let b′ = b′0. Note that 0 < (b′)2 − d ≤ c2 − d so that |c′| =

((b′)2 − d)/4|c| < |c|/4.
• If |b′0| <

√
d then select b′ ≡ −b (mod 2c) with b′ as large as possible so that

|b′| <
√
d. Note that −d ≤ (b′)2 − d = 4cc′ < 0. If 2|c| >

√
d then |c′| ≤ |d/4c| < |c|.

Otherwise
√
d ≥ 2|c| and

√
d−2|c| < |b′| <

√
d, and therefore the neighbour is reduced.

Thus we see that the absolute values of the coefficients a and c of the binary quadratic
form are reduced at each step of the algorithm until we obtain a reduced form.

The major difference between this, the d > 0 case, and the d < 0 case is that there is
not necessarily a unique reduced form in a given class of binary quadratic forms of positive
discriminant. Rather, when we run Gauss’s algorithm we eventually obtain a cycle of
reduced forms, which must happen since every reduced form has a unique right and a
unique left reduced neighbouring form, and there are only finitely many reduced forms.
Given a quadratic form a0x

2 + b0xy+ a1y
2 we define a sequence of forms, in the following

notation:
a0

b0 a1
b1 a2

b2 a3 . . . .

This represents, successively, the forms a0x
2 + b0xy + a1y

2, a1x
2 + b1xy + a2y

2, a2x
2 +

b2xy+a3y
2, . . . , of equal discriminant, where a form is the unique reduced right neighbour

of its predecessor, and then ai+1 = (b2i − d)/4ai. For example, when d = 816,

5 26 − 7 16 20 24 − 3 24 20 16 − 7 26 5 24 − 12 24 5 26 − 7 . . .

which is a cycle of period 8.

A solution to Pell’s Equation, v2−dw2 = ±4 yields a map

(
X
Y

)
→
(

v−bw
2 −cw
aw v+bw

2

)(
x
y

)
,

for which aX2 + bXY + cY 2 = ±(ax2 + bxy + cy2), which is an automorphism only when
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v2 − dw2 = 4. Any solution to Pell’s Equation yields a good rational approximation v
w

to
√
d, in fact with | v

w −
√
d| < 1

2w2 if d ≥ 19. This implies that v
w is a convergent for

the continued fraction of
√
d. For α =

√
d let cn := p2n − dq2n, so that cncn+1 < 0 and

|cn| < 2
√
d+1, and that there is a cycle of reduced forms c0

b0 c1
b1 c2

b2 c3 . . . of discrimi-

nant d. For example
√
60 = [7, 1, 2, 1, 14] gives rise to the cycle −11 4 4 4 −11 7 1 7 −11 4 4,

and the first 4 corresponds to the unit 8+
√
60

2 = 4 +
√
15. In general if pn

qn
is the nth con-

vergent to
√
d−b
2|a| then define cn = ap2n ± bpnqn + cq2n where ± represents the sign of a, and

we have such a cycle. For example
√
97−9
8 = [0, 9, 2, 2, 1, 4, 4, 1, 2, 2], which gives the cycle

−1 9 4 7 −3 5 6 7 −2 9 2 7 −6 5 3 7 −4 9 1 9 −4 7 3 5 −6 7 2 9 −2 7 6 5 −3 7 4 9 −1 9 4 . . . .

The fundamental unit is that solution ϵd := v0+
√
dw0

2 which is minimal and > 1. We

call v2−dw2

4 the norm of ϵd. All other solutions of (4.6.2) take the form

(C4.1)
v +

√
dw

2
= ±ϵkd,

for some k ∈ Z (for a proof see exercise 4.6c). We let ϵ+d be the smallest unit > 1 with

norm 1. One can deduce from (C4.1) that ϵ+d = ϵd or ϵ2d, depending on whether the norm
of ϵd is 1 or −1.

Exercise C4.2. Prove that every reduced form of positive discriminant has a unique right and a unique

left reduced neighbouring form.

The class number one problem in real quadratic fields. Although h(−d) gets large,
roughly of size

√
d as d gets larger, surprisingly h(d) seems to mostly remains quite small.

What we do know is that h(d)log ϵd is roughly of size
√
d as d gets larger, so that com-

putational data suggests that ϵd is often around e
√
d whereas h(d) stays small. There are

exceptions; for example if d = m2 + 1 then ϵd = m+
√
d and so we can prove, for such d,

that h(d) gets large (like
√
d).

Hooley, and Cohen and Lenstra, made some attempts to guess at how often h(d) is
small. One can show that there are distinct binary quadratic forms for each odd squarefree
divisor of d and so h(d) ≥ 2ν(d), where ν(d) is the number of odd prime factors of d.
Therefore the smallest that h(d) can be is 2ν(d) (we call these the idoneal numbers) and
therefore if h(d) = 1 then d must be prime. Gauss observed that h(p) = 1 for what seemed
to be a positive proportion of primes p and this is still an open problem today. Even
proving that there are infinitely many primes p for which h(p) = 1, is open.

Cohen and Lenstra made the following conjectures

The proportion of d for which p divides h(d) = 1−
∏
k≥2

(
1− 1

pk

)

The proportion of primes p for which h(p) = 1 is λ :=
∏

k≥2

(
1− 1

2k

)
ζ(k) = .7544581517 . . .

Then the proportion of primes p for which h(p) = q, where q is prime, equals λ/q(q − 1).
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Finally if most of the class numbers are small, but the occasional one is as big as
√
p

then which dominates in the average? The conjecture is that for the primes p ≤ x with
p ≡ 1 (mod 4), we have that h(p) ∼1

8 log x on average (and thus, the big class numbers
are very rare).
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C5. SL(2,Z)-transformations. Forms-Ideals-Transformations.

Generators of SL(2,Z). We will show that SL(2,Z) is generated by the two elements(
1 1
0 1

)
,

(
0 1
−1 0

)
. Given

(
α β
γ δ

)
of determinant 1, we shall perform the Euclidean

algorithm on α/γ when γ ̸= 0: Select integer a so that γ′ := α − aγ has the same sign as

α and 0 ≤ |γ′| < γ. If α′ = −γ then

(
0 −1
1 −a

)(
α β
γ δ

)
=

(
α′ β′

γ′ δ′

)
. Other than the

signs this is the same process as the Euclidean algorithm, and we reduce the size of the

pair of numbers in the first column. Moreover the matrix

(
0 −1
1 −a

)
has determinant 1,

and therefore so does

(
α′ β′

γ′ δ′

)
. We repeat this process as long as we can; evidently this

is impossible once γ = 0. In that case α and δ are integers for which αδ = 1 and therefore
our matrix is ±I. Hence we have that there exists integers a1, a2, . . . , ak such that(

0 −1
1 −ak

)(
0 −1
1 −ak−1

)
· · ·
(
0 −1
1 −a1

)(
α β
γ δ

)
= ±

(
1 0
0 1

)
.

Now

(
a −1
1 0

)(
0 −1
1 −a

)
= −I, and so we deduce that

(
α β
γ δ

)
= ±

(
a1 −1
1 0

)(
a2 −1
1 0

)
· · ·
(
ak −1
1 0

)

Now

(
a −1
1 0

)
= −

(
1 a
0 1

)(
0 1
−1 0

)
= −

(
1 1
0 1

)a(
0 1
−1 0

)
Exercise C5.1. Complete the proof that SL(2,Z) is generated by the two elements

(
1 1
0 1

)
,

(
0 1
−1 0

)
.

We consider the binary quadratic form f(x, y) := ax2 + bxy + cy2. We saw that two

forms f and g are equivalent, written f ∼ g, if there exists

(
α β
γ δ

)
∈ SL(2,Z) such that

g(x, y) = f(αx+ βy, γx+ δy).

The root zf :=−b+
√
d

2a of f is a point in C, the sign of
√
d chosen, when d < 0, to be

in the upper half plane. Two points in the complex plane z, z′ are said to be equivalent if

there exists

(
α β
γ δ

)
∈ SL(2,Z) such that z′ = u/v where

(
u
v

)
=

(
α β
γ δ

)(
z
1

)
. Hence

z ∼ z + 1 and z ∼ −1/z.

The ideal If := (2a,−b+
√
d) corresponds to f . Note that If = 2a(1, zf ). Two ideals

I, J are said equivalent if there exists α ∈ Q(
√
d) such that J = αI. Hence If ∼ (1, zf ).

The generators of SL(2,Z) correspond to two basic operations in Gauss’s reduction
algorithm for binary quadratic forms:

The first is x→ x+ y, y → y, so that

f(x, y) ∼ g(x, y) := f(x+ y, y) = ax2 + (b+ 2a)xy + (a+ b+ c)y2.
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Note that Ig = (2a,−(b+ 2a) +
√
d) = If , and zg =−b−2a+

√
d

2a = zf − 1.
The second is x→ y, y → −x so that

f(x, y) ∼ h(x, y) := f(y,−x) = cx2 − bxy + ay2.

Note that Ih = (2c, b+
√
d), and zh = b+

√
d

2c . First observe that

zf · zh =
−b+

√
d

2a
· b+

√
d

2c
=
d− b2

4ac
= −1

that is zh = −1/zf . Then

Ih ∼ (1, zh) = (1,−1/zf ) ∼ (1,−zf ) = (1, zf ) ∼ If .

Since any SL(2,Z)-transformation can be constructed out of the basic two transformation
we deduce

Theorem C5.1. f ∼ f ′ if and only if If ∼ If ′ if and only if zf ∼ zf ′ .

It is amazing that this fundamental, non-trivial, equivalence can be understood in
three seemingly very different ways. Which is the best? That is hard to say; each has their
uses, but what is good one can translate any question into the setting in which it is most
natural. For example the notion of reduced binary quadratic form seems a little unnatural;
however in the context of points in the upper half plane it translates to the points

z ∈ C : Im(z) > 0, − 1

2
≤ Re(z) <

1

2
, |z| ≥ 1, if |z| = 1 then Re(z) ≤ 0.

Be careful here; we are out by a factor of 2, and we might wish to place z on the right not
the left
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C6. Minkowski and lattices. A lattice Λ in Rn is the set of points generated by n
linearly independent vectors, with basis x1, x2, . . . , xn say. In other words

Λ := {a1x1 + a2x2 + . . .+ anxn : a1, a2, . . . , an ∈ Z}.

One can see that Λ is an additive group, but it also has some geometry connected to
it. The fundamental parallellopiped of Λ with respect to x1, x2, . . . , xn is the set P =
{a1x1+a2x2+ · · ·+anxn : 0 ≤ ai < 1}. The sets x+P , x ∈ Λ are disjoint and their union
is Rn. The determinant det(Λ) of Λ is the volume of P ; in fact det(Λ) = |det(A)|, where
A is the matrix with column vectors x1, x2, . . . , xn (written as vectors in Rn). A convex
body K is a bounded convex open subset of Rn.

We define A−B to be the set of points that can be expressed as a− b. A key result
is:

Blichfeldt’s Lemma. Let K ⊂ Rn be a measurable set, and Λ a lattice such that vol(K) >
det(Λ). Then K −K contains a non-zero point of Λ.

Proof. (By the pigeonhole principle.) Let L be the set of points ℓ ∈ P such that there
exists x ∈ Λ for which ℓ + x ∈ K. We claim that there are two such x for at least one
point in L, else vol K = vol L ≤ vol P = det(Λ) < vol(K), by hypothesis, a contradiction.
Therefore for kx := ℓ + x ̸= ky := ℓ + y ∈ K with x, y ∈ Λ we have kx − ky = x − y ∈ Λ
which is the result claimed.

Exercise C6.1 Show that if vol(K) > m det(Λ). Then K −K contains at least m non-zero points of Λ.

We deduce:

Minkowski’s First Theorem. If K is a centrally symmetric convex body with vol(K) >
2ndet(Λ) then K contains a non-zero point of Λ.

Proof. As K is convex and centrally symmetric, K = 1
2 K− 1

2 K. However, vol(12 K) >
det(Λ), so the result follows by Blichfeldt’s Lemma.

Another proof of the sum of two squares theorem. Suppose that p is a prime ≡ 1 (mod 4)
so that there exist integers a, b such that a2 + b2 ≡ 0 (mod p). Let Λ be the lattice in Z2

generated by (a, b), (−b, a).
Exercise C6.2. Prove that det(Λ) = p. Show that if (u, v) ∈ Λ then u2 + v2 ≡ 0 (mod p).

Let K := {(x, y : x2 + y2 < 2p} so that vol(K) = 2πp > 22det(Λ). Minkowski’s First
Theorem implies that there exists a non-zero (u, v) ∈ K ∩Λ, so that 0 < u2 + v2 < 2p and
u2 + v2 ≡ 0 (mod p), which implies that u2 + v2 = p.

Another proof of the local-glocal principle for diagonal quadratic forms. Let a, b, c be given
integers such that abc is coprime and all the residue symbols work out. Let Λ be the lattice
in Z3 generated by solutions x, y, z to ax2 + by2 + cz2 ≡ 0 (mod 4abc). We will prove that
det(Λ) = 4|abc|:

The first observation is that if, say, p|a then we know, by hypothesis that there exist
u, v with bu2 + cv2 ≡ 0 (mod p), etc (To be understood).
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Now let K := {(x, y, z : |a|x2 + |b|y2 + |c|z2 < 4|abc|} so that vol(K) = 8π
3 ·4|abc| >

23det(Λ). Hence Minkowski’s First Theorem implies that there exists a non-zero (u, v, w) ∈
K ∩Λ, such that au2 + bv2 + cw2 ≡ 0 (mod 4abc) with |au2 + bv2 + cw2| ≤ |a|u2 + |b|v2 +
|c|u2 < 4|abc|.

Hence we have shown that there exists a non-zero integer solution to

ax2 + by2 + cz2 = 0,with |a|x2 + |b|y2 + |c|z2 < 4|abc|.

Exercise C6.3. Can you improve the 4 in the last displayed equation?

Exercise C6.4. We may assume, wlog, that a, b, c > 0 and we are looking for solutions to ax2+by2 = cz2.

Now try Λ := {(x, y, z) : ax2 + by2 + cz2 ≡ 0 (mod 2abc)} with K := {(x, y, z : ax2 + by2, cz2 < 2|abc|}.
What do you get?

I am not sure whether we need this so we will not delete it for now! For a centrally
symmetric convex body K define λk to be the infimum of those λ for which λK contains k
linearly independent vectors of Λ. We call λ1, λ2, . . . , λn the successive minima of K with
respect to Λ. Let b1, b2, . . . , bn ∈ Rn be linearly independent vectors with bk ∈ λkK ∩ Λ
for each k. The proof of the next result, and much more, can be found in [15].

Minkowski’s Second Theorem. If 0 < λ1 ≤ λ2 ≤ . . . ≤ λn are the successive minima
of convex body K with respect to Λ then λ1λ2 . . . λnvol(K) ≤ 2ndet(Λ).

Let r1, r2, . . . , rk ∈ Z/NZ and δ > 0 be given. We define the Bohr neighbourhood

B(r1, r2, . . . , rk; δ) := {s ∈ Z/NZ : ∥ris/N∥ ≤ δ for i = 1, 2, . . . , k};

that is, the least residue, in absolute value, of each ris (mod N) is < δN in absolute value.
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C7. Connection between sums of 3 squares and h(d). We have seen which integers
are representable as the sum of two squares. How about three?

• The only squares mod 4 are 0 and 1. Therefore if n is divisible by 4 and is the sum
of three squares then all three squares must be even. Hence if n = 4m then to obtain every
representation of n as the sum of three squares, we just take every representation of m as
the sum of three squares, and double the number that are being squared.

• The only squares mod 8 are 0, 1 and 4. Therefore no integer ≡ 7 (mod 8) can be
written as the sum of three squares (of integers). By the previous remark no integer of the
form 4k(8m+ 7) can be written as the sum of three squares.

Legendre’s Theorem. (1798) A positive integer n can be written as the sum of three
squares of integers if and only if it is not of the form 4k(8m+ 7).

We will not prove this as all known proofs are too complicated for a first course.
One might ask how many ways are there to write an integer as the sum of three

squares? Gauss proved the following remarkable theorem (for which there is still no easy
proof): Suppose that n is squarefree.11 If n ≡ 3 (mod 8) then there are 8h(−4n) ways in
which n can be written as the sum of three squares; if n ≡ 1 or 2 (mod 4), n > 1 there
are 12h(−4n) ways.

11That is p2 ̸ |n for all primes p.
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C8. Eisenstein’s proof of quadratic reciprocity. There are many proofs of the law of
quadratic reciprocity, something like 233 at last count (see the list at http://www.rzuser.uni-
heidelberg.de/∼hb3/fchrono.html). One of the most elegant is due to Eisenstein
(1844).

A lemma of Gauss gives a complicated formula to determine (a/p):

Gauss’s Lemma. For (a, p) = 1, let rn be the absolute least residue of an (mod p), and

N be the set of integers 1 ≤ n ≤p−1
2 such that rn < 0. Then

(
a
p

)
= (−1)|N |.

Proof. For each m, 1 ≤ m ≤p−1
2 there is exactly one integer n, 1 ≤ n ≤p−1

2 such that
rn = m or −m (mod p) (for if an ≡ ±an′ (mod p) then p|a(n ∓ n′) so p|n ∓ n′ which is
possible in this range only if n = n′). Therefore(

p− 1

2

)
! =

∏
1≤m≤ p−1

2

m =
∏

1≤n≤ p−1
2

n ̸∈N

rn ·
∏

1≤n≤ p−1
2

n̸∈N

(−rn)

≡
∏

1≤n≤ p−1
2

n̸∈N

(an) ·
∏

1≤n≤ p−1
2

n̸∈N

(−an) = a
p−1
2 (−1)|N | ·

(
p− 1

2

)
! (mod p).

The result follows from Euler’s criterion.

Proof of Theorem 8.7 for primes. If a = 2 in Gauss’s Lemma, N = {1 ≤ n ≤p−1
2 : 2n >p

2}
so that |N | =p−1

2 −[p−1
4 ], which equals p−1

4 if p ≡ 1 (mod 4), and p+1
4 if p ≡ 3 (mod 4).

The result follows from Gauss’s Lemma.

Exercise C8.1. Let r be the absolute least residue of N (mod p). Prove that

N − p

[
N

p

]
=

{
r if r ≥ 0;

p+ r if r < 0.

By the last exercise we have

p−1
2∑

n=1

(
an− p

[
an

p

])
=
∑
n ̸∈N

rn +
∑
n∈N

(p+ rn)

where the sums are all restricted to n in the range 1 ≤ n ≤p−1
2 . We will take a and p odd

and study this equation mod 2. It is convenient to let T ≡
∑ p−1

2
n=1 n (mod 2). Then the

equation becomes

T +

p−1
2∑

n=1

[
an

p

]
≡
∑
n

rn + |N | (mod 2).

In the proof of Gauss’s Lemma we saw that

{rn : n ∈ N} ∪ {−rn : 1 ≤ n ≤p− 1

2
, n ̸∈ N} = {m : 1 ≤ m ≤p− 1

2
},
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so that
p−1
2∑

n=1

rn ≡
∑
n∈N

rn +
∑
n̸∈N

(−rn) =

p−1
2∑

m=1

m ≡ T (mod 2).

Hence

|N | ≡

p−1
2∑

n=1

[
an

p

]
(mod 2).

We deduce from Gauss’s lemma that

(C8.1)

(
a

p

)
= (−1)

∑ p−1
2

n=1 [ an
p ].

Exercise C8.2. Show that the number of lattice points (x, y) ∈ Z2 for which py < qx with 0 < x < p/2 is

p−1
2∑

n=1

[
qn

p

]
.

There are p−1
2 · q−1

2 lattice points (x, y) ∈ Z2 for which 1 ≤ x ≤p−1
2 and 1 ≤ y ≤ q−1

2 .
We split this region into the two parts on either side of the line py = qx. In the last
exercise we saw how many such lattice points satisfy py < qx, and the same exercise, with
the roles of p and q reversed, gives us the number of lattice points for which py > qx.
There are none with py = qx. Hence we have

p−1
2∑

m=1

[
qm

p

]
+

q−1
2∑

n=1

[
pn

q

]
=
p− 1

2
· q − 1

2

Exponentiating this, and applying (C8.1) with a = q, and then with the roles of p and q
reversed, we obtain the law of quadratic reciprocity:(

q

p

)(
p

q

)
= (−1)

p−1
2 · q−1

2 .

Exercise C8.3. Prove that for every prime p ≥ 7 there exists an integer n ≤ 9 such that n and n+ 1 are

quadratic residues mod p.

Exercise C8.4. Can you prove an analogous result for triples of quadratic residues? (Hint: Think mod

3, and try to generalize this)
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C9. Higher reciprocity laws. Discuss that there is no simple law for cubic reciprocity.

2 is a fourth power mod p if and only p = x2 + 64y2

C10. Finite fields.

Congruences in number rings are a little more subtle. For example, what are the set
of residue classes m + ni (mod 3) with m,n ∈ Z? It is evident that any such number is
congruent to some a+ bi (mod 3) with a, b ∈ {0, 1, 2}; are any of these nine residue classes
congruent? If two are congruent then take their difference to obtain u ≡ iv (mod 3) for
some integers u, v, not both 0, and each ≤ 2 in absolute value. But then u− iv = 3(r− is)
for some integers r, s and hence 3|u, v and hence u = v = 0, a contradiction

Exercise C10.1. Generalize this argument to show that there are exactly p2 distinct residue classes

amongst the integers a+ bi (mod p) for any prime p.

When we work mod p in Z we have all of the usual rules of addition, multiplication
and even division. If we look back at Lemma 3.5 we only stop working mod p, when we
divide through by an integer that is divisible by p, that is by an integer ≡ 0 (mod p);
expressed like this it still likes a regular rule of arithmetic, not dividing through by 0.
Working mod a composite number n = ab we see that dividing by a means that we stop
working mod n, and yet a ̸≡ 0 (mod n). The core issue is that the group (Z/nZ)∗ has
zero divisors; that is ab ≡ 0 (mod n) with neither a nor b are ≡ 0 (mod n).

What about mod p when working in Z[i]?12 Now if p ≡ 1 (mod 4) we can write
p = a2 + b2 and so (a + bi)(a − bi) = p ≡ 0 (mod p) yet neither a + bi nor a − bi are
≡ 0 (mod p). So the primes ≡ 1 (mod 4) are composite number in Z[i], and in this
sense behave that way. On the other hand for the primes p ≡ 3 (mod 4), we have that if
(a+bi)(c+di) ≡ 0 (mod p) then p divides (a+bi)(c+di)(a−bi)(c−di) = (a2+b2)(c2+d2).
Hence p divides one of a2 + b2 and c2 + d2, say the first, so that p divides both a and b.
But then a+ bi ≡ 0 (mod p), and so we have proved that there are no zero divisors mod
p.

A set of numbers in which all the usual rules of addition, subtraction, multiplication
and division hold is called a field. Its definition is that it is a set F , where F has an
additive group and F \ {0} has a multiplicative group, both commutative, their identity
elements, denoted 0 and 1 respectively, are distinct, and that a · (b+ c) = a · b+a · c. Since
F \ {0} is a multiplicative group hence F has no zero divisors.

We now suppose that F is finite.

Exercise C10.2. By Lagrange’s Theorem we know that |F | · 1 = 0.

(1) Show that if prime q divides |F | then either q · 1 = 0 or |F |/q · 1 = 0. Use an induction hypothesis
to show that there exists a prime p such that p · 1 = 0 in F .

(2) Now show that this prime p is unique. (For example, show that if p · 1 = q · 1 = 0 where p and q
are distinct primes then deduce that 1 = 0 (which is impossible).)

(3) Begin with a non-zero element a1 ∈ F . Let P = {1, 2, . . . , p}. If a2 ̸∈ IP (a1) then show that
IP (a1, a2) has p2 distinct elements. Hence by induction show that there are pr distinct elements

of F given by IP (a1, a2, . . . , ar).

12This needs explaining earlier. The polynomials in i with integer coefficients; since we can replace
i2 by −1 we see that all elements here can be written as a+ bi with a, b ∈ Z.
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Hence we deduce that the only finite fields have q = pr elements for some prime p and integer r ≥ 1. It

can be shown that, up to isomorphism, there is just one such field for each prime power. We denote this

field as Fq .

The easiest way to construct a finite field of pr elements is to use a root α of a
polynomial f(x) of degree r which is irreducible in Fp. (roughly 1 in r polynomials of
degree r are irreducible). Then we can represent the elements of the finite field as a0 +
a1α+ . . .+ ar−1α

r−1 where we take the ai ∈ Fp.

Exercise C10.3. Verify that this indeed gives the field on pr elements.

Exercise C10.4. Show that the multiplicative group is indeed cyclic (??) We call this a primitive root

The multiplicative group of Fpr has pr − 1 elements so that ap
r−1 = 1 for all a ∈ F

by Lagrange’s Theorem. Therefore ap
r

= a. Hence the map x → xp partitions the field

into orbits of size ≤ r of the form a, ap, ap
2

, ap
3

, . . . , ap
r−1

. In particular note that since
p = 0 we can use the multinomial theorem to note that f(xp) = f(x)p. Hence if a is a root

of polynomial over Fp of degree r then a, ap, ap
2

, ap
3

, . . . , ap
r−1

are r distinct roots of the
polynomial. This implies, for instance, that if g is a primitive root then g is the root of an
irreducible polynomial of degree r over Fp.

The integers mod p are not only a field but isomorphic to Fp.

Exercise C10.5. Show that the finite field on p2 elements is quite different from the integers mod p2.

C11. Affine vs. Projective. When we discussed the pythagorean equation x2+y2 = z2

we saw a correspondence between the integer solutions with z ̸= 0 and gcd(x, y, z) = 1 and
the rational points on u2 + v2 = 1. Let us look at this a little more closely.

To deal with the uninteresting fact that we get infinitely many solutions by scaling a
given solution of x2 + y2 = z2 through by a constant, we usually impose a condition like
gcd(x, y, z) = 1, and stick with integer solutions or, when z ̸= 0, divide out by z and get a
rational solution. The first is arguably unsatisfactory since we select one of an infinite class
of solutions somewhat arbitrarily; moreover we haven’t really decided between (x, y, z) and

(−x,−y,−z), and when we ask the same question say in Z[
√
5] then there will infinitely

many such equivalent solutions (i.e. we can multiply through by (2+
√
5)k for any k). One

can overcome these issues by treating solutions as the same if the ratios x : y : z are the
same. This equivalence class of solutions is called a projective solution to the Diophantine
equation. This is only possible if the different monomials in the equation all have the same
degree.

This almost the same thing as dividing out by the z-value. This reduces the number
of variables in the equation by 1, and the different monomials do not all have the same
degree. The solutions here are affine solutions. Often it is more convenient to work with
rational solutions to an affine equation, but it does have the disadvantage that we have
“lost” the solutions where z = 0. One way to deal with this is to ask oneself what was
so special about z? Why not divide through by y and get a different affine equation, and
recover all the solutions except those with y = 0? Or do the same with x. It seems like a
bit of overkill for what turns out to be just one or two solutions, but this discussion does
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make the point that there can be several affine models for a given projective equation.
What is typically done is to work with one affine model, say our first, and treat the lost
solutions separately, calling them the points at infinity as if we divided through by z = 0.
It is good to keep track of them since then all affine models of the same equation, have
the same solutions!

Affine equations in two variables are curves, and so projective equations in three
variables are also known as curves.

There are, moreover, other ways to transform equations. We saw in section A that
it is much easier to reduce the number of monomials in a problem by suitable linear
transformations of the variables. In this case the rational solutions are be mapped 1-to-1,
though the integer solutions are not necessarily. One special case is the projective equation
x2 − dy2 = z2. If we divide through by z we get the Pell equation u2 − dv2 = 1 and we
will see that this has p − (d/p) solutions mod p. When z = 0 we are asking for solutions
to x2 = dy2, and this evidently has 1 + (d/p) solutions mod p. Hence the total number of
solutions, counting those at infinity, is p+ 1. More on points at infinity later.

The transformations in section A kept the number of variables the same, which is
different from the above transformations. For example solutions to z2 = x2 + 2xy + 2y2

and in 1-1 correspondence with solutions to z2 = v2 + y2 taking v = x+ y. However other
linear transformations can be a little confusing. For example if we are looking at solutions
to y4 = x4 + x we might take the change of variables y = v/u and x = 1/u to obtain
the equation v4 = u3 + 1. At first sight appears to be of lower degree than the original
equation, which implies that to understand rational points we probably need more subtle
invariants than degree. The genus of the curve handles this for us, though it’s definition
involves more algebraic geometry than we want to discuss in this book. For now it suffices
to note that linear and quadratic equations have genus zero and, if solvable, will have
parameterized families of solutions, like the Pythagorean equation. Equations of degree 3
like y2 = x3+ax+b and x3+y3 = 1 have genus one, and if solvable non-trivially, typically
have infinitely many solutions which can be determined from the first – we will discuss this
in some detail in chapter *. Higher degree curves usually have genus > 1 and, as we shall
see, typically have only finitely many rational solutions, though this is a very deep result.

C12. Descent and the quadratics.. A famous problem asks to prove that if a and b are
positive integers for which ab+1 divides a2+b2 is an integer then prove that the quotient is
a square. One can approach this as follows: Suppose that a ≥ b ≥ 1 and a2+b2 = k(ab+1)
for some positive integer k. Then a is the root of the quadratic x2 − kbx + (b2 − k). If c
is the other root then a+ c = kb so that c is also an integer for which b2 + c2 = k(bc+ 1).
We shall now prove that this is a “descent”: If c = 0 then k = b2 and a = b3 and we have
a solution. Otherwise c ≥ 1 else bc + 1 ≤ 0 and so b2 + c2 ≤ 0 which is impossible. But
then b2 − k = ac > 0 and so c = (b2 − k)/a < b2/b = b. Hence (b, c) gives a smaller pair of
solutions than (a, b). We deduce that all solutions can be obtained by iterating the map

(b, c) → (kb− c, b)

starting from initial solutions (d, 0) with k = d2.
Other quadratics have a similar property. Perhaps the most famous is the Markov
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equation: Find positive integers x, y, z for which

x2 + y2 + z2 = 3xyz.

One finds many solutions: (1, 1, 1), (1, 1, 2), (1, 2, 5), (1, 5, 13), (2, 5, 29), (1, 13, 34), (1, 34, 89),
(2, 29, 169), (5, 13, 194), (1, 89, 233), (5, 29, 433), (89, 233, 610). Given one solution (x, y, z)
one has that x is a root of a quadratic, the other root being 3yz − x, and so we obtain a
new solution (3yz − x, y, z). (And one can do the same procedure with y or z. If we fix
one co-ordinate we see that if there is one solution there are infinitely many. For example,
taking z = 1 yields the equation x2 + y2 = 3xy − 1.

Exercise C12.1 Determine what solutions are obtained from (1,1,1) by using the maps (x, y) → (3y−x, y)
and (x, y) → (x, 3x− y).

One open question is to determine all of the integers that appear in a Markov triple. The
first few are 1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, . . . ; it is believed that
they are quite sparse.

Arguably the most beautiful such problem is the Apollonian circle packing problem.13

Take three circles that touch each other (for example, take three coins and push them
together). In between the circles one has a crescent type shape (a hyperbolic triangle),
and one can inscribe a (unique) circle that touches all three of the original circles. What s
the relationship between the radius of the new circle and the radii of the original circles?
If we define the curvature of the circles to be 1/r (where r is the radius) then Descartes
observed, in 1643, that the four curvatures satisfy the equation

2(a2+b2+c2+d2) = (a+b+c+d)2, that is a2+b2+c2+d2−2(ab+bc+cd+da+ac+bd) = 0.

We see that given b, c, d there are two possibilities for a, since this is a quadratic equation,
the other is the circle that contains the three original circles and touches them all. We
scale up the first three curvatures so that they are integers (with gcd(b, c, d) = 1). We will
focus on the case that a is also an integer, for example if we start with b = c = 2 and d = 3
we have a2 − 14a − 15 = 0 so that a = −1 or a = 15. Evidently a = −1 corresponds to
the outer circle (the negative sign comes from the fact that the circle contains the original
circles), and a = 15 the inner one. In general if we have a solution (a, b, c, d) then we
also have a solution (A, b, c, d) with A = 2(b + c + d) − a. Yet again we can iterate this
(perhaps using the variables b, c or d) and obtain infinitely many Apollonian circles. But
there is another interpretation of this, since each time we have a crescent in-between three
existing circles we fill part of it in with a new circle, and we are eventually tiling the while
of the original circle (see the enclosed pictures). There are many questions that can be
asked: What integers appear as curvatures in a given packing? There are some integers
that cannot appear because of congruence restrictions. For example if a, b, c, d are all odd,
then all integers that arise as curvatures in this packing will be odd. The conjecture is that
all sufficiently large integers that satisfy these trivial congruence constraints (mod 24) will
appear as curvatures in the given packing. Although this is an open question, we do know

13Apollonius lived in Perga, 262-190 BC.
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that a positive proportion of integers appear in any such packing, that the total number
of circles in packing with curvature ≤ x is ∼ cTα where |alpha = 1.30568 . . . , and that the
Apollonian twin prime conjecture holds: that there are infinitely many pairs of touching
circles in the packing whose curvatures are both primes.

This last question is accessible because we see that any given solution (a,b,c,d) is
mapped to another solution by any permutation of the four elements, as well as the matrix

−1 2 2 2
0 1 0 0
0 0 1 0
0 0 0 1

. These (linear) transformations generate a subgroup of SL(4,Z), and

one can proceed by considering orbits under the actions of this subgroup.
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D. Algebra and calculation

D1. Primitive roots, indices and orders. Given one element of order m mod p it is
not difficult to find them all:

Exercise D1.1. Show that if a has order m mod p then {ak (mod p) : 1 ≤ k ≤ m, (a,m) = 1} is the set

of residues mod p of order m. Use this to describe the set of primitive roots mod p, given one primitive

root.

There are several parameters that go into the definition of index. The one that appears
at first sight like it should be of some concern is the choice of primitive root to use as a
base. The next result shows that there is little difference between the choice of one basis
and another.

Exercise D1.2. Suppose that g and h are two primitive roots mod p, where h ≡ gℓ (mod p). Show that

(ℓ, p− 1) = 1. Show that the index with respect to g is ℓ times the index with respect to h, mod p.

We have described residues in terms of index and in terms of order. What is the link
between the two?

Proposition D1.1. For any reduced residue a mod p we have

ordp(a) · (p− 1, indp(a)) = p− 1.

Proof. Let g be a primitive root with k = indp(a) and let m = ordp(a). This means that
m is the smallest integer for which gkm ≡ am ≡ 1 (mod p); that is the smallest integer for
which p− 1 divides km, by Lemma 7.2. The result then follows from Corollary 3.2.

Exercise D1.3. Suppose that m divides p− 1. Show that a is mth power mod p if and only if m divides

indp(a).

The problem of finding primitive roots is one of the deepest mysteries of numbers

— from Opuscula Analytica 1, 152 by L. Euler

There are ϕ(p−1) primitive roots (mod p), and so the proportion of reduced residues that

are primitive roots, ϕ(p−1)
p−1 , is rarely small. Therefore if we select several random elements

mod p we should quickly be lucky and find a primitive root. However Gauss described a
search method that is more efficient than this, stemming from a different description of
the primitive roots.

Proposition D1.3. Suppose that p − 1 =
∏

q q
b. The set of primitive roots mod p is

precisely the set  ∏
q|p−1

Aq : Aq has order qb (mod p)


To prove this we need the following:
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Lemma D1.4. (Legendre) If ordm(a) = k and ordm(b) = ℓ where (k, ℓ) = 1 then
ordm(ab) = kℓ.

Proof. Since (ab)kℓ = (ak)ℓ(bℓ)k ≡ 1ℓ1k ≡ 1 (mod m), we see that ordm(ab)|kℓ, so we may
write ordm(ab) = k1ℓ1 where k1|k and ℓ1|ℓ (by exercise 4.2.2). Now

ak1ℓ ≡ ak1ℓ(bℓ)k1 = ((ab)k1ℓ1)ℓ/ℓ1 ≡ 1 (mod m),

so that k|k1ℓ by Lemma 7.2. As (k, ℓ) we deduce that k|k1 and so k1 = k. Analogously we
have ℓ1 = ℓ and the result follows.

Proof of Proposition D1.3. We see from Lemma D1.4, and by induction on the number
of prime factors of p − 1, that each

∏
q|p−1Aq is a primitive root mod p. These are all

distinct for if
∏

q|p−1Aq ≡
∏

q|p−1Bq (mod p) then, raising this to the power ℓ where ℓ ≡ 0

(mod (p−1)/qb) and ≡ 1 (mod qb), we see that each Aq ≡ (
∏

q|p−1Aq)
ℓ ≡ (

∏
q|p−1Bq)

ℓ ≡
Bq (mod p). Finally, by Theorem 7.7 we know that there are ϕ(qb) such Aq, and therefore
a total of

∏
qb∥p−1 ϕ(q

b) = ϕ(p − 1) such products, that is they give all of the ϕ(p − 1)
primitive roots.

Proposition D1.3 provides a satisfactory way to construct primitive roots provided we
can find the Aq of order qb.

Lemma D1.5. Suppose that a(p−1)/q ̸≡ 1 (mod p). If qb divides p−1 then Aq :≡ a(p−1)/qb

(mod p) has order qb mod p.

Proof. Now Aqb

q ≡ ap−1 ≡ 1 (mod p) and Aqb−1

q ≡ a(p−1)/q ̸≡ 1 (mod p). Therefore

ordp(A) divides q
b and not qb−1, so the result follows.

Gauss’s algorithm to find primitive roots goes as follows: For each prime power qb∥p−1,

(1) Find an integer aq for which a
(p−1)/q
q ̸≡ 1 (mod p).

(2) Let Aq ≡ a
(p−1)/qb

q (mod p).

Then
∏

q|p−1Aq is a primitive root (mod p).

How do we find appropriate aq? Actually the proportion of a that fail to be appropriate
is 1/q; that is most a are appropriate. We can try to find aq by trying 2, 3, 5, 7, . . . until
one finds an appropriate number, but there are no guarantees that this will succeed in a
reasonable time period. However if we select values of a at random then the probability
that we fail to find an appropriate aq after k tries is 1/qk, which is negligible for k > 20.

.

Finding nth roots mod p. In Proposition 8.2 we understood how many square roots a
residue has mod p. Now we look at how many nth roots a residue has.

We now show that we can find all solutions to xn ≡ a (mod p) directly and easily
from all solutions to yd ≡ a (mod p) where d = (n, p− 1):

Proposition D1.6. Suppose that (a, p) = 1 and let d = (n, p− 1).

(1) There are solutions x (mod p) of xn ≡ a (mod p) if and only if a(p−1)/d ≡ 1
(mod p).
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(2) Given one solution x0, the set of all solutions is given by x0u (mod p) as u runs
through the d roots of ud ≡ 1 (mod p).

(3) Given x (mod p) for which xn ≡ a (mod p) we can find y (mod p) for which
yd ≡ a (mod p); and vice-versa.

Proof. If k = indp(a) then x
n ≡ a (mod p) with x = gt if and only if nt ≡ k (mod p− 1).

This has solutions if and only if d = (n, p− 1)|k.
(1) Now d|indp(a) if and only if a(p−1)/d ≡ 1 (mod p) by Proposition D1.1.

(2) Writing n = dm where (m, p−1
d ) = 1 we have mt ≡ k/d (mod p−1

d ), in which case

all solutions are given by t ≡ ℓ · k/d (mod p−1
d ), where ℓm ≡ 1 (mod p−1

d ). Hence the

set of solutions takes the form x0u for x0 = gℓk/d and any u for which p−1
d |indp(u), that

is whenever u is a dth root of unity mod p (by exercise D1.3).
(3) If xn ≡ a (mod p) then y ≡ xm (mod p) satisfies yd ≡ a (mod p). In the other

direction if yd ≡ a (mod p) and x ≡ yℓ (mod p) then xn ≡ yℓmd ≡ yd ≡ a (mod p).

Notice that the case n = d = 2 of Proposition D1.6(i) yields Euler’s criterion.
By Proposition D1.6 we can restrict our attention to two problems: If n divides p− 1

and if a is a nth power mod p then

(1) Find one solution to xn ≡ a (mod p);
(2) Find all u (mod p) for which un ≡ 1 (mod p).

Exercise D1.4. Solve the second problem using an efficient variant of Gauss’s algorithm for finding

primitive roots.

We now re-interpret what was done in exercise 8.4.4 where we saw how to solve the
first question in a special case with n = 2:

(1) Suppose there exists an integer k such that 2k ≡ 1 (mod p−1
2 ) (which is possible

if and only if (p−1
2 , 2) = 1).

(2) Let x ≡ ak (mod p). We know that a
p−1
2 ≡ 1 (mod p) so that x2 ≡ a2k ≡ a

(mod p).

Imitating that construction we have:

Proposition D1.7. Suppose that n divides p− 1, with (n, p−1
n ) = 1, and that a is a nth

power mod p. If k is an integer for which nk ≡ 1 (mod p−1
n ) and x ≡ ak (mod p) then

xn ≡ a (mod p).

Proof. Since a is a nth power mod p we know that a
p−1
n ≡ 1 (mod p), and therefore

xn ≡ ank ≡ a (mod p).

Unfortunately it is not always true that (n, p−1
n ) = 1, for example when p ≡ 1 (mod 4)

with n = 2. In that case we can still often find solutions. For example, if p ≡ 5 (mod 8)
then (2, p−1

4 ) = 1, and so if 2k ≡ 1 (mod p−1
4 ), that is 2k = 1 +m p−1

4 for some integer

m then (ak)2 ≡ abm (mod p) where b ≡ a
p−1
4 (mod p). Now b2 ≡ a

p−1
2 ≡ 1 (mod p) and

so b ≡ ±1 (mod p); that is (ak)2 ≡ ±a (mod p). Therefore either ak or iak is a square
root of a (mod p), where i2 ≡ −1 (mod p). Now i is a fourth root of unity, and the fourth
roots of unity are not difficult to find, as in exercise D1.4. We can generalize this:
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Proposition D1.8. Suppose that n divides p − 1, and that a is a nth power mod p. Let

N be the smallest positive integer such that (n, p−1
N ) = 1 and b ≡ a

p−1
N (mod p) so that b

has order dividing N/n. Let k be an integer for which nk ≡ 1 (mod p−1
N ), so that one

can determine an integer m for which nk = 1−m p−1
N . If rn ≡ b (mod p) and x ≡ rmak

(mod p) then xn ≡ a (mod p).

Exercise D1.5. Show that N is the largest divisor of p− 1 with exactly the same prime factors as n.

Proof. Since a is a nth power mod p we know that bN/n ≡ a
p−1
n ≡ 1 (mod p). Moreover

(rmak)n ≡ (rn)m · akn ≡ bm · ab−m ≡ a (mod p).

By Proposition D1.8, Gauss showed that in finding solutions to xn ≡ a (mod p) for
arbitrary a, we can restrict our attention to those a of order dividing N/n. In fact if rn ≡ b
(mod p) then rN ≡ (rn)N/n ≡ bN/n ≡ 1 (mod p), so the value of r is an Nth root of unity.
Therefore if N is not large then finding r is easily done by exercise D1.4.

Exercise D1.6. Given a value for x in the hypothesis of Proposition D1.8 given a formula for r (mod p).

Hence finding r and x are “equivalent”.

Example: We want to solve x2 ≡ a (mod 29) where a14 ≡ 1 (mod 29). Then n = 2 and
N = 4, and we take b ≡ a7 (mod 29), so that b has order dividing 2. We wish to solve
2k ≡ 1 mod 7 giving k = 4, in fact 2 · 4 = 1 + 7 so that m = −1. Now if r2 ≡ b ≡ a7

(mod 29) then (r−1a4)2 ≡ r−2a8 ≡ a−7a8 = a (mod 29). In the other direction if x2 ≡ a
(mod 29) then (x−1a4)2 ≡ x−2a8 ≡ a−1a8 = a7 ≡ b (mod 29).

Now if a7 ≡ 1 (mod 29) then r2 ≡ 1 (mod 29), that is r ≡ ±1 (mod 29) and so
x ≡ ±a4 (mod 29).

If a7 ≡ −1 (mod 29) then r2 ≡ −1 (mod 29), that is r ≡ ±12 (mod 29) and so
x ≡ ±12a4 (mod 29).

Example: Solve x3 ≡ 31 (mod 37). Here p − 1 = 36, n = 3, N = 9. We want 3k ≡ 1
(mod 4) giving k = 3,m = −2. Now b ≡ 314 ≡ 1 (mod 37), and so if r3 ≡ 1 (mod 37) and
x ≡ r−2313 ≡ 6r (mod 37) then x3 ≡ 31 (mod 37). Hence the three solutions are 6, 6r
and 6r2 (mod 37). Since 37|111 one can take r = 10 and hence our solutions are 6, 23 and
8 (mod 37).

Exercise D1.7. Determine the square roots of 3 (mod 37) as above.
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D2. Lifting solutions. Gauss discovered that if an equation has solutions mod p then
one can often use those solutions to determine solutions to the same equation mod pk. In
Proposition 8.4 we saw how to do this for quadratic equations. We can directly generalize
that proof to nth powers:

Proposition D2.1. Suppose that p does not divide a and that un ≡ a (mod p). If p does
not divide n then, for each integer k ≥ 2, there exists a unique congruence class b (mod pk)
such that bn ≡ a (mod pk) and b ≡ u (mod p).

Proof. We prove this by induction on k ≥ 2. We may assume that there exists a unique
congruence class b (mod pk−1) such that bn ≡ a (mod pk−1) and b ≡ u (mod p). There-
fore if Bn ≡ a (mod pk) and B ≡ u (mod p) then Bn ≡ a (mod pk−1) and so B ≡ b
(mod pk−1). Writing B = b+mpk−1 we have

Bn = (b+mpk−1)n ≡ bn + nmpk−1bn−1 (mod pk)

which is ≡ a (mod pk) if and only if

m ≡ a− bn

npk−1bn−1
≡ u

an
· a− bn

pk−1
(mod p),

as ubn−1 ≡ un ≡ a (mod p).

Exercise D2.1. Show that if prime p ̸ |an then the number of solutions x (mod pk) to xn ≡ a (mod pk)

does not depend on k.

Starting with the root b1 = u (mod p) to xn ≡ a (mod p), Proposition D2.1 gives us
a root bk to xn ≡ a (mod pk), where bi ≡ bj (mod pk) for all i, j ≥ k. We can define a
p-adic norm of pkr where p̸ |r as |r|p := p−k. With this norm we have that |bi− bj |p ≤ p−k

whenever i, j ≥ k, so that limk→∞ bk exists if we complete the space. The completion is
called the p-adic integers and can be written in the form

a0 + a1p+ a2p
2 + . . . with each 0 ≤ ai ≤ p− 1.

Thus Proposition D2.1 implies that the roots of xn = a in the p-adics are in 1-to-1 corre-
spondence with the solutions to xn ≡ a (mod p).

Exercise D2.2. If prime p̸ |a, show that the sequence an = ap
n

converges in the p-adics. Show that

α := limn→∞ an is a (p− 1)st root of unity, and that all solutions to xp−1 − 1 in Qp can be obtained in

this way. Conclude that i := limn→∞ 25
n

is a square root of −1 in Q5.

We can find p-adic roots of most equations.

Theorem D2.2. Suppose that f(x) ∈ Z[x] and that p is an odd prime. If a is an integer
for which f(a) ≡ 0 (mod p) and f ′(a) ̸≡ 0 (mod p) then there is a unique p-adic root α
to f(α) = 0 with α ≡ a (mod p). On the other hand if α is a p-adic root of f(α) = 0 with
|f ′(α)|p = 1 then f(a) ≡ 0 (mod p) where a ≡ α (mod p).

This follows immediately from the following result:
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Proposition D2.3. Suppose that f(x) ∈ Z[x] and that p is an odd prime. If f(a) ≡ 0
(mod p) and f ′(a) ̸≡ 0 (mod p) then for each integer k there exists a unique residue class
ak (mod pk) with ak ≡ a (mod p) for which f(ak) ≡ 0 (mod pk).

Proof. The Taylor expansion of polynomial f(x) at a is simply the expansion of f as a
polynomial in x− a. In fact

f(x) = f(a) + f ′(a)(x− a) + f (2)(a)
(x− a)2

2!
+ . . .+ f (k)(a)

(x− a)k

k!
.

Now, proceeding by induction on k ≥ 2 we see that if f(A) ≡ 0 (mod pk−1) we can
write A = ak−1 + rpk−1 for some integer r. Using the Taylor expansion we deduce that
0 ≡ f(A) ≡ f(ak−1 + rpk−1) ≡ f(ak−1)+ f ′(ak−1)rp

k−1 (mod pk), as p is odd. Hence r is
uniquely determined to be ≡ −f(ak−1)/f

′(ak−1)p
k−1 ≡ −(f(ak−1)/p

k−1)/f ′(a) (mod p).

Exercise D2.3. Show that if f has no repeated roots then there are only finitely many primes p for which

there exists an integer ap with f(ap) ≡ f ′(ap) ≡ 0 (mod p).

The reduced residues modulo a power of 2. We are interested in the structure of
(Z/2kZ)∗ for k ≥ 3. Now, since x2 ≡ 1 (mod 8) for x ≡ 1, 3, 5 or 7 (mod 8), we see that
the powers of x mod 2k are all ≡ 1 or x (mod 8) and so cannot include half of the possible
residue classes. Moreover this implies that the largest possible order of an element mod
2k is actually ϕ(2k)/2 = 2k−2:

Proposition D2.4. If a ≡ ±3 (mod 8) then a has order 2k−2 mod 2k whenever k ≥ 3.
Hence all of the residue classes mod 2k can be written in the form ±3j (mod 2k).

Proof. We prove by induction on k ≥ 3 that a2
k−2 ≡ 1+2k (mod 2k+1), which implies the

result. For k = 3 we have a = 3 + 8b so that a2 = 9 + 48b+ 64b2 ≡ 1 + 23 (mod 24); thus

a has order 4. Assuming the result for k, and writing a2
k−2 ≡ 1+ 2k + b2k+1 (mod 2k+2),

we have

a2
k−1

≡ (a2
k−2

)2 ≡ (1 + 2k + b2k+1)2 ≡ 1 + 2(2k + b2k+1) + 22k(1 + 2b)2 (mod 2k+2)

≡ 1 + 2k+1 (mod 2k+2).

Hence we have proved (Z/2kZ)∗ ∼= Z/2k−2Z⊕ Z/2Z, as claimed in section B4. Describ-
ing square roots mod 2k is trickier (Proposition D2.1 does not apply since 2 divides the
exponent n = 2). Technically the issue becomes that if a ≡ b (mod 2k−1) then a2 ≡ b2

(mod 2k), for each k ≥ 2.

Proposition D2.5. Suppose that a ≡ 1 (mod 8). For b = 1 or 3 and k ≥ 3 there is a
unique residue class bk (mod 2k−1) with bk ≡ b (mod 4) for which b2k ≡ a (mod 2k).

Proof. By induction on k. This is trivially true for k = 3. Now suppose it is true for
k − 1 and that B2 ≡ a (mod 2k) with B ≡ b (mod 4). By the induction hypothesis
B ≡ bk−1 (mod 2k−2) so we can write B = bk−1 + r2k−2 for some integer r. Hence
a ≡ B2 = (bk−1 + r2k−2)2 ≡ b2k−1 + rbk−12

k−1 + r222k−4) ≡ b2k−1 + rbk−12
k−1 (mod 2k)

(as k ≥ 4); and hence r is uniquely determined mod 2, that is r ≡ (a − b2k−1)/bk−12
k−1

(mod 2), and therefore bk is uniquely determined (mod 2k−1).
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D3. Square Roots of 1. Lemma 4.1 implies that there are at least four distinct square
roots of 1 (mod n), for any odd n which is divisible by two distinct primes. Thus we might
try to prove n is composite by finding a square root of 1 (mod n) which is neither 1 nor
−1; though the question becomes, how do we efficiently search for a square root of 1?

Our trick is to again use Fermat’s Little Theorem, since if p is prime > 2, then p− 1

is even, and so ap−1 is a square. Hence (a
p−1
2 )2 = ap−1 ≡ 1 (mod p), so a

p−1
2 (mod p) is

a square root of 1 (mod p) and must be 1 or −1. Therefore if a
n−1
2 (mod n) is neither 1

nor −1 then n is composite. Let’s try an example: We have 64948 ≡ 1 (mod 949), and
the square root 64474 ≡ 1 (mod 949). Hmmmm, we failed to prove 949 is composite like
this but, wait a moment, since 474 is even so we can take the square root again, and a
calculation reveals that 64237 ≡ 220 (mod 949), so that 949 is composite since 2202 ≡ 1
(mod 949). More generally, using this trick of repeatedly taking square roots (as often as
2 divides n− 1), we call integer a a witness to n being composite if the finite sequence

an−1 (mod n), a(n−1)/2 (mod n), . . . , a(n−1)/2k (mod n)

(where n−1 = 2km with m odd) is not equal to either 1, 1, . . . , 1 or 1, 1, . . . , 1,−1, ∗, . . . , ∗
(which are the only two possibilities were n a prime). One can compute high powers
modulo n very rapidly using “fast exponentiation”, a technique we discussed in section
A5.

It is easy to show that at least one-half of the integers a, 1 ≤ a ≤ n are witnesses for
n, for each odd composite n. So can we find a witness “quickly” if n is composite?

• The most obvious idea is to try a = 2, 3, 4, . . . consecutively until we find a witness.
It is believed that there is a witness ≤ 2(log n)2, but we cannot prove this (though we can
deduce this from a famous conjecture, the Generalized Riemann Hypothesis14).

• Pick integers a1, a2, . . . , aℓ, . . . from {1, 2, 3, . . . , n − 1} at random until we find a
witness. By what we wrote above, if n is composite then the probability that none of
a1, a2, . . . , aℓ are witnesses for n is ≤ 1/2ℓ. Thus with a hundred or so such tests we get a
probability that is so small that it is inconceivable that it could occur in practice; so we
believe that any integer n for which none of a hundred randomly chosen a’s is a witness,
is prime. We call such n “industrial strength primes”.

In practice the witness test allows us to accomplish Gauss’s dream of quickly distin-
guishing between primes and composites, for either we will quickly get a witness to n being
composite or, if not, we can be almost certain that our industrial strength prime is indeed
prime. Although this solves the problem in practice, we cannot be absolutely certain that
we have distinguished correctly when we claim that n is prime since we have no proof, and
mathematicians like proof. Indeed if you claim that industrial strength primes are prime,
without proof, then a cynic might not believe that your randomly chosen a are so random,
or that you are unlucky, or ... No, what we need is a proof that a number is prime when
we think that it is.

14We discuss the Riemann Hypothesis, and its generalizations, in section E3. Suffice to say that this is

one of the most famous and difficult open problems of mathematics, so much so that the Clay Mathematics
Insitute has now offered one million dollars for its resolution (see http://www.claymath.org/millennium/).
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Random polynomial time algorithms: We just saw that if n is composite then there is a
probability of at least 1/2 that a random integer a is a witness for the compositeness of
n, and if so then it provides a short certificate verifying that n is composite. Such a test
is called a random polynomial time test for compositeness (denoted RP). As noted if n is
composite then the randomized witness test is almost certain to provide a short proof of
that fact in 100 runs of the test. If 100 runs of the test do not produce a witness then we
can be almost certain that n is prime, but we cannot be absolutely certain since no proof
is provided.

On the difficulty of finding non-squares (mod p): For a given odd prime p it is easy to
find a square mod p: take 1 or 4 or 9, or indeed any a2 (mod p). Exactly (p− 1)/2 of the
non-zero values mod p are squares mod p, and so exactly (p− 1)/2 are not squares mod p.
One might guess that they would also be easy to find, but we do not know a surefire way
to quickly find such a value for each prime p (though we do know a quick way to identify
a non-square once we have one).

Much as in the search for witnesses discussed in section 2.4, the most obvious idea is
to try a = 2, 3, 4, . . . consecutively until we find a non-square. It is believed that there is
a non-square ≤ 2(log p)2, but we cannot prove this (though we can also deduce this from
the Generalized Riemann Hypothesis).

Another way to proceed is to pick integers a1, a2, . . . , ak, . . . from {1, 2, 3, . . . , n− 1}
at random until we find a non-square. The probability that none of a1, a2, . . . , ak are non-
squares mod p is ≤ 1/2k, so with a hundred or so such choices it is inconceivable that we
could fail!

D4. Primality testing and Carmichael numbers. Described enough in sections 7.6,
10.1, 10.4, 10.5.

D5. Quadratic sieve and beyond. In section 10.6 we outlined the key ideas in the
quadratic sieve type algorithms. The key question that remains is how, explicitly, one
selects b1, b2, . . . so that if ai is the least positive residue of b2i (mod n) then there is a
good chance that all of the prime factors of ai are ≤ y (for a certain pre-chosen value of
y). Here are a few methods:

Random squares: Pick the bi at random in [1, n] so we would guess that the probability
that ai is y-smooth,15 is roughly the same as for a random integer ≤ x.

The Continued Fractions method: In section C4 we saw that if p/q is a convergent to√
n then |p2 − nq2| < 2

√
n + 1. Hence above we can take bi = pi so that |ai| < 2

√
n + 1.

We discussed earlier that for most n the continued fraction for
√
n has period length about√

n, so this algorithm gives us many values of ai, in fact far more than we will typically
need. The sizes of pi and qi grow exponentially with i which is not good for computations,
but since we only need pi mod n we can work mod n when computing the pi; that is
we simply compute pi+1 ≡ ri+1pi + pi−1 (mod n) and, similarly for qi (mod n), where√
d = [r0, r1, . . . ]. We can determine the ri as in section C4, so that the numbers involved

in the calculation are all ≤ n.

15That is, all of its prime factors are ≤ y.
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Polynomial values: Let m = [
√
n], and then let bi = m+ i so that ai = (m+ i)2 − n.

Now ai = i2 + 2im + (m2 − n) ≤ 2im + i2 ≤ (2i + 1)
√
n, provided i < n1/4 (which it is

in practice), so that the ai are not much bigger than
√
n. The probability of a random

number up to n1/2+ϵ being y-smooth is significantly higher than for a random number up
to n. Another issue, that we had not mentioned before, is how to determine whether the ai
are y-smooth. In the random squares method one simply has to test divide to see whether
the ai are y-smooth.16 Here we have a better idea which aj are divisible by p:

Exercise D5.1. Suppose that ip is the smallest positive integer i for which p|ai. Prove that p|aj if and

only if j ≡ ip or i′p := 2m− ip (mod p).

Hence, for each prime p ≤ y we determine the smallest such ip and then we know precisely
all of the j for which p|aj without test division; simply look at every pth value starting
with ip and i′p. Carefully storing such data leads to an efficient algorithm to determine
which aj are y-smooth, and this is why the method is known as the quadratic sieve.

Large prime variation: By the end of the quadratic sieve process one has divided out
the y-smooth part of ai to be left with an integer ri. If ri = 1 then ai is y-smooth. It has
proved to be useful to retain ri if it is itself a prime not too much larger than y, for:

Exercise D5.2. Show that if ri = rj is prime then aiaj is a square times a y-smooth integer.

D6. Discrete Logs. See section 10.7

16Or come up with some other method, but one always has the disadvantage that you have no prior
knowledge of the prime factors of the ai.
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E. The distribution of Primes

E1. Binomial Coefficients and bounds on the number of primes.
Upper bounds.

We use the first result in A4 to get an upper bound on the number of primes in an
interval:

Lemma E1.1. The product of the primes in [n+ 1, 2n] is ≤ 4n−1 for n ≥ 2.

Proof. Each prime in [n+1, 2n] appears in the numerator of the binomial coefficient
(
2n−1

n

)
but not the denominator. Hence their product divides

(
2n−1

n

)
and so is ≤

(
2n−1

n

)
≤ 22n−2.

We can then use this result to get an upper bound on the number of primes up to a
given point:

Proposition E1.2. The product of the primes up to N is ≤ 4N for all N ≥ 1.

Proof. By induction on N ≥ 1. The result is straightforward for N = 1, 2 by calculation.
If N = 2n or 2n− 1 then the product of the primes up to N is at most the product of the
primes up to n, times the product of the primes in [n+1, 2n]. The first product is ≤ 4n−1

by the induction hypothesis, and the second < 22n−2 by Lemma E1.1. Combining these
gives the bound ≤ 4N−2.

If we take logarithms in the lemma we obtain∑
p prime
n<p≤2n

log p ≤ (n− 1)log 4.

Each term of the left side is > log n and therefore

#{p prime : n < p ≤ 2n} ≤ n

log n
·log 4.

Exercise E1.1. Deduce that π(x) ≤ (log 4 + ϵ) x
log x

. (Hint: Consider only those primes p in [ϵx, x] and

give a lower bound on log p. Then sum the contributions of such intervals [ϵx, x], [ϵ2x, ϵx], [ϵ3x, ϵ2x], . . . )

Lower bounds. We know that all of the primes in ((n + 1)/2, n] divide
(

n
[n/2]

)
so if we

somehow show that the contribution of the other primes is negligible, then we can obtain
a lower bound on the number of primes in this interval. It is evident from the definition
of binomial coefficients that only primes ≤ n divide

(
n
m

)
; it was Kummer who showed an

easy method to determine to which power, as we saw in section A4.
Combining the Corollary to Kummer’s Theorem with the inequality above we deduce

that if pep is the largest power of p dividing
(

n
[n/2]

)
then

2n

n
≤
(

n

[n/2]

)
=

∏
p prime
p≤n

pep ≤ n#{p prime: p≤n},

so that
#{p prime : p ≤ n} ≥ (log 2)

n

log n
−1.

It is perhaps of more interest to show that there are primes near to a given n. This
was conjectured in 1845 by Bertrand on the basis of calculations up to a million, proved
in 1850 by Chebyshev; we follow Erdős’s 1932 proof from when he was 19 years old:
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Bertrand’s postulate. For every integer n ≥ 1, there is a prime number between n
and 2n.

Exercise E1.2. Show that p does not divide
(2n
n

)
, when 2n/3 < p ≤ n. (Either use Kummer’s Theorem,

or consider directly how often p divides the numerator and denominator of
(2n
n

)
.)

Proof. Let pep be the exact power of prime p dividing
(
2n
n

)
. We know that

• ep = 1 if n < p ≤ 2n by Kummer’s Theorem,
• ep = 0 if 2n/3 < p ≤ n by the last exercise,

• ep ≤ 1 if
√
2n < p ≤ 2n by the Corollary,

• pep ≤ 2n if p ≤ 2n by the Corollary.

Combining these gives, and using Lemma *, we obtain

22n

2n
≤
(
2n

n

)
=
∏
p≤2n

pep ≤
∏

n<p≤2n

p
∏

p≤2n/3

p
∏

p≤
√
2n

2n

≤

 ∏
n<p≤2n

p

× 42n/3−1 × (2n)(
√
2n+1)/2,

since the number of primes up to
√
2n is no more than (

√
2n+ 1)/2 (as neither 1 nor any

even integer > 2 is prime). Taking logarithms we deduce that

∑
p prime
n<p≤2n

log p >
log 4

3
n−

√
2n+ 3

2
log (2n).

This implies that

(E1.1)
∑

p prime
n<p≤2n

log p ≥1

3
n

for all n ≥ 2349, which implies Bertrand’s postulate in this range. It is a simple matter to
write a computer program to check that (E1.1) holds for all n in the range 1 ≤ n ≤ 2348.
Therefore (E1.1) holds for all n ≥ 1 which implies a strong form of Bertrand’s postulate.

Exercise E1.3. Verify Bertrand’s postulate for all n up to 20000 using only the primes 2, 3, 5, 7, 13, 23, 43, 83,

163, 317, 631, 1259, 2503, 5003, 9973, 10007.

Exercise E1.4. Prove that there are infinitely many primes p with a 1 as the leftmost digit in their

decimal expansion.

Exercise E1.5. Use Bertrand’s postulate to show, by induction, that every integer n > 6 can be written

as the sum of distinct primes. (Hint: Use induction to show that, for each n ≥ 6, every integer in [7, 2pn+6]

is the sum of distinct primes in {2, 3 . . . , pn}, where pn is the nth smallest prime.)
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Further remarks. Can one give an upper bound on gaps between primes? It could be
that there exists a constant c > 0 such that

pn+1 − pn < clog 2pn

and, if not, perhaps something only slightly weaker. Cramer conjectured one could take
any c > 1 for sufficiently large n, whereas recent work suggests that gaps can get a little
larger (as big as 1.1log 2pn). Here are the record breaking gaps:

pn pn+1 − pn (pn+1 − pn)/log
2pn

113 14 .6264
1327 34 .6576
31397 72 .6715
370261 112 .6812
2010733 148 .7026
20831323 210 .7395
25056082087 456 .7953
2614941710599 652 .7975
19581334192423 766 .8178
218209405436543 906 .8311
1693182318746371 1132 .9206

Table 2. (Known) record-breaking gaps between primes.

Evidently the constant is slowly creeping upwards but will it ever reach 1? And will it go
beyond? We don’t know.

The best upper bound that has been proved, to date, on the gap between consecutive
primes, is pn+1 − pn < p.535n . There are no good ideas to improve the exponent to 1

2 or
less. Therefore we have no idea how to prove Lagrange’s conjecture that there is always a
prime between consecutive squares.
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E2. Dynamical systems and primes. The prime divisors of a sequence of integers, all
> 1, form an infinite sequence of distinct primes if the integers in the sequence are pairwise
coprime. We will generalize the constructions from section 5.1. We begin by simplifying
the description of Euler’s sequence an and the Fermat numbers Fn.

an+1 − 1 = a1a2 . . . an = (a1a2 . . . an−1)an = (an − 1)an,

so that an+1 = f(an) where f(t) := t2 − t + 1. We now prove that an ≡ 1 (mod am) for
all n > m: To start with

am+1 = f(am) ≡ f(0) = 1 (mod am),

by Corollary 2.3, and then, by induction

an+1 = f(an) ≡ f(1) = 1 (mod am).

Hence (an, am) = (1, am) = 1. Similarly Fn+1 = g(Fn) where g(t) := t2 − 2t + 2, and
Fn ≡ g(0) or g(2) ≡ 2 (mod Fm) whenever n > m.

How do we generalize this proof? Let f(t) ∈ Z[t]. Consider the sequence a, f(a), f(f(a)), . . .
(we write f1(a) = f(a) and then fn+1(a) = f(fn(a))). We call a a periodic point if
fm(a) = a for some m ≥ 1, and we call m the period of a if m is the smallest such integer.

Exercise E2.1. Show that if fm(a) = a then fm+n(a) = fn(a) for all n ≥ 0.

We call a pre-periodic if there exist n > m ≥ 1 such that fm(a) = fn(a), but a is not
a periodic point. The key technical step in the proofs above was that 0 is a pre-periodic
point for both t2 − t+ 1 and t2 − 2t+ 2:

Proposition E2.1. Let f(t) ∈ Z[t] have degree > 1, positive leading coefficient, and
f(0) ̸= 0. Suppose that 0 is a pre-periodic point for f , and let ℓ be the least common
multiple of the integers in the sequence fn(0), n ≥ 1. If a0 ∈ Z with an+1 = f(an) for all
n ≥ 0, and (an, ℓ) = 1 for all n ≥ 0, then we obtain an infinite sequence of distinct primes
by selecting one prime factor from each an.

Proof. Let w0 = 0 and wn+1 = f(wn) for all n ≥ 0, so that am+1 = f(am) ≡ f(0) = w1

(mod am) and, thereafter, am+j+1 = f1(am+j) ≡ f(wj) = wj+1 (mod am) by induction
on j ≥ 1. Therefore if m < n then (am, an) = (am, wn−m) which divides (am, ℓ), which
equals 1 by the hypothesis. The rest of the proof follows as above.

To apply Proposition E2.1 we need to determine when 0 is a pre-periodic point:

Proposition E2.2. Suppose that 0 is a pre-periodic point for f(t) ∈ Z[t]. Then there
exists m = 1 or 2 such that fn+m(0) = fn(0) for all sufficiently large n.

Proof. Letm be the smallest integer ≥ 1 such that fn+m(0) = fn(0) for all sufficiently large
n. Let uk = fn+k(0), so that our period is u0, u1, . . . , um−1. Now x−y divides f(x)−f(y)
for any integers x, y; in particular un+1 − un divides f(un+1) − f(un) = un+2 − un+1.
Therefore u1 − u0 divides u2 − u1, which divides u3 − u2, . . . , which divides um − um−1,
which divides um+1−um = u1−u0. That is, we have a sequence of integers that all divide
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one another and so must all be equal in absolute value. If they are all 0 then m = 1. If
not then they cannot all be equal, say to d ̸= 0, else 0 = (u1−u0)+(u2−u1)+(u3−u2)+
· · ·+ (um − ump−1) = md. Therefore two consecutive terms must have opposite signs, yet
have the same absolute value, so that un+2 − un+1 = −(un+1 − un) and thus un+2 = un.
Now, applying f , p− n times to both sides, we deduce that u2 = u0 and therefore m = 2.

This allows us to classify all such polynomials f :

Theorem E2.3. Suppose that 0 is a pre-periodic point for f(t) ∈ Z[t]. The basic possi-
bilities are:
a) The period has length 1, and either f(t) = u with 0 → u→ u→ . . . , or

f(t) = (2/u)t2 − u where u = 1 or 2, with 0 → −u→ u→ u→ . . . ; or
b) The period has length 2, and either f(t) = 1 + ut− t2 with 0 → 1 → u→ 1 → . . . , or

f(t) = 1 + t+ t2 − t3 with 0 → 1 → 2 → −1 → 2 → . . . .

All other examples arise by replacing f(t) by −f(−t), or by adding a polynomial multiple

of
∏k

i=1(t− ai) where the ai are the distinct integers in the orbit of 0.

Proof by Exercises:
Exercise E2.2. Let f(t) ∈ Z[t], and assume that f has a period of length 1, say f(u) = u. Then
a) f must be of the form f(t) = u+ (t− u)g(t) for some g(t) ∈ Z[t].
b) If f(v) = u with v ̸= u then f(t) = u+ (t− u)(t− v)g(t) for some g(t) ∈ Z[t].
c) If f(w) = v then v = f(w) = u+(w− u)(w− v)g(w) so that (v−w)(w− u) divides v− u. Deduce that
v − w = w − u = ±1 or ±2, equals δ say and g(t) = 2/δ + (t− w)h(t) for some h(t) ∈ Z[t].
d) If f(x) = w then (x− u)(x− v) divides (w − u), which is impossible.

Exercise E2.3. Assume that f(t) ∈ Z[t], and f has a period of length 2, say f(u) = v and f(v) = u.

Then
a) f must be of the form f(t) = v + u− t+ (t− u)(t− v)g(t) for some g(t) ∈ Z[t].
b) If f(w) = v then w − v = ±1, so that g(t) = w − v + (t− w)h(t) for some h(t) ∈ Z[t].
c) If f(x) = w then x− u = ±1. If x− u = w− v = δ then 2 = (x− v)(w− v + (x−w)h(x)); this implies
that x−v = δ, 2δ,−δ or −2δ each of which can be ruled. If x−u = −(w−v) then u, x, w, v are consecutive
integers (in this order), and h(t) = −1 + (t− x)j(t) for some j(t) ∈ Z[t].
d) Show that if f(y) = x then y− u divides |x− v| = 2, and y− v divides |x− u| = 1, which is impossible.

Deduce the cases of the theorem by setting x = 0, then w = 0 and then v = 0.

This section was motivated by examples of the first case in (a), that is, f(u) =
u + t(t − u). An example in the second case of (a) is given by f(t) = t2 − 2, so that
0 → −2 → 2 → 2 → . . . Let a0 = 4 in Theorem E2.1, and note that 2 divides each
xn, n ≥ 1 but never 4, so a minor modification of our argument above works to prove that
there are infinitely many primes. This sequence also appears in a result of Lucas showing
that the Mersenne number 2n − 1 is prime if and only if it divides an−2.

Exercise E2.4. Now suppose that u0 (which is not necessarily an integer) has period p, so that it is a

root of the polynomial fp(x)− x. Prove that if f is monic then
uj−ui

u1−u0
is a unit for all 0 ≤ i < j ≤ p− 1.

We have considered iterations of the map n → f(n) where f(t) ∈ Z[t]. If one allows
f(t) ∈ Q[t] then it is an open question as to the possible period lengths in the integers.
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Even the simplest case, f(x) = x2 + c, with c ∈ Q, is not only open but leads to the
magnificent world of dynamical systems (see []). It would certainly be interesting to know
what primes divide the numerators when iterating, starting from a given integer.
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E3. Euler’s proof of the infinitude of primes and the Riemann zeta-function. In
the seventeenth century Euler gave a different proof that there are infinitely many primes,
one which would prove highly influential in what was to come later. Suppose again that
the list of primes is p1 < p2 < · · · < pk. Euler observed that the fundamental theorem
of arithmetic implies that there is a 1-to-1 correspondence between the sets {n ≥ 1 :
n is a positive integer} and {pa1

1 p
a2
2 . . . pak

k : a1, a2, . . . , ak ≥ 0}. Thus a sum involving
the elements of the first set should equal the analogous sum involving the elements of the
second set: ∑

n≥1
n a positive integer

1

ns
=

∑
a1,a2,...,ak≥0

1

(pa1
1 p

a2
2 . . . pak

k )s

=

∑
a1≥0

1

(pa1
1 )s

∑
a2≥0

1

(pa2
2 )s

 . . .

∑
ak≥0

1

(pak

k )s


=

k∏
j=1

(
1− 1

pjs

)−1

.

The last equality holds because each sum in the second-to-last line is over a geometric
progression. Euler then noted that if we take s = 1 then the right side equals some
rational number (since each pj > 1) whereas the left side equals ∞, a contradiction (and
thus there cannot be finitely many primes). We prove that

∑
n≥1 1/n diverges in exercise

* below

What is wonderful about Euler’s formula is that something like it holds without as-
sumption, involving the infinity of primes; that is

(E3.1)
∑
n≥1

n a positive integer

1

ns
=

∏
p prime

(
1− 1

ps

)−1

.

One does need to be a little careful about convergence issues. It is safe to write down such
a formula when both sides are “absolutely convergent”, which takes place when s > 1;
that is the sum of the absolute values of the terms converges. In fact they are absolutely
convergent even if s is a complex number so long as Re(s) > 1, for if s = σ+ it with σ > 1
then ∑

n≥1

∣∣∣∣ 1ns
∣∣∣∣ =∑

n≥1

1

nσ
≤ 1 +

∫ ∞

1

dt

tσ
= 1+

1

σ − 1
=

σ

σ − 1
.

Here we have used that 1/nσ <
∫ n

n−1
dt/tσ since 1/tσ is a decreasing function in t.

We have just seen that (E3.1) makes sense when s is to the right of the horizontal
line in the complex plane going through the point 1. Like Euler, we want to be able to
interpret what happens to (E3.1) when s = 1. To not fall afoul of convergence issues we
need to take the limit of both sides as s→ 1+, since (E3.1) holds for real values of s > 1.
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But now we can simply note that 1/nσ >
∫ n+1

n
dt/tσ for each n and so

ζ(σ) =
∑
n≥1

1

nσ
≥
∫ ∞

1

dt

tσ
=

1

σ − 1
.

This diverges as σ → 1+. We deduce that

(E3.2)
∏

p prime

(
1− 1

p

)
= 0

which, upon taking logarithms, implies that

(E3.3)
∑

p prime

1

p
= ∞.

So how numerous are the primes? One way to get an idea is to determine the behaviour
of the sum analogous to (E3.3) for other sequences of integers. For instance

∑
n≥1

1
n2

converges, so the primes are, in this sense, more numerous than the squares. We can do
better than this from our observation, just above, that

∑
n≥1

1
ns≈ 1

s−1 is convergent for

any s > 1 (see exercise E3.2 below). In fact, since
∑

n≥1
1

n(log n)2 converges, we see that

the primes are in the same sense more numerous than the numbers {n(log n)2 : n ≥ 1},
and hence there are infinitely many integers x for which there are more than x/(log x)2

primes ≤ x.
There is another derivation of (E3.1) that is worth seeing. One begins with

∑
n≥1

1
ns ,

the sum of 1/ns over all integers n. Now suppose that we wish to remove the even integers
from this sum. Their contribution to this sum is∑

n≥1
n even

1

ns
=
∑
m≥1

1

(2m)s
=

1

2s

∑
m≥1

1

ms

writing even n as 2m, and hence∑
n≥1

(n,2)=1

1

ns
=
∑
n≥1

1

ns
−
∑
n≥1

n even

1

ns
=

(
1− 1

2s

)∑
n≥1

1

ns
.

If we wish to remove the multiples of 3 we can proceed similarly, to obtain∑
n≥1

(n,2·3)=1

1

ns
=

(
1− 1

2s

)(
1− 1

3s

)∑
n≥1

1

ns
;

and for arbitrary y, letting m =
∏

p≤y,∑
n≥1

(n,m)=1

1

ns
=
∏
p≤y

(
1− 1

ps

)
·
∑
n≥1

1

ns
.
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As y → ∞, the left side becomes the sum over all integers n ≥ 1 which do not have any
prime factors: the only such integer is n = 1 so the left hand side becomes 1/1s = 1. Hence∏

p prime

(
1− 1

ps

)
·
∑
n≥1

1

ns
= 1

an alternative formulation of (E3.1). The advantage of this proof is that we see what
happens when we “sieve” by various primes, that is remove the integers from our set that
are divisible by the given prime.

Exercise E3.1. Show that if Re(s) > 1 then(
1−

1

2s

) ∑
n≥1

1

ns
=

∑
n≥1
n odd

1

ns
−

∑
n≥1

n even

1

ns
.

Exercise E3.2. The box with corners at (n, 0), (n+1, 0), (n, 1/n), (n+1, 1/n) has area 1/n and contains

the area under the curve y = 1/x between x = n and x = n + 1. Therefore
∑

n≤N 1/n ≥
∫N+1
1

1
t
dt =

log (N +1). Deduce that the sum of the reciprocals of the positive integers diverges. Now draw the box of

height 1/n and width 1 to the left of the line x = n, and obtain the upper bound
∑

n≤N 1/n ≤ log (N)+1.

Exercise E3.3. Given that
∑

p 1/p diverges, deduce that there are arbitrarily large values of x for which

#{p ≤ x : p prime} ≥
√
x. Improve the

√
x here as much as you can using these methods.

The sieve of Eratosthenes and estimates for the primes up to x. Fix ϵ > 0. By
(E3.2) we know that there exists y such that∏

p≤y

(
1− 1

p

)
<
ϵ

3
.

Let m be the product of the primes ≤ y, and select x > 3y/ϵ. If k = [x/m], so that
km ≤ x < (k + 1)m < 2km, then the number of primes up to x is no more than the
number of primes up to (k + 1)m, which is no more than the number of primes up to y
plus the number of integers up to (k+1)m which have all of their prime factors > y. Since
there are no more than y primes up to y, and since the set of integers up to (k + 1)m is
{jm+ i : 1 ≤ i ≤ m, 0 ≤ j ≤ k}, we deduce that the number of primes up to x is

≤ y +
k∑

j=0

∑
1≤i≤m

(jm+i,m)=1

1 = y + (k + 1)ϕ(m)

<
ϵ

3
x+ 2km

∏
p≤y

(
1− 1

p

)
<
ϵ

3
x+

2ϵ

3
x = ϵx.

In other words

(E3.4) lim
x→∞

1

x
#{p ≤ x : p prime} → 0.
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There is more than one way to estimate
∑

n≤N log n = log N !. Since log n is an

increasing function we have
∫ n

n−1
log t dt < log n <

∫ n+1

n
log t dt and so

log 1 +

∫ N

1

log t dt <
∑
n≤N

log n <

∫ N

1

log t dt+ log N

and therefore 0 <
∑

n≤N log n−N(log N − 1) + 1 < log N . We will write

1

N

∑
n≤N

log n = log N − 1 +O

(
log N

N

)
,

the big Oh meaning that this is a term that is bounded by a constant multiple times log N
N .

On the other hand we can write log n =
∑

pk|n log p and so

∑
n≤N

log n =
∑
n≤N

∑
pk|n

log p =
∑

pk≤N

log p
∑
n≤N

pk|n

1 =
∑

pk≤N

log p

[
N

pk

]

=
∑

pk≤N

log p

(
N

pk
+O(1)

)
= N

∑
pk≤N

log p

pk
+O (N) .

Now noting that
∑

pk, k≥2
log p
pk =

∑
p

log p
p(p−1)≤

∑
n≥2

log n
n(n−1)= O(1), we deduce from all of

the above that

(E3.5)
∑
p≤N

log p

p
= log N +O(1).

Now if π(x) ∼ Lx/log x then

∑
p≤x

log p

p
=
log x

x
π(x) +

∫ x

1

log t− 1

t2
π(t)dt

∼ L+ L

∫ x

1

log t− 1

t2
t

log t
dt ∼ Llog x.

Comparing this to (E3.5), we deduce that L = 1.

Exercise E3.4. Explain why this does not prove the prime number theorem.

Our next goal is to prove strong versions of (E3.2) and (E3.3).

Exercise E3.5. Verify the identity

∑
p≤x

1

p
=

1

log x

∑
p≤x

log p

p
+

∫ x

2

∑
p≤t

log p

p

dt

t(log t)2
.
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Then substitute in the estimate in (E3.5) to deduce

(E3.6)
∑
p≤x

1

p
= log log x+O(1).

One deduce from (E3.6) that
∏

p≤x(1−
1
p ) lies between two constants times 1/log x.

To be more precise one needs a more accurate estimate in (E3.6). If one does this, one
eventually proves Merten’s Theorem:

(E3.7)
∏
p≤x

(1− 1

p
) ∼ e−γ

log x
,

where γ is the Euler-Mascheroni constant.17

Frequency of p-divisibility of Fermat quotients and class numbers. We have that
p divides 2p−1 − 1 for every prime p. Does p2 ever divide 2p−1 − 1 ? The only two known
examples are 1093 and 3511, even though searches have gone on as far as 6.7 · 1015. Let
qp(2) := (2p−1 − 1)/p so that p2 divides 2p−1 − 1 if and only if qp(2) ≡ 0 (mod p). We
do not know much about the value of qp(2) (mod p); our best guess is that it looks kind
of randomly distributed, whatever that means. So if we guess that the “probability” that
qp(2) ≡ 0 (mod p) is roughly 1/p, then the expected number of primes up to x for which
p2 divides 2p−1 − 1 is roughly

∑
p≤x

1

p
= log log x+ c,

by (E3.6). Now log log (6.7 · 1015) ≈ 3.5 so is having just two found so far reasonable? To
expect a further example we will need to go beyond 1043 so it seems unlikely that we will
ever compute another example, even if they exist as frequently as expected!

How about p2 divides ap−1 − 1 ? For how many a ?
Similar remarks can be made about Bernoulli numbers. For want of better information

the “probability” that p divides the numerator of B2n can be taken to be 1/p. We will see
that the case 2n = p− 3 is particularly interesting in section H4.

One can also ask whether p divides the numerator of B2n for any n such that 2 ≤
2n ≤ p− 3. If these probabilities are “independent” then the “probability” that p divides
none of these denominators is

(
1− 1

p

) p−3
2

≈ e−1/2 = 0.6065306597 . . .

17It seems like an improbable co-incidence that this constant appears here, but there does not seem
any intuitive reason that it does. One simply obtain γ from a complicated, and unmotivated, calculation.
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E4. Primes in arithmetic progressions. The 1837 Dirichlet showed that whenever
(a, q) = 1 there are infinitely many primes ≡ a (mod q). Dirichlet’s starting point was the
formula (B5.3). From that we obtain, for s such that Re(s) > 1,

∑
p prime, m≥1
pm≡a (mod q)

1

pms
=

1

ϕ(q)

∑
χ (mod q)

χ(a)

 ∑
p prime
m≥1

χ(pm)

pms

 .

Now from

L(s, χ) :=
∑
n≥1

χ(n)

ns
=

∏
p prime

(
1− χ(p)

ps

)−1

,

we can take logarithms to obtain

log L(s, χ) =
∑

p prime
m≥1

χ(pm)

mpms
.

Therefore

(E4.1)
∑

p prime, m≥1
pm≡a (mod q)

1

pms
=

1

ϕ(q)

∑
χ (mod q)

χ(a)log L(s, χ).

For now let us assume that

(H1) if χ ̸= χ0 then L(s, χ) → L(1, χ), a non-zero real number, as s→ 1+.

On the other hand

L(s, χ0) = ζ(s)
∏
p|q

(
1− 1

ps

)
, which diverges as s→ 1+,

as we have seen. Entering this information into the equation above implies that
∑

1/pms

diverges as s→ 1+. The contribution of the prime powers is

≤
∑
p

∑
m≥2

1

pm
=
∑
p

1

p(p− 1)
≤
∑
n≥2

1

n(n− 1)
= 1,

and so we deduce that ∑
p prime

p≡a (mod q)

1

p
= ∞;

which implies that there are infinitely many primes ≡ a (mod q).

Exercise E4.1. Use (E3.6) to show, by a small modification of the above argument, that whenever

(a, q) = 1, ∑
p prime, p≤x
p≡a (mod q)

1

p
=

1

ϕ(q)
log log x+O(1).

Note that the constant implicit in the O(1) depends on q. This results indicates that perhaps the primes

are roughly equally distributed amongst the arithmetic progressions a (mod q) with (a, q) = 1.
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Analytic continuation. To prove (H1) we need to show both that the L(1, χ) converge
and that they take non-zero values; this is challenging. The key to such results is the
notion of analytic continuation. The Riemann-zeta function, and the Dirichlet L-functions
are only well-defined for those complex numbers s for which Re(s) > 1 (in that the series
defining them is absolutely convergent). We need to understand their values at s = 1, and
so up to now we have looked at the limit as we come into s = 1 from the right. However
we can circumvent that difficulty by coming up with new definitions for ζ(s) and L(s, χ)
that converge in a much wider range. One way to do this, for the L(s, χ) with χ ̸= χ0, is
by grouping the terms together: We write

L(s, χ) =

(
q∑

n=1

χ(n)

ns

)
+

(
2q∑

n=q+1

χ(n)

ns

)
+

(
3q∑

n=2q+1

χ(n)

ns

)
+ . . .

This evidently equals L(s, χ) when Re(s) > 1; and we will show that if we consider here
a term to be each sum in parentheses, then this definition is absolutely convergent in
Re(s) > 0. To prove this we need to get a good bound on each sum in parenthesis, and we

use the fact that
∑(k+1)q

n=kq+1 χ(n) =
∑q

j=1 χ(kq + j) =
∑q

j=1 χ(j) = 0. Therefore

(E4.2)

∣∣∣∣∣∣
(k+1)q∑
n=kq+1

χ(n)

ns

∣∣∣∣∣∣ =
∣∣∣∣∣∣
(k+1)q∑
n=kq+1

χ(n)

(
1

ns
− 1

(kq)s

)∣∣∣∣∣∣ ≤
q∑

j=1

∣∣∣∣ 1

(kq + j)s
− 1

(kq)s

∣∣∣∣ .
Taking s = 1 we have

∣∣∣∑(k+1)q
n=kq+1

χ(n)
n

∣∣∣ ≤ q
∣∣∣ 1
kq − 1

(k+1)q

∣∣∣ = 1
k(k+1) .

Exercise E4.2. Deduce that |L(1, χ)| ≤ log q + 2.

This argument generalizes: In (E4.2) we pull out a factor |(kq)−s| = (kq)−σ where
s = σ + it, and then we need to bound |(1 + j/kq)−s − 1|.
Exercise E4.3. Show that if |sz| ≤ 1 then |(1 + z)s − 1| ≤ c|sz| for some constant c > 0.

Exercise E4.4. Combining our various bounds, show that the quantity in (E4.2) is ≤ c|s|q1−σ/k1+σ ;

and deduce that the new definition of L(s, χ) is absolutely convergent for all s with positive real part. We

call this an analytic continuation of L(s, χ) to Re(s) > 0.

Exercise E4.5. Use exercise E3.1 to provide an analytic continuation of (1− 21−s)ζ(s) to Re(s) > 0.

This way of extending the domain of definition of a function seems to be very ad
hoc: Why one method, and not another? And if you have two different methods that
allow you to extend the domain of a function, might they not be different outside the
region where they are both initially defined? There are several miracles connected to
analytic continuation. The first is that any analytic continuations of a function take the
same values; that is there is a unique function that extends the definition of the original
function. It is for this reason that we write ζ(s) to mean the function that is the analytic
continuation of the function that we defined (by that name) on Re(s) > 1. Hence when we
write ζ(−1) we do not mean 1 + 2 + 3 + . . . but rather the (convergent) function that
is well-defined at that point.
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One might reasonably ask for the values of ζ(−n) for the negative integers −n. Euler showed that

ζ(−n) = −
Bn+1

n+ 1
for all n ≥ 1,

so that ζ(−2k) = 0 for k ≥ 1. These are the trivial zeros of ζ(s).18

The second miracle of analytic continuation is that any such function has a Taylor
series at every point. That is, if f(s) is an analytic function on all of C then, for any a ∈ C,
we can evaluate all of the derivatives of f at a, that is f ′(a), f (2)(a), . . . , and then

(E4.3) f(a+ h) = f(a) + hf ′(a)+
h2

2!
f (2)(a) + . . .

Given these properties of analytic functions, you might guess that they are very special
functions, and you would be correct! But what we find is that many of the functions that
are defined naturally for number theoretic reasons, can be analytically continued to the
whole complex plane.

Back to L(1, χ). We have now seen that each L(s, χ) is well-defined at s = 1 as well as
(1−21−s)ζ(s). Notice that (1−21−s) has the Taylor series (s−1)log 2+c2(s−1)2+ . . . so
we see that (s−1)ζ(s) has a Taylor series. Now above we saw that 1 < (σ−1)ζ(σ) < σ for
real σ > 1, so taking the limit as σ → 1+ we deduce that (s− 1)ζ(s) = 1+κ0(s− 1)+ . . . .
Also if L(s, χ) has a zero of order ρχ at s = 1, then L(s, χ) = cχ(s−1)ρχ(1+κχ(s−1)+. . . )
at s = 1. Multiplying these all together we find that, close to s = 1,∏

χ (mod q)

L(s, χ) = c(s− 1)
∑

χ ρχ−1(1 + κ(s− 1) + . . . ).

Now, taking a = 1 in (E4.1) we have that

∏
χ (mod q)

L(s, χ) = exp

 ∑
p prime, m≥1
pm≡1 (mod q)

1

pms

 ≥ 1

for all real s > 1 and, in particular, is non-zero. Combining these last two displays, letting
s→ 1+, implies that

∑
χ ρχ − 1 ≤ 0. Hence at most one of the L(1, χ)’s equals 0.

Exercise E4.6. Prove that if L(1, χ) = 0 then L(1, χ) = 0.

If L(1, χ) = 0 then we get two zeros, which is impossible, unless χ = χ, that is χ is
real-valued, and evidently not the principal character. Hence we are left to prove that
L(1, χ) ̸= 0 when χ is a real character. Dirichlet eventually gave a proof of this which
left the realm of questions about primes and established an unforeseeable link between
L-functions and the algebra of quadratic forms.

18Notice that ζ(−1) = − 1
12

, leading some to write 1 + 2 + 3 + . . . = − 1
12

.
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Dirichlet’s class number formula. In 1832 Jacobi conjectured that the class number
h(−p), when p ≡ 3 (mod 4), is given by

h(−p) =
1

p

p−1∑
n=1

(
n

p

)
n.

Exercise E4.7. Show that the right side is an integer using Euler’s criterion and Corollary 7.9.

Exercise E4.8. Let S :=
∑(p−1)/2

n=1

(
n
p

)
and T :=

∑(p−1)/2
n=1

(
n
p

)
n.

(1) Show that S = 0 when p ≡ 1 (mod 4). Henceforth assume that p ≡ 3 (mod 4).

(2) Note that
(

p−n
p

)
(p− n) =

(
n
p

)
(n− p). Use this to evaluate the sum

∑p−1
n=1

(
n
p

)
n in terms of

S and T by pairing up the nth and (p− n)th term, for n = 1, 2, . . . , p−1
2

.

(3) Do this taking n = 2m, m = 1, 2, . . . , p−1
2

to deduce that

h(−p) =
1(

2
p

)
− 2

(p−1)/2∑
n=1

(
n

p

)
.

In 1838 Dirichlet gave a proof of Jacobi’s conjecture an much more. His miraculous
class number formula links algebra and analysis in an unforeseen way that was foretaste of
many of the most important works in number theory, including Wiles’ proof of Fermat’s
Last Theorem. We will simply state the formulae here: If d > 0 then

h(d) log ϵd =
√
d L

(
1,

(
d

.

))
.

If d < −4 then

h(d) =
1

π

√
|d| L

(
1,

(
d

.

))
.

Note that h(d) ≥ 1 for all d since we always have the principal form. Hence the formulae
imply that L

(
1,
(
d
.

))
> 0 for all d, as desired in the proof that there are infinitely many

primes in arithmetic progressions. In fact these formulae even give lower bounds; for
example when d < −4 we have L

(
1,
(
d
.

))
≥ π/

√
|d|. Getting a significantly better lower

bound for all d is a very difficult problem, though Heilbronn showed that there exists a
constant c > 0 such that L

(
1,
(
d
.

))
≥ c/log |d| (and hence h(d) > c′

√
|d|/log |d|) with

very few exceptions (in fact no more than one value of d in the range D < d ≤ 2D for any
D).

The size of a fundamental unit. By exercise E4.2 we have for d > 0, since h(d) ≥ 1,

log ϵd ≤ h(d) log ϵd =
√
d L

(
1,

(
d

.

))
≤

√
d(log 4d+ 2)

since
(
d
.

)
is a character mod 4d, but not necessarily mod d. Hence ϵd ≤ (4e2d)

√
d. In

calculations one finds that ϵd is often around ec
√
d. If that is true for d then Dirichlet’s

class number formula implies that h(d) < clog d for some constant c > 0. Actually
L
(
1,
(
d
.

))
is much more usually close to 1; that is, it is between 1

10 and 10 for more than

99% of the values of d. Hence if ϵd is typically around since ec
√
d then h(d) is typically

bounded.
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The prime number theorem and the Riemann Hypothesis. In 1859, Riemann
wrote a nine page memoir that was to shape the future of number theory. This was his
only paper in number theory, but it was to shape the approach to studying the distribu-
tion of prime numbers from then on. In effect, Riemann proposed a plan to prove Gauss’s
guesstimate for the number of primes up to x, discussed in section 5.4. This involved mov-
ing the question from number theory to analysis, via the theory of analytic continuation.

The first observation is a simple one. The function Li(x), defined in (5.4.1), is not an
easy one to work with (see Exercise 5.4.1). To improve on this, notice that if, as Gauss
asserted, the density of primes at around x is 1/log x, then if we sum log p over the primes
up to x, then the expected value of the sum is about x (by Gauss’s statement). In fact:

Exercise E4.9. Prove that the prime number theorem is equivalent to the estimate
∑

p≤x log p ∼ x.

(Hint: Show that the contribution of the primes ≤ x/log x in either sum is small, so discard them and

compare the remaining two sums.)

We have seen how Dirichlet studied the distribution of primes using log L(s, χ). For
various analytic reason is much easier to work with L′(s, χ)/L(s, χ).

Exercise E4.10. Show that for complex numbers s with Re(s) > 1 we have

ζ′(s)

ζ(s)
=

∑
p prime
m≥1

log p

pms
.

(Hint: Use the Euler product formula for ζ(s).)

It is too complicated to go into all of the details here,19 but let us just say that
Riemann use this last identity to relate the number of prime powers up to x to the zeros
of ζ(s). This is a surprising thing to do. After all, ζ(s) has no zeros s with Re(s) > 1,
where it is naturally defined; all of its zeros lie in the domain of the analytic continuation
of ζ(s). Riemann’s amazing exact formula is:

∑
p prime
m≥1
pm≥x

log p = x−
∑

ρ: ζ(ρ)=0

xρ

ρ
− ζ ′(0)

ζ(0)
.

This is a little crazy. We take a nice elementary question, the count of the primes up to
x, and relate it to the (infinite set of) zeros of an analytic continuation. To be able to use
this formula we will need to know how many zeros ρ there are, and where they are located,
both difficult problems. The size of the terms in this formula will also play a role. For
example, how big is xρ? Does it compare to x?

Exercise E4.11. Prove that |xρ| = xRe(ρ).

We remarked that ζ(s) has no zeros s with Re(s) > 1, and so we know that Re(ρ) ≤ 1
for each ρ. If Re(ρ) = 1 then the xρ/ρ term would have size comparable to x, so we
need to show that this is impossible. In fact by the end of the 19th century, researchers

19Though see [Da] for a wonderful introduction.
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proved that if one could show that Re(ρ) < 1 for all zeros ρ of ζ(ρ) = 0 then the prime
number theorem would follow. This was achieved by Hadamard and de la Vallée Poussin,
independently, in 1896.

It is not difficult to show that ζ(s) has zeros at s = −2,−4, . . . and, other than that
all of its zeros ρ satisfy 0 ≤ Re(ρ) ≤ 1, the critical strip. Riemann made a few calculations
of the zeros of ζ(s) and all the real parts seemed to be 1/2. This led to him to:

The Riemann Hypothesis. If ζ(ρ) = 0 with 0 ≤ Re(ρ) ≤ 1 then Re(ρ) = 1
2 .

If the Riemann Hypothesis is true that each |xρ| = x1/2, by the exercise, and in fact
one can then deduce that there exists a constant C > 0 such that∣∣∣∣∣∣

∑
p≤x

log p− x

∣∣∣∣∣∣ ≤ Cx1/2(log x)2.

This in turn implies that |π(x) − Li(x)| ≤ C ′x1/2log x. Riemann’s formula implies more:
These two estimates actually imply the Riemann Hypothesis. That is the Riemann Hy-
pothesis is equivalent to the estimate given by the prime number theorem with a very
strong error term.

Riemann’s formula shows that speaking about the number of primes up to x, and
understanding the zeros of ζ(s) are more-or-less tautologous. This led leading number
theorists in the first half of the twentieth century to believe that it would be impossible to
find a proof of the prime number theorem that avoids the zeros of ζ(s) – and since the zeros
belong properly only to the analytic continuation of ζ(s) that any proof must therefore by
non-elementary. It thus came as a great shock when, in 1949, Selberg and Erdős gave an
elementary proof.20 At the heart of both of their proofs is Selberg’s extraordinary formula
for the number of integers up to x that are the product of two primes, appropriately
weighted, which Selberg proved in a very straightforward (though highly ingenious) way:∑

p≤x
p prime

(log p)2 +
∑
pq≤x

p,q primes

(log p)(log q) = 2xlog x+O(x).

Include range issues, eg BV, etc

20Elementary, but complicated!
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E5. The number of prime factors of an integer. One might count 12 = 22 × 3 as
having two or three primes factors depending on whether one counts the 22 as one or two
primes. So define

ω(n) =
∑

p prime
p|n

1 and Ω(n) =
∑

p prime,a≥1
pa|n

1.

On average the difference between these two is

1

x

∑
n≤x

∑
p prime,a≥2

pa|n

1 =
1

x

∑
p prime
a≥2

∑
n≤x
pa|n

1 =
1

x

∑
p prime
a≥2

[
x

pa

]

≤
∑

p prime,a≥2

1

pa
=

∑
p prime

1

p(p− 1)
≤
∑
n≥2

1

n(n− 1)
= 1

so we can work with either, as is convenient. Note that here we used the fact that the
number of integers divisible by d is [x/d]. Now,

∑
n≤x

ω(n) =
∑
n≤x

∑
p prime

p|n

1 =
∑

p prime

∑
n≤x
p|n

1 =
∑

p prime

[
x

p

]

Hence the average is approximately

1

x

∑
p prime

x

p
= log log x+ o(1),

as we saw in (*).21 The error in this approximation is no more than 1 for each prime p,
and so in total π(x)/x = o(1).

We are going to go one step further and ask how much ω(n) varies from its mean,
that is we are going to compute the statistical quantity, the variance. We begin with a
standard identity for the variance:

Exercise E5.1. If a1, . . . , aN have average m show that 1
N

∑
n≤N (an −m)2 = 1

N

∑
n≤N a2n −m2.

This implies that

(E5.1)
1

x

∑
n≤x

ω(n)− 1

x

∑
m≤x

ω(m)

2

=
1

x

∑
n≤x

ω(n)2 −

 1

x

∑
m≤x

ω(m)

2

.

21The notation “o(1)”, which we will use repeatedly, stands for a function A(x) for which A(x) → 0

as x→ ∞. We use this in the context that we do not much care what the function is, simply that it goes
to 0 as x goes to ∞.
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Now the first term here is

1

x

∑
n≤x

ω(n)2 =
1

x

∑
n≤x

∑
p prime

p|n

∑
q prime

q|n

1 =
1

x

∑
p prime

 ∑
q prime
q=p

[
x

p

]
+

∑
q prime
q ̸=p

[
x

pq

]

≤
∑

p prime
p≤x

1

p
+

∑
p prime

∑
q prime, q ̸=p

pq≤x

1

pq
≤

∑
p prime
p≤x

1

p
+

 ∑
p prime
p≤x

1

p


2

.

Hence the variance is o((log log x)2), and so

1

x

∑
n≤x

(ω(n)− log log x)2 = o((log log x)2).

Exercise E5.2. Show that this implies that, for any fixed ϵ > 0, if x is sufficiently large then there are

< (1 − ϵ)x integers n ≤ x for which |ω(n) − log log x| ≥ ϵlog log x. In other words there ∼ x integers

n ≤ x for which ω(n) ∼ log log x.

Exercise E5.3. Deduce that there are log log x integers n ≤ x for which ω(n),Ω(n) ∼ log log n. Collo-

quially speaking “Almost all integers n have about log log n prime factors”. (This is a famous result of

Hardy and Ramanujan.)

Exercise E5.4. Apply the above argument carefully to show that the variance is ≤ Clog log x.

When you were very young you probably had to learn the multiplication table off by
heart. Perhaps all the values of a× b for 1 ≤ a, b ≤ 12. Perhaps you wrote these in a grid,
like:

1 2 3 4 5 6 7 8 9 10 11 12
2 4 6 8 10 12 14 16 18 20 22 24
3 6 9 12 15 18 21 24 27 30 33 36
4 8 12 16 20 24 28 32 36 40 44 48
5 10 15 20 25 30 35 40 45 50 55 60
6 12 18 24 30 36 42 48 54 60 66 72
7 14 21 28 35 42 49 56 63 70 77 84
8 16 24 32 40 48 56 64 72 80 88 96
9 18 27 36 45 54 63 72 81 90 99 108

10 20 30 40 50 60 70 80 90 100 110 120
11 22 33 44 55 66 77 88 99 110 121 132
12 24 36 48 60 72 84 96 108 120 132 144
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If you were Paul Erdős you might have quickly got bored waiting for the others to learn
it, and asked yourself other questions. For example, how many different integers are
there in the table? There is the obvious symmetry down the diagonal, meaning that one
only need look at the upper triangle for distinct entries. One spots other co-incidences,
like 3 × 4 = 2 × 6 and 4 × 5 = 2 × 10, and wonders how many there are. We ask the
following precise question: What percentage of the integers up to N2 appear in the
N -by-N multiplication table, that is equal ab where 1 ≤ a, b ≤ N? The phrasing of
the question presupposes that the percentage exists (but it does). Let us look at some
data: For N = 6 we have 18 distinct entries, that is 1/2 of N2; for N = 10 we have
42 distinct entries, that is .42 of N2; for N = 12 we have 59, just below 41%. Let
p(N) = #{Distinct entries in N -by-N table}/N2. Then p(25) = .36, p(50) = .32, p(75) ≈
.306, p(100) ≈ .291, p(250) ≈ .270, p(500) ≈ .259, p(1000) ≈ .248. Can one guess what
the limit is? In fact Erdős proved that the limit is 0, and his proof is extraordinary.22 The
idea is simply that almost all integers up to N have about log log N prime factors and so
the product of two such integers has about 2log log N prime factors. However almost all
integers up to N have about log log N2 = log log N + log 2 prime factors, and so are not
the product of two typical integers ≤ N .

Exercise E5.5. Give a rigorous proof of Erdős’s Theorem. To do so you might define G(x) to be the set

of integers n ≤ x for which |Ω(n)− log log x| ≤ ϵ log log x, and go from there.

One might also ask for the number of integers, N(x, k), up to x with exactly k prime
factors, including multiplicity. Note that N(x, 1) = π(x) ∼ x/log x.

Lemma E5.1. Uniformly, for all x,∑
p≤

√
x

log x

p log (x/p)
= log log x+O(1).

In particular there exists a constant c1 > 0 such that we have that upper bound ≤ log log x+
c1 for all x.

Proof. Subtracting
∑

p≤
√
x 1/p we obtain

∑
p≤

√
x

log p

p log (x/p)
≤ 2

log x

∑
p≤

√
x

log p

p
≪ 1

by (E3.5), and the result then follows from (E3.5).

We may write each integer up to x with two prime factors as pq with p ≤ q. Therefore
p ≤

√
x and p ≤ q ≤ x/p. The number of such q is N(x/p, 1)−N(p, 1).

Exercise E5.6. Show that
∑

p≤x1/2 N(p, 1) ≤ 2 x
log x

.

22All true mathematicians are motivated by elegant proofs, none more so than the great Paul Erdős.
Erdős used to say that “the supreme being” kept a book which contained all of the most beautiful proofs
of each theorem and just occasionally we mortals are allowed to glimpse this book, as we discover an

extraordinary proof. Erdős’s proof of the multiplication table theorem is truly from the book. (See Aigner
and Ziegler [] for more examples.)



204 ANDREW GRANVILLE

The main term here is, therefore

∼
∑

p≤x1/2

x/p

log (x/p)
∼ x

log x
log log x

by the lemma. Hence we have proved that

N(x, 2) ∼ x

log x
log log x.

One can continue like this, by induction on k ≥ 2, to prove that if k is fixed ≥ 1 then

(E5.2) N(x, k) ∼ x

log x

(log log x)k−1

(k − 1)!
.

It is possible to extend this to k that go to infinity with x, though in a limited range, so long
as k/log log x→ 0 as x→ ∞. It is also possible to prove (E5.2) when k is close to the mean
value log log x, in fact whenever k/log log x→ 1 as x→ ∞. This lead people (including,
it seems, Ramanujan) to believe that (E5.2) holds for all k in a wide range, but in 1950
Sathé showed, to great surprise, that this is false. His proof is extremely complicated, and
Selberg gave a beautiful four page proof. Here is the truth: For 1 ≤ k ≤ (2 − ϵ)log log x
we have

(E5.3) N(x, k) ∼ F

(
k − 1

log log x

)
x

log x

(log log x)k−1

(k − 1)!
.

where

F (s) =
∏
p

(
1− s

p

)/(
1− 1

p

)s

.

In particular F (0) = F (1) = 1 and these are the only two values for which F (s) = 1.
We see that the end result is rather tricky and unlikely to be easily provable by

straightforward methods. However Hardy and Ramanujan had already proved a general
upper bound that it is straightforward: There exists constant c0 such that

N(x, k) ≤ c0
x

log x

(log log x+ c1)
k−1

(k − 1)!
,

with c1 as in the lemma. We prove this by induction on k ≥ 1. For k = 1 we get this from
the prime number theorem, or even the Chebyshev bounds on π(x). For larger k, suppose
that our integer with k prime factors is n = p1p2 . . . pk ≤ x with p1 ≤ p2 ≤ . . . ≤ pk. If
j ≤ k−1 then p2j ≤ pk−1pk ≤ x and so pj ≤ x. We will give an upper bound on the number
of such n by counting the number of pjmj ≤ x for 1 ≤ j ≤ k − 1, where Ω(mj) = k − 1.
Hence

(k − 1)N(x, k) ≤
∑

p≤
√
x

N(x/p, k − 1) ≤
∑

p≤
√
x

c0
x/p

log x/p

(log log (x/p) + c1)
k−2

(k − 2)!
,

by the induction hypothesis. Now we use the bound log log (x/p) ≤ log log x, and then
the result follows by applying the lemma.

Exercise E5.7. Given another proof of exercise E5.2 using the Hardy-Ramanujan inequality.
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E6. Covering sets of congruences. Are there infinitely many primes of the form
k · 2n ± 1 or of the form k ± 2n for given integer k. At first sight this seems like a much
more difficult question than asking about primes of the form 2n ± 1, but Erdős showed,
ingeniously, how these questions can be resolved for certain integers k:

Let Fn = 22
n

+ 1 be the Fermat numbers (remember that F0, F1, F2, F3, F4 are
prime and F5 = 641 × 6700417), and let k be any positive integer such that k ≡ 1
(mod 641F0F1F2F3F4) and k ≡ −1 (mod 6700417). Now

• if n ≡ 1 (mod 2) then k · 2n + 1 ≡ 1 · 21 + 1 = F0 ≡ 0 (mod F0);
• if n ≡ 2 (mod 4) then k · 2n + 1 ≡ 1 · 22 + 1 = F1 ≡ 0 (mod F1);

• if n ≡ 4 (mod 8) then k · 2n + 1 ≡ 1 · 222 + 1 = F2 ≡ 0 (mod F2);

• if n ≡ 8 (mod 16) then k · 2n + 1 ≡ 1 · 223 + 1 = F3 ≡ 0 (mod F3);

• if n ≡ 16 (mod 32) then k · 2n + 1 ≡ 1 · 224 + 1 = F4 ≡ 0 (mod F4);

• if n ≡ 32 (mod 64) then k · 2n + 1 ≡ 1 · 225 + 1 = F5 ≡ 0 (mod 641); and
• if n ≡ 0 (mod 64) then k · 2n + 1 ≡ −1 · 20 + 1 = 0 (mod 6700417).

Every integer n belongs to one of these arithmetic progressions (these are called a covering
system of congruences), and so we have exhibited a prime factor of k · 2n + 1 for every
integer n. Therefore we have shown that for a positive proportion of integers k, there is
no prime p such that (p− 1)/k is a power of 2.

Exercise E6.1. Deduce that k · 2n + 1 is composite for every integer n ≥ 0 (with k as defined above).

Exercise E6.2. Prove that 2n + k is composite for every integer n ≥ 0. (That is, there is no prime p

equal to k plus a power of 2.)

Exercise E6.3. Let ℓ be any positive integer for which ℓ ≡ −k (mod F6 − 2). Prove that ℓ · 2n − 1 and

|2n− ℓ| are composite for every integer n ≥ 0. Deduce that a positive proportion of odd integers m cannot

be written in the form p+ 2n with p prime.

John Selfridge showed that at least one of the primes 3, 5, 7, 13, 19, 37, and 73 divides
78557 · 2n + 1 for every integer n ≥ 0. This is the smallest k known for which k · 2n + 1 is
always composite. It is an open problem as to whether this the smallest such k.

Exercise E6.4. Prove that Fn − 2 = F0F1 . . . Fn−1 cannot be written in the form p + 2k + 2ℓ where p

is prime and k > ℓ ≥ 0. (Hint: Consider divisibility by Fr where 2r is the highest power of 2 dividing

k − ℓ.)
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E7. Prime patterns paper. Are there arbitrarily many consecutive primes in arithmetic
progression? That is, can we find nonzero integers a, d such that

a, a+ d, . . . , a+ (k − 1)d

are all prime? The smallest arithmetic progression of ten primes is given by 199, 409, 619, 829,

1039, 1249, 1459, 1669, 1879, 2089, which we can write as 199 + 210n, 0 ≤ n ≤ 9. The
smallest examples of k-term arithmetic progression of primes, with k between 3 and 21,
are given by:

Length k Arithmetic Progression (0 ≤ n ≤ k − 1) Last Term

3 3 + 2n 7
4 5 + 6n 23
5 5 + 6n 29
6 7 + 30n 157
7 7 + 150n 907
8 199 + 210n 1669
9 199 + 210n 1879
10 199 + 210n 2089
11 110437 + 13860n 249037
12 110437 + 13860n 262897
13 4943 + 60060n 725663
14 31385539 + 420420n 36850999
15 115453391 + 4144140n 173471351
16 53297929 + 9699690n 198793279
17 3430751869 + 87297210n 4827507229
18 4808316343 + 717777060n 17010526363
19 8297644387 + 4180566390n 83547839407
20 214861583621 + 18846497670n 572945039351
21 5749146449311 + 26004868890n 6269243827111

The k-term arithmetic progression of primes with smallest last term.

This famous problem was resolved by Green and Tao in 2008. One might guess that there
is a k-term arithmetic progression of primes all ≤ k! + 1, for each k ≥ 3. Green and Tao
gave the bound

22
22

22
22

100k

,

a spectacular achievement. We will now find some surprising consequences of Green and
Tao’s Theorem:

There are squares filled with primes, which are in arithmetic progression, when one
looks along any row, or any column, like:

5 17 29

47 59 71

89 101 113

29 41 53

59 71 83

89 101 113

503 1721 2939 4157

863 2081 3299 4517

1223 2441 3659 4877

1583 2801 4019 5237
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and we want to know whether there are such squares of arbitrary size, and even such cubes
of high dimension? We can answer such questions all in one go by looking for primes

a+ n1b1 + n2b2 + · · ·+ ndbd,

for every 0 ≤ n1 ≤ N − 1, 0 ≤n2 ≤ N − 1, . . . , 0 ≤ nd ≤ N − 1,

a d-dimensional cube, where this is the (n1, n2, . . . , nd) entry.
To do this let k = Nd; by the Green-Tao theorem there exists a k-term arithmetic

progression of primes, a + jq, 0 ≤ j ≤ k − 1. Let bi = N i−1q for each i. Therefore if
j = n1 + n2N + n3N

2 + · · ·+ ndN
d−1 in base N then

a+ n1b1 + n2b2 + · · ·+ ndbd = a+ jq

is prime for each entry of our d-dimensional cube.
Arithmetic progressions a+ nd, n = 1, 2, . . . can be viewed as the values of a degree

one polynomial. Hence the Green-Tao Theorem can be rephrased as stating that for any k
there are infinitely many different degree one polynomials such that their first k values are
prime. How about degree two polynomials? A famous example is the infamous quadratic
polynomial X2 + X + 41, which is prime for X = 0, 1, . . . 39. We saw in our discussion
of Rabinowiscz’s criterion, in section 12.3, that 41 is the largest integer m for which
X2 +X +m is prime for X = 0, 1, . . .m − 2. However, for each k, do there exist m such
that X2+X+m is prime for X = 0, 1, . . . k? Or perhaps an arbitrary degree d polynomial
whose first k values are prime? To show this we know, by the Green-Tao theorem that
there exists a kd-term arithmetic progression of primes, a + jb, 0 ≤ j ≤ kd − 1. Then
a+ bid is prime for 0 ≤ i ≤ k − 1, that is the first k values of the polynomial bxd + a are
all prime. Note that this technique does not yield prime values of monic polynomials; we
will discuss this further in a moment.

Amagic square is an n-by-n array of distinct integers such that the sum of the numbers
in any row, or in any column, or in either diagonal, equal the same constant. These have
been very popular in the recreational mathematics literature. Here are two small examples.

17 89 71

113 59 5

47 29 101

41 89 83

113 71 29

59 53 101

Examples of 3-by-3 magic squares of primes.

Do you recognize the primes involved? Do you notice any similarities with the examples
of 3-by-3 squares of primes above? The reason is that every 3-by-3 square of integers in
arithmetic progressions along each row and column, can be rearranged to form a 3-by-3
magic square and vice-versa!

37 83 97 41

53 61 71 73

89 67 59 43

79 47 31 101

41 71 103 61

97 79 47 53

37 67 83 89

101 59 43 73
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Examples of 4-by-4 magic squares of primes.

It has long been known that there are n-by-n magic squares for any n ≥ 3. If the
entries are mi,j , 1 ≤ i, j ≤ n, then the square with (i, j)th entry a +mi,jb is also an n-
by-n magic square. The Green-Tao theorem implies that there are infinitely many pairs of
integers a, b for which all of the integers a+ℓb, mini,jmi,j ≤ ℓ ≤ maxi,jmi,j are prime, and
this yields infinitely many n-by-n magic squares of primes. By the obvious modifications
of this argument we can show that if there is a magic cube of a given size then there are
infinitely many magic cubes of primes of the same size, and the same is true for higher
dimensional objects of this type.

Exercise E7.1. Show that there are arbitrarily large sets of primes such that the average of any two

elements of the set is also prime.

Beyond primes in arithmetic progressions. To generalize the notion of an arithmetic
progression a+jd, 0 ≤ j ≤ k−1, which is a set of k linear polynomials in Z[a, d], we consider
the k-tuple of linear polynomials L1(x1, . . . , xn), . . . , Lk(x1, . . . , xn) ∈ Z[x1, . . . , xn]. We
wish to determine whether there are infinitely many sets of integers {a1, a2, . . . , an} for
which each |Lj(a1, a2, . . . , an)| is prime. There are examples for which there are only a
finite number of sets {a1, a2, . . . , an} with each |Lj(a1, a2, . . . , an)| prime; for example, if
we have the polynomials Lj(a) = dj + a for 1 ≤ j ≤ p, where prime p does not divide
integer d, then p always divides the value of one of the linear forms no matter what the
choice of a. To exclude this possibility we call the set of linear forms admissible if, for all

primes p, there are integers a1, . . . , an such that
∏k

j=1 Lj(a1, . . . , an) is not divisible by p.
The extended prime k-tuplets conjecture states that if the set of linear forms is admissible
then there are infinitely many choices of integers a1, . . . , an for which each |Lj(a1, . . . , an)|
is prime.

The most famous examples of this conjecture are

— There are infinitely many pairs of primes p, p+ 2 (the twin prime conjecture);

— For any large even integer N there are pairs of primes p,N − p (the Goldbach
conjecture), and

— There are infinitely many pairs of primes p, 2p+ 1 (Sophie Germain twins).

These are all examples of difficult pairs of linear forms, L1, L2, in that there exist nonzero
integers a, b, c for which aL1 + bL2 = c; and they all seem to be beyond the reach of the
methods of Green and Tao. However Green, Tao and Ziegler recently showed that the
method extends to all other cases of the prime k-tuplets conjecture:

Theorem E7.1. If L1(x1, . . . , xn), . . . , Lk(x1, . . . , xn) ∈ Z[x1, . . . , xn] are a set of admis-
sible linear forms, containing no two which form a difficult pair, then there are infinitely
many choices of integers a1, . . . , an for which each |Lj(a1, . . . , an)| is prime.

This great Theorem has many applications.

Exercise E7.2. Show that there are infinitely many monic polynomials of degree two whose first k values

are all prime.

Pythagorean triples: It is well known that any solution to x2 + y2 = z2 in coprime
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integers must be of the form

x = r2 − s2, y = 2rs, z = r2 + s2,

where r and s are coprime integers with r + s odd. The area of the right-angled triangle
with sides x, y, and z is given by

A =
xy

2
= rs(r + s)(r − s),

and must be divisible by 6 since one of r and s must be even (as r + s is odd), and since
one of r, s, r2−s2 must be divisible by 3. Hence we can ask how few prime factors can A/6
have? In (5.1) we saw that A is the product of four factors which are linear polynomials
in r and s, so there can be only finitely many pairs r, s for which A/6 has fewer than three
prime factors. Calculations reveal that A/6 = 1 only for the (3, 4, 5) triangle, and that
A/6 has exactly one prime factor only for the (5, 12, 13) triangle. The only Pythagorean
triples for which A/6 has exactly two prime factors are

(8, 15, 17), (7, 24, 25), (12, 35, 37), (20, 21, 29), (11, 60, 61), and (13, 84, 85).

We believe that there are infinitely many Pythagorean triples for which A/6 has exactly
three prime factors, since the prime k-tuplets conjecture predicts that there are infinitely
many prime triplets p− 6, p, p+ 6 and, when we do have such a triplet, we can take r = p
and s = 6 above. Unfortunately Theorem E7.1 does not apply here since p, p − 6 is a
difficult pair.

Exercise E7.3. Use Theorem E7.1 to show that there are infinitely many Pythagorean triples such that

A/6 has exactly four prime factors.
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E8. How many twin primes are there? We discussed Gauss’s heuristic that the
density of primes around x is about 1/log x. This seems to suggest that, for fixed k, the
density of prime pairs p, p + k around x is about (1/log x)2; at least if one could regard
the events of p being prime, and p+ k being prime are “independent”. Of course they are
not independent. In particular if k = 1 then one of the two is even so they cannot both
be prime (except if p = 2, p + 1 = 3); therefore to make a good guess for the number of
primes we should take this into account:

If one has two random integers a, b then the probability that neither of them is divisible

by p is
(
1− 1

p

)2
.

Given k ≥ 1, we want to determine the probability that for a random integer a, neither
a nor a+ k is divisible by p.

Now if p divides k then a ≡ a + k (mod p), so neither is divisible by p if and only if
a ̸≡ 0 (mod p). This has probability 1− 1

p .

If p does not divide k then neither a nor a+ k is divisible by p if and only if a ̸≡ 0 or
−k (mod p). This has probability 1− 2

p .

Hence to make the correct adjustment we should multiply (1/log x)2 by a factor

1− 1
p(

1− 1
p

)2 if p|k, and
1− 2

p(
1− 1

p

)2 if p̸ |k.

We note that this equals 0 only where p = 2 does not divide k. It is evident that there is
no more than one prime pair p, p+ k when k is odd. Our heuristic yields the guess:

#{p ≤ x : p, p+ 2k are prime} ∼
∏
p|2k

1− 1
p(

1− 1
p

)2 ∏
p ̸|2k

1− 2
p(

1− 1
p

)2 x

(log x)2
.

The constant here looks a little daunting, but that can be simplified. Note that 2 always
divides 2k so p = 2 contributes a factor 2. We define the twin prime constant

C := 2
∏
p≥3

(
1− 2

p

)(
1− 1

p

)−2

.

Conjecture. For any k ≥ 1 we have

#{p ≤ x : p, p+ 2k are prime} ∼ C
∏
p≥3
p|k

p− 1

p− 2

x

(log x)2
.

The computational evidence is very compelling that this conjecture is correct.
One can generalize the “heuristic analysis” given in this section to quantify the number

of primes expected in every example of the prime k-tuplets conjecture.
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E9. Other primes. In the section E7 we discussed when linear polynomials give prime
values. But we also are interested in when polynomials give prime values, believing that
any admissible polynomial, that is that does not have a fixed prime divisor, takes on
infinitely prime values. For example we believe that there are infinitely many primes of
the form x2 + 1, but all conjectures of this type are open.

The proof of the prime number theorem extends to show that any admissible, irre-
ducible binary quadratic form takes on infinitely many prime values. That is any degree 2
polynomial in two variables.

We do not know how to prove such a result for degree 3 polynomials in three variables.
However Heath-Brown showed that any admissible, irreducible binary ternary form takes
on infinitely many prime values; that is polynomials of the form ax3 + bx2y + cxy2 + dy3,
as x, y run through all pairs of integers. This is very surprising because the form takes on
roughly N2/3 integer values up to N , whereas in all the previous cases mentioned one has
roughly cN integer values up to N , or at worst CN/

√
log N .

The first result of this type, was Friedlander and Iwaniec’s result that there are infin-
itely many primes of the form x2 + y4.

The outstanding question of this type is to show that there are infinitely many cubic
polynomials whose discriminant is prime. That is infinitely many primes of the form
4a3 + 27b2.

E10. Conway’s prime producing machine. Begin with the integer 2 and multiply it
by the first fraction in the list

17

91
,
78

85
,
19

51
,
23

38
,
29

33
,
77

29
,
95

23
,
77

19
,
1

17
,
11

13
,
13

11
,
15

14
,
15

2
,
55

1

for which the product is an integer. The repeat the process with the product, and continue
over and over again. One obtains the integers

2, 15, 825, 725, 1925, 2275, 425, 390, 330, 290, 770, . . .

including only the prime powers of 2, namely 22, 23, 25, 27, 211, 213, 217, 219 . . . . This
is an extraordinary way to find the primes. It is a challenge to determine why this works.
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F. Analytic number theory

F1. More multiplicative functions.
An integer n is squarefree if there does note exist a prime p for which p2 divides n.

A proof of Theorem 4.2 using the inclusion-exclusion principle. We saw that ϕ(pa) is the
total number of integers up to pa, minus the number of those that are divisible by p.

Similarly one can determine ϕ(paqb) as the total number of integers up to paqb, minus
the number of those that are divisible by p, minus the number of those that are divisible
by q, plus the number of those that are divisible by pq (since they were subtracted out
twice). By exercise 4.2 this yields

ϕ(paqb) = paqb− paqb

p
− paqb

q
+
paqb

pq

= paqb
(
1− 1

p
− 1

q
+

1

pq

)
= paqb

(
1− 1

p

)(
1− 1

q

)
.

More generally suppose that n = pn1
1 pn2

2 . . . pnk

k . The idea is to determine ϕ(n) by counting
1 for each integer a in the range 1 ≤ a ≤ n which is coprime with n, and 0 for those that
are not. In other words, if ℓ is the number of distinct prime factors of (a, n) then we count
(1− 1)ℓ, since this equals 1 with ℓ = 0, and 0 when ℓ ≥ 1. Therefore writing ω(m) for the
number of distinct prime factors of m we have

ϕ(n) =
∑

1≤a≤n

(1− 1)ω((a,n)).

If we expand (1− 1)ω(m) using the binomial theorem we obtain

(1− 1)ω(m) =

ω(m)∑
j=0

(−1)j
(
ω(m)

j

)
.

Now
(
ω(m)

j

)
denotes the number of subsets of ω(m) elements of size j, and if we take the

set of ω(m) elements to be the ω(m) distinct prime factors of m, then the subsets of size
j correspond to the squarefree divisors of m with exactly j prime factors. Hence

(1− 1)ω(m) =

ω(m)∑
j=0

(−1)j
∑

d|m, ω(d)=j
d is squarefree

1 =
∑
d|m

d is squarefree

(−1)ω(d).

Noting that d|(a, n) if and only if d|a and d|n we therefore have

ϕ(n) =
∑

1≤a≤n

∑
d|a, d|n

d is squarefree

(−1)ω(d) =
∑
d|n

d is squarefree

(−1)ω(d)
∑

1≤a≤n
d|a

1

=
∑
d|n

d is squarefree

(−1)ω(d)· n
d

= n ·
∑
d|n

d is squarefree

(−1)ω(d)

d
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by exercise 4.2. To complete the proof:

Exercise F1.1. Using induction on the number of prime factors of n, or otherwise, prove that

∑
d|n

d is squarefree

(−1)ω(d)

d
=

∏
p prime

p|n

(
1−

1

p

)
.

The coefficients (−1)ω(d) occur in many places in number theory. They are obviously
a multiplicative function of d, called the Mobius function and denoted µ(d). That is µ(.)
is multiplicative with µ(p) = −1 and µ(pk) = 0 for all k ≥ 2. Hence we may write the last
exercise as ∏

p prime
p|n

(
1− 1

p

)
=
∑
d|n

µ(d)

d
.

We saw above that

(F1.1)
∑
d|m

µ(d) = (1− 1)ω(m) =

{
1 for m = 1

0 for m ≥ 2.

Now ℓ = m/d runs through the divisors of m as d does, so the last sum may also be written
as
∑

ℓ|m µ(m/ℓ).

In our proof of Theorem 4.2 above we saw that

ϕ(n) =
∑
d|n

µ(d)
n

d
=
∑
m|n

µ(n/m) ·m,

taking m = n/d. This should be compared to Proposition 4.3 which yields

m =
∑
n|m

ϕ(n).

It is often easier to write n = ℓm rather than m|n; the two identities here then become

ϕ(n) =
∑
ab=n

µ(a)b and m =
∑
cd=m

ϕ(d).

By this we mean that we obtain ϕ(n) as a weighted sum of m over the divisors m of n
(with weight µ(n/m)), and then that m is the sum of ϕ(n) over the divisors n of m. Rather
surprisingly this is not a co-incidence but rather holds for all multiplicative functions.

The Mobius inversion formula. Suppose that f and g are two given multiplicative
functions. Then f(n) =

∑
ab=n µ(a)g(b) for all integers n ≥ 1 if and only if g(m) =∑

cd=m f(d) for all integers m ≥ 1.
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Proof. If g(m) =
∑

cd=m f(d) for all integers m ≥ 1 then∑
ab=n

µ(a)g(b) =
∑
ab=n

µ(a)
∑
cd=b

f(d) =
∑

acd=n

µ(a)f(d) =
∑
d|n

f(d) ·
∑

ac=n/d

µ(a) = f(n),

since this last sum is 0 unless n/d = 1. Similarly if f(n) =
∑

ab=n µ(a)g(b) for all integers
n ≥ 1 then∑

cd=m

f(d) =
∑
cd=m

∑
ab=d

µ(a)g(b) =
∑

abc=m

µ(a)g(b) =
∑
b|m

g(b)
∑

ac=m/b

µ(a) = g(m).

Exercise F1.2. By using the Mobius inversion formula, or otherwise, prove that ϕn(t) =
∏

d|n(t
d −

1)µ(n/d). (These cyclotomic polynomials are defined in section 7.9)

Convolutions of Dirichlet series. Given two multiplicative functions f(a) and g(b), we
can define another multiplicative function h(n) by

h(n) :=
∑
ab=n

f(a)g(b).

We have seen quite a few examples of this above. To prove this is multiplicative, suppose
that (m,n) = 1:

Exercise F1.3. Prove that if ab = mn then there exist integers r, s, t, u with a = rs, b = tu, m = rt, n =

su with (r, s) = (t, u) = 1.

Hence

h(mn) =
∑

ab=mn

f(a)g(b) =
∑

rs=m,
tu=n

f(rs)g(tu) =
∑
rs=m

f(rs)
∑
tu=n

g(tu) = h(m)h(n).

Now consider the Dirichlet series

F (s) =
∑
a≥1

f(a)

as
, G(s) =

∑
b≥1

g(b)

bs
, and H(s) =

∑
n≥1

h(n)

ns
.

Then, grouping together terms where ab = n we have

F (s)G(s) =
∑
a,b≥1

f(a)g(b)

(ab)s
=
∑
n≥1

∑
ab=n

f(a)g(b)· 1

ns
=
∑
n≥1

h(n)

ns
= H(s).

Some interesting examples of Dirichlet series include ζ(s) =
∑

n≥1
1
ns and ζ(s)−1 =∑

n≥1
µ(n)
ns . We define 1(s) = 1. Hence (F1.1) comes from taking the convolution of 1

with µ, and corresponds to the identity ζ(s) ·ζ(s)−1 = 1(s). The Mobius inversion formula
can be re-stated as

G(s) = ζ(s)F (s) if and only if F (s) = ζ(s)−1G(s).

Exercise F1.4. Describe the identity in Proposition 4.3 in terms of Dirichlet series. What are the

Dirichlet series with coefficient n, with coefficient τ(n), with coefficient σ(n)? What are the coefficients of

L(s, χ)ζ(s)? When are they non-zero in the case that χ(n) = (−4/n)?
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F2. Character Sums. One can ask how many quadratic residues mod p there are up
to some given integer x. If there are N residues and R non-residues then N +R = x and
N − R =

∑
n≤x(n/p), so the difficulty of the problem is equivalent to determining the

character sum
∑

n≤x(n/p). One notices that
∑

n≤p(n/p) = 0, since there are (p − 1)/2

quadratic residues, and the same number of non-residues. How about up to p/2. If
(−1/p) = 1 then (n/p) = ((p−n)/p) and so

∑
n<p/2(n/p) =

∑
p/2<n<p(n/p), and therefore∑

n<p/2(n/p) =1
2

∑
n≤p(n/p) = 0. If (−1/p) = −1 this turns out to be a much deeper

problem that we will discuss in section *. One can ask what is the biggest that
∑

n≤x(n/p)
can be as one varies over x. Going back to our original motivation, one might ask from what
point onwards are there roughly the same number of quadratic residues as non-residues,
that is for what x is

∑
n≤x(n/p) “small” compared to x. These are both questions that

are a little deep for our course.... so we should give here the best results known.
Another problem is to ask whether the values of a given polynomial are equally often

quadratic residues and non-residues. So suppose that f(x) ∈ Z[x] has no repeated roots.
Then can we get a good upper bound on

∑
1≤n≤p(f(n)/p) ? This is of particular interest

since, by Corollary 8.2

#{x, y (mod p) : y2 ≡ f(x) (mod p)} =
∑

x (mod p)

1+

(
f(x)

p

)
= p+

∑
n (mod p)

(
f(n)

p

)
.

Exercise F2.1. Prove that if f(n) = an+ b where p̸ |a then
∑

1≤n≤p(f(n)/p) = 0.

With quadratic polynomials things are a bit more complicated.

Exercise F2.2. Show that if p̸ |a then

#{x (mod p) : m ≡ x2 (mod p)} − 1 =

(
a

p

)
(#{x (mod p) : m ≡ ax2 (mod p)} − 1).

Taking m = y2 − b deduce that

∑
1≤n≤p

(
an2 + b

p

)
=

(
a

p

) ∑
1≤n≤p

(
n2 + b

p

)
.

Show that the solutions x, y mod p to y2 ≡ x2+ b (mod p) are in 1-to-1 correspondence with the solutions

r, s mod p to rs ≡ b (mod p). Deduce that
∑

1≤n≤p

(
n2+b

p

)
= −1, and

∑
1≤n≤p

(
an2+b

p

)
= −

(
a
p

)
.

Exercise F2.3. Determine #{x, y (mod p) : y2 ≡ ax2 + bx+ c (mod p)} in all cases.

We have seen that is is fairly straightforward to compute the number of solutions to
y2 ≡ f(x) (mod p) when f(x) has degree 1 or 2. This question gets more considerably
more difficult for f of degree 3 (or more). We will discuss here a couple of fairly simple
cases that will come in useful later.

Given any equation y2+Ey = Ax3+Bx2+Cx+D we can replace y by y/A+AE/2 and
x by x/A−B/3 to obtain an equation of the form y2 = x3 + ax+ b. This transformation
works in C and mod p for any prime p > 3. So in general we are interested in #{x, y
(mod p) : y2 ≡ x3 + ax + b (mod p)}. In the next two parts we focus on the two very
special cases b = 0 and a = 0.
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The equation y2 = x3 + ax. We define

Sa :=
∑

1≤n≤p

(
n3 + an

p

)
.

Note that (−n)3 + a(−n) = −(n3 + an) so that if p ≡ 3 (mod 4) then
(

n3+an
p

)
+(

(p−n)3+a(p−n)
p

)
= 0 and therefore Sa = 0. So henceforth assume that p ≡ 1 (mod 4).

Exercise F2.4. By making the substitution n ≡ m/b (mod p) show that Sab2 =
(

b
p

)
Sa. Show that

S0 = 0.

Let T+ = S−1 and T− = Sa where (a/p) = −1. By exercise F2.4 we have

p− 1

2
(T 2

+ + T 2
−) =

∑
a (mod p)

S2
a =

∑
a (mod p)

∑
m,n (mod p)

(
m3 + am

p

)(
n3 + an

p

)

=
∑

m,n (mod p)

(
mn

p

) ∑
a (mod p)

(
(a+m2)(a+ n2)

p

)

= p
∑

m,n (mod p)

m2≡n2 (mod p)

(
mn

p

)
−

∑
m,n (mod p)

(
mn

p

)

by exercises F2.2 and 3. The second sum here is clearly 0. In the first sum we get 0 when

n = 0. For all other n we have m ≡ ±n (mod p) so that
(

mn
p

)
=
(

±n2

p

)
= 1, so the sum

equals (p− 1) · 2. Therefore we have

T 2
+ + T 2

− = 4p.

Now
(
1 +

(
n−1
p

))(
1 +

(
n
p

))(
1 +

(
n+1
p

))
= 0 or 8 unless n ≡ −1, 0 or 1 (mod p). For

n = ±1 we get 2
(
1 +

(
2
p

))
which sum to 0 or 8, and for n = 0 we get 4. Hence

∑
n (mod p)

(
1 +

(
n− 1

p

))(
1 +

(
n

p

))(
1 +

(
n+ 1

p

))
≡ 4 (mod 8).

But each
∑

n (mod p)

(
n+i
p

)
= 0 and each

∑
n (mod p)

(
n+i
p

)(
n+j
p

)
= −1, so the above

expands out to being p−3+S−1 = p−3+T+. Hence T+ ≡ −(p+1) (mod 8). We deduce
that T+ = 2a, T− = 2b where a is odd; and a2 + b2 = p. We choose the sign of a so that
a ≡ −(p+1

2 ) (mod 4). Summarizing:

Proposition F2.1. Let p be a prime ≡ 1 (mod 4), and a and b be those unique integers
(up to sign) for which p = a2 + b2 with a odd and b even. Then

#{x, y (mod p) : y2 ≡ x3 − x (mod p)} = p− 2(−1)
a+b+1

2 a.
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We also have #{x, y (mod p) : y2 ≡ x3 − k2x (mod p)} = p − 2(−1)
a+b+1

2 a
(

k
p

)
for

any k ̸≡ 0 (mod p); and #{x, y (mod p) : y2 ≡ x3 − rk2x (mod p)} = p − 2b
(

k
p

)
if

(r/p) = −1.

Note also that S1 =
∑

1≤n≤p−1

(
n+1/n

p

)
. This helps us to obtain the number or

solutions to a+ b ≡ c2 (mod p) where ab ≡ 1 (mod p).

The equation y2 = x3 + b. Since the map x→ x3 is an automorphism if p ≡ 2 (mod 3),
we then have that

Sb :=
∑

1≤n≤p

(
n3 + b

p

)
equals 0. Hence we may assume p ≡ 1 (mod 3). The map n → n/d yields that Sb =

Sbd3

(
d
p

)
. So define Ti = Sgi

(
gi

p

)
for i = 0, 1, 2, where g is a primitive root mod p. As

before we have S0 = 0 and so

p− 1

3
(T 2

0 + T 2
1 + T 2

2 ) =
∑

b (mod p)

S2
b =

∑
m,n (mod p)

∑
b (mod p)

(
(b+m3)(b+ n3)

p

)
= p

∑
m,n (mod p)

m3≡n3 (mod p)

1−
∑

m,n (mod p)

1

= p(1 + 3(p− 1))− p2 = 2p(p− 1),

yielding that T 2
0 + T 2

1 + T 2
2 = 6p. Note also that

p− 1

3
(T0 + T1 + T2) =

∑
b (mod p)

(
b

p

)
Sb =

∑
1≤n≤p

∑
b (mod p)

(
b(b+ n3)

p

)
= (p− 1) +

∑
1≤n≤p−1

(−1) = 0.

Now ((n3 + b)/p) ≡ 1 (mod 2) unless n3 ≡ −b (mod p). There are three solutions to this
for b = 1 and none for b = g or g2, and so T0 is even and T1, T2 odd. We also have that if
m ̸≡ 0 (mod p) and n3 ≡ m (mod p) then there are 3 such solutions. Therefore Sb ≡ (b/p)
(mod 3), and so each Ti ≡ 1 (mod 3). Hence if we write T0 = 2a then a + T1 is divisible
by 3, so call is 3b. So T1 = −a− 3b and therefore T2 = −a+ 3b as T0 + T1 + T2 = 0. But
then T 2

0 + T 2
1 + T 2

2 = 6(a2 + 3b2) and therefore

p = a2 + 3b2.

Finding the sign of a is easy since a ≡ 2 (mod 3).
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Proposition F2.2. Let p be a prime ≡ 1 (mod 3), and a and b be those unique integers
(up to sign) for which p = a2 + 3b2 with a ≡ 2 (mod 3). Then, for any k ̸≡ 0 (mod p),

#{x, y (mod p) : y2 ≡ x3 + k3 (mod p)} = p− 2a

(
k

p

)
.

Moreover #{x, y (mod p) : y2 ≡ x3 + gik3 (mod p)} = p + (a + 3(−1)ib)
(

k
p

)
for i = 1

or 2.

Chevalley-Warning theorem. Let f(x1, x2, . . . , xn) ∈ Z[x1, x2, . . . , xn] and suppose
that it has degree d < n.23 Then the number of solutions to f ≡ 0 (mod p) is congruent
to ∑

m1,... ,mn (mod p)

1− f(m1, . . . ,mn)
p−1 (mod p).

The first term evidently sums to pn ≡ 0 (mod p). When we expand the second term we
get a sum of terms, each of total degree ≤ d(p− 1). For the sum, over the mi, of the term
to be non-zero, the degree in each variable must be ≥ p− 1 (by Corollary 7.9), and so the
total degree of the term must be ≥ n(p − 1). This implies that n(p − 1) ≤ d(p − 1) and
hence d ≥ n, a contradiction. We deduce that

#{m1, . . . ,mn (mod p) : f(m1, . . . ,mn) ≡ 0 (mod p)} ≡ 0 (mod p).

Therefore if f(0, 0, . . . , 0) = 0, that is f has a zero constant term, then there are ≥ p− 1
distinct non-zero solutions to f(m1, . . . ,mn) ≡ 0 (mod p).

One example is the equation ax2 + by2 + cz2 ≡ 0 (mod p).

Gauss Sums. For a character χ (mod q), define the Gauss sum

g(χ) :=
∑

a (mod q)

χ(a)e

(
a

q

)
.

Exercise F2.5. Show that g(χ0) = µ(q).

Exercise F2.6. Show that g(χ) = χ(−1)g(χ). (Hint: Look for a simple change of variable.)

For fixed m with (m, q) = 1 we change the variable a to mb, as b varies through the
residues mod q, coprime to q, so that

g(χ,m) :=
∑

a (mod q)

χ(a)e

(
am

q

)
= χ(m)g(χ).

23The degree of xe11 xe22 . . . xenn is e1 + e2 + . . .+ en.
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Therefore, for q = p prime and χ non-principal,

|g(χ)|2 =
1

p− 1

p−1∑
m=1

|g(χ,m)|2 =
1

p− 1

p−1∑
m=0

|g(χ,m)|2

=
1

p− 1

p−1∑
m=0

∑
a (mod p)

χ(a) exp

(
am

p

) ∑
b (mod p)

χ(b) exp

(
− bm

p

)

=
∑

a (mod p)

∑
b (mod p)

χ(a)χ(b)
1

p− 1

p−1∑
m=0

exp

(
(a− b)m

p

)
=

∑
a,b (mod p)
a≡b (mod p)

χ(a)χ(b)
p

p− 1
= p,

and so

|g(χ)| = √
p.

Now suppose that q = rs where (r, s) = 1, so there exist integers u, v such that us+vr = 1,
and hence

1

q
=
u

r
+
v

s
.

Write χ as ρσ where ρ has conductor r and σ has conductor s. Now a = aus+ avr ≡ aus
(mod r) and ≡ avr (mod s), so that χ(a) = ρ(a)σ(a) = ρ(aus)σ(avr). Hence, letting
b ≡ au (mod r) and c ≡ av (mod s), we have

g(χ) =
∑

a (mod q)

ρ(aus)σ(avr)e
(au
r

+
av

s

)
= ρ(s)σ(r)

∑
b (mod r)

ρ(b)e

(
b

r

)
·
∑

c (mod s)

σ(c)e
( c
s

)
= ρ(s)σ(r)g(ρ)g(σ).

Hence |g(χ)| = |g(ρ)| |g(σ)|.
Exercise F2.7. Show that if χ is a non-principal character modulo squarefree q then |g(χ)| = √

q.

Now, by changing variables b = q − a,

g(χ) =
∑

a (mod q)

χ(a) exp

(
− a

q

)
=

∑
b (mod q)

χ(q − b) exp

(
b

q

)
= χ(−1)g(χ).

Exercise F2.8. Deduce that if χ is a non-principal real character then g(χ) = ±
√
χ(−1)p. Deciding

which of these two choices gives the value of g(χ) is a substantially more difficult question, which took

Gauss four years to resolve!
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Another proof of the law of quadratic reciprocity. Let χ = (./q) where q is an

odd prime. By exercise F2.8 and since χ is real we have g(χ) = χ(−1)g(χ), so that
g(χ)2 = χ(−1)|g(χ)|2 = χ(−1)q, by the above. Let p be any different odd prime so that

g(χ)p ≡
∑

a (mod q)

(
a

q

)p

e

(
ap

q

)
=

(
p

q

) ∑
b (mod q)

(
b

q

)
e

(
b

q

)
=

(
p

q

)
g(χ) (mod p)

letting b ≡ ap (mod q). Now multiplying through by g(χ), and dividing through by q, we
obtain

(χ(−1)q)
p−1
2 = g(χ)p−1 ≡ χ(p) (mod p).

Now q
p−1
2 ≡ (q/p) (mod p) by Euler’s criterion, and χ(−1) = (−1)

q−1
2 . Putting all this

together yields the law of quadratic reciprocity, as desired.
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F3. The least quadratic non-residue.

Theorem F3.1. For every odd prime p ≡ 3 (mod 4) there exists a prime q < 2
√
p with(

q
p

)
= −1.

Proof. If p ≡ 3 (mod 4) select a = [
√
p] so that 1 ≤ p − a2 < p − (

√
p − 1)2 = 2

√
p − 1.

Now
(

p−a2

p

)
=
(

a
p

)2 (
−1
p

)
= −1 as p ≡ 3 (mod 4), and so there exists a prime factor q

of p− a2 for which
(

q
p

)
= −1.

Theorem F3.2. For every odd prime p ≡ 1 (mod 4) there exists a prime q <
√
p with(

q
p

)
= −1.

Proof. If p ≡ 1 (mod 4) and
(

q
p

)
= 1 for all primes q ≤ N then

(
n
p

)
= 1 for all integers

n ≤ N . Let b be any quadratic non-residue (mod p). Then b, 2b, 3b, . . . , Nb (mod p) are
also quadratic non-residues mod p. By the pigeonhole principle there exist 0 ≤ i < j ≤ N
such that the least positive residues of ib and jb (mod p) differ by < p

N . Now let n = j− i
and k = |n| so that

(
k
p

)
=
(

n
p

)
as
(

−1
p

)
= 1. Therefore, if B ≡ kb (mod p) then

0 < B < p
N , and

(
B
p

)
=
(

k
p

)(
b
p

)
= −1. This gives a contradiction for N >

√
p.

It is hard to resist giving another result of this type even though it is not strictly on
the topic.

Theorem F3.3. If p ≡ 1 (mod 4), p > 17, there exists a prime q < 4(
√
p + 1) with(

−p
q

)
= −1.

Proof. Let 2a be that even integer immediately greater than
√
p, so that 4a2 − p ≡ 3

(mod 4). Let q be a prime divisor of 4a2 − p which is ≡ 3 (mod 4) so that p ≡ 4a2

(mod q) and hence
(

p
q

)
= 1. But then

(
−p
q

)
= −1 as q ≡ 3 (mod 4). Also 2a <

√
p + 2

and so q ≤ 4a2 − p < (
√
p+ 2)2 − p = 4(

√
p+ 1).

The proof of Rabinowicz’s criterion in section 12 implies, since
(

d
p

)
=
(

p
|d|

)
:

Theorem F3.4. Let q be a prime ≡ −1 (mod 4). Then
(

p
q

)
= −1 for all primes p < q+1

4

if and only if h(−q) = 1.

Therefore we see that finding a small prime p with
(

p
q

)
= 1, can be a deep problem.

To find quadratic non-residues one can appeal to several results. The first is the Polya-
Vinogradov Theorem (1919) which shows that for any non-principal character χ mod q
one has, for any M and N . ∣∣∣∣∣

M+N∑
n=M+1

χ(n)

∣∣∣∣∣ ≤ √
qlog q.
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Since |χ(n)| ≤ 1 for all n, this is a non-trivial bound only if the length of the interval, N ,
is somewhat larger than

√
qlog q.

Exercise F3.1. Deduce that the smallest n for which χ(n) ̸= 1 is < 2
√
qlog q.

If χ is a character of order k then the non-zero values of χ(n) are kth roots of unity.
If we imagine that they are distributed much as N random kth roots of unity would be
distributed then we might expect that the maximum value of the sum (as we vary overM)

is about
√
N log q; this perhaps indicates why we get this bound. However if N is smaller

then we might expect far smaller sums than the bound given by the Polya-Vinogradov
Theorem. Indeed what we would really like is to have

N∑
n=1

χ(n) = o(N).

We believe that this is true if, for instance N = qϵ for any fixed ϵ > 0. The best result
known is due to Burgess (1962), that this holds when N = q1/4+ϵ. One can deduce from
this that the least quadratic non-residue mod prime q is < q1/4; and with some ingenuity
that it is < q1/4

√
e+ϵ. These results have not been significantly improved in a long time,

and fall far short of Vinogradov’s conjecture that the least quadratic non-residue is < qϵ

for all sufficiently large q.
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F4. Other ways of counting solutions.
If p ≡ 1 (mod 4) then(p−1

2
p−1
4

)
≡
(
1+

2p−1 − 1

2

)(
2a− p

2a

)
(mod p2).

This follows from the facts that(p−1
2

p−1
4

)
≡ 2a (mod p) and

(p−1
2

p−1
4

)2

≡ 2p+1a2 − 2p (mod p2).

We also have(
p− 1
p−1
2

)
≡ (−1)

p−1
2 (1+2p−2) (mod p2) and

(
p− 1
p−1
4

)
≡ (−1)

p−1
4 (1+3(2p−1−1) (mod p2)

How many solutions are there to f(x) = 0? The trick is to use the fact that

1− f(n)p−1 ≡
{

1 (mod p) if f(n) ≡ 0 (mod p);

0 (mod p) if f(n) ̸≡ 0 (mod p),

by Fermat’s little theorem, so that

#{n (mod p) : f(n) ≡ 0 (mod p)} ≡
∑

n (mod p)

(1−f(n)p−1) ≡ −
∑

n (mod p)

f(n)p−1 (mod p).

Exercise F4.1. Show that the number of solutions x, y (mod p) to y2 = f(x) mod p is congruent to

−
∑

m,n (mod p)

(m2 − f(n))p−1 (mod p).

We expand this using the binomial theorem to obtain

−
∑

n (mod p)

p−1∑
j=0

(
p− 1

j

)
(−f(n))j

∑
m (mod p)

m2(p−1−j)

≡
∑

n (mod p)

(1 +

(
p− 1
p−1
2

)
(−f(n))

p−1
2 ) (mod p)

≡
∑

n (mod p)

f(n)
p−1
2 (mod p)

using Corollary 7.9, since
(p−1

p−1
2

)
=
∏

i=1
p−1
2

p−i
i ≡ (−1)

p−1
2 (mod p).
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Now if f(x) = ax2 + bx+ c we have, by the multinomial theorem,

(an2 + bn+ c)
p−1
2 =

∑
i+j+k= p−1

2

p−1
2 !

i!j!k!
(an2)i(bn)jck;

if the exponent on n is divisible by p− 1 and > 0 then i =p−1
2 , j = k = 0, and so∑

n (mod p)

f(n)
p−1
2 ≡ −a

p−1
2 (mod p)

by Corollary 7.9. Now . Collecting up this information yields that the number of solutions

to y2 = ax2 + bx+ c mod p is congruent to −a
p−1
2 ≡ −(a/p) (mod p).

We can ask other questions. Like the number of solutions to y2 = x3 + ax+ b mod p
is congruent to

∑
i+j+k= p−1

2
i,j,k≥0

∑
n (mod p)

p−1
2 !

i!j!k!
(n3)i(an)jbk ≡ −

∑
i+j+k= p−1

2
3i+j=p−1

p−1
2 !

i!j!k!
ajbk.

Now, the conditions i+ j+ k =p−1
2 , 3i+ j = p− 1 imply that j = p− 1− 3i, k = 2i− p−1

2
and so the above becomes

∑
p−1
4 ≤i≤ p−1

3

cia
p−1−3ib2i−

p−1
2 where ci := −

p−1
2 !

i!(p− 1− 3i)!(2i− p−1
2 )!

.

If a = 0 then this is 0 unless p ≡ 1 (mod 3) in which case the i =p−1
3 term gives

−
(p−1

2
p−1
6

)
b

p−1
6

If b = 0 then this is 0 unless p ≡ 1 (mod 4) in which case the i =p−1
4 term gives

−
(p−1

2
p−1
4

)
a

p−1
4

Otherwise #{x, y (mod p) : y2 ≡ x3 + ax + b (mod p)} ≡
(

b
p

)
H(b2/a3) where we have

H(t) :=
∑

p−1
4 ≤i≤ p−1

3
cit

i. Hence we see that when it comes to counting points the key

variable is b2/a3 (and allowing the values here 0 and ∞).
At first sight the reduction from the two variables a, b to one, b2/a3, is quite surprising.

Exercise F4.2. Show that if b2/a3 ≡ t (mod p) where t ̸≡ 0 (mod p) then there exists m (mod p) such

that a ≡ m2t, b ≡ m3t2 (mod p).
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Now given the curve y2 ≡ x3+tm2x+m3t2 (mod p), let’s substitute y = my, x = mx
to obtain y2 ≡ m(x3 + tx+ t2) (mod p). The number of solutions is∑

x (mod p)

1 +

(
m

p

)(
x3 + tx+ t2

p

)
≡
(
b

p

) ∑
x (mod p)

(
x3 + tx+ t2

p

)
,

since b ≡ m(mt)2 (mod p), as expected.
The amazing theorem of Hasse states that

|#{x, y (mod p) : y2 ≡ x3 + ax+ b (mod p)} − p| ≤ 2
√
p,

which means we can identify the precise number using the congruence above. This was
generalized by Weil, so that if f(x) is a polynomial of degree d that has no repeated factors
mod p then

|#{x, y (mod p) : y2 ≡ f(x) (mod p)} − p| ≤ (d− 1)
√
p.

Some basic sums. In exercise E3.2 we evaluated the sum 1/n to a good level of accuracy.
Our goal now is to prove that limN→∞(1/1 + 1/2 + 1/3 + · · · + 1/N − log N) exists
— it is usually denoted by γ and called the Euler-Mascheroni constant. Now let xn =
1/1 + 1/2 + 1/3 + · · ·+ 1/n− log n for each integer n ≥ 1.

Exercise F4.3. (a) By the same argument as in exercise E3.2 show that if n > m then 0 ≤ xm − xn ≤
log (1 + 1/m)− log (1 + 1/n) < 1/m. Thus xm is a Cauchy sequence and converges to a limit as desired.
It can be shown that γ = .5772156649 . . . .

b) Prove that 0 ≤ 1/1 + 1/2 + 1/3 + · · ·+ 1/N − log N − γ ≤ 1/N .

c) Let {t} = t− [t] denote the fractional part of t. Prove that

γ = 1−
∫ ∞

1

{t}
t2

dt.

The hyperbola trick. What is the average number of divisors of integers up to x? The
easiest way to do this is to write the appropriate sums out, using exercise A4.3:∑
n≤x

∑
d|n

1 =
∑
d≤x

∑
n≤x
d|n

1 =
∑
d≤x

[x
d

]
=
∑
d≤x

(x
d
+O(1)

)
= x

∑
d≤x

1

d
+O(x) = x(log x+O(1)).

Dirichlet, however, noted a nice trick to improve the error term here: The poor error term
was caused by summing over the integers d all the way up to x. What Dirichlet noted was
that divisors come in pairs ab = n with a ≤ b; so instead of counting 1 for each of a and
b, rather count 2 for a (unless it is = b =

√
n in which case we count 1). Therefore, using

exercise A4.3,∑
n≤x

∑
d|n

1 =
∑
n≤x

∑
d|n

d<
√
n

2 +
∑
a≥1

a2=d≤x

1 =
∑

d<
√
x

∑
d2<n≤x

d|n

2 + [
√
x] = 2

∑
d<

√
x

([x
d

]
− d
)
+O(

√
x)

= 2
∑

d<
√
x

(x
d
−d+O(1)

)
+O(

√
x) = 2x

∑
d<

√
x

1

d
−x+O(

√
x)

= x(log x+ 2γ − 1) +O(
√
x).



226 ANDREW GRANVILLE

The error term improves from a multiple of x, to a multiple of
√
x; a remarkable improve-

ment! Getting as strong an error term as possible is an important challenge.

F5. Sums of two squares, 4 squares and quaternions (see H and W).
Look for solutions to u2 + v2 ≡ 0 (mod p), so that (u + iv, p)(u − iv, p) = (p). Now

show that these two ideals are principal.
This is the same as the quadratic form proof in disguise.
Let r(n) be the number of ways in which n can be written as the sum of two squares.
We need to prove that there is a unique way to write p ≡ 1 (mod 4), say p = a2 + b2.

Then we have p = (±a)2 + (±b)2 = (±b)2 + (±a)2, that is r(p) = 8. We also have the
unique factorization p = (a+ ib)(a− ib) so just two prime factors, and there are four units
1,−1, i,−i. Let R(n) = r(n)/4, so that R(p) = 2, corresponding to the two possibilities
a+ ib and a− ib. Now there are the three factors (a+ ib)2, (a+ ib)(a− ib), (a− ib)2 of p2

so that R(p2) = 3, and in general pk has the factors (a+ ib)j(a− ib)k−j for 0 ≤ j ≤ k, so
that R(pk) = k + 1.

Now 2 = i(1− i)2 so that R(2k) = 1. Finally, if p ≡ 3 (mod 4) then R(p odd) = 0 and
R(peven) = 1.

Hence r(n) = 4R(n) is a multiplicative function. By Theorem 9.3 we saw that r(n) ̸= 0
if and only if we can write n = 2km+m

2
− where if p|m± then p ≡ ±1 (mod 4). In that

case R(n) = τ(m+).
When we write p = a2 + b2 it would be nice to have an easy way to determine a and

b.

In section F2 we saw that if sm :=
∑

1≤n≤p

(
n3−mn

p

)
then a = s−1/2 and b = sr/2

where (r/p) = −1. In section H2 we will deduce from this that a is the least residue of( p−1
2

p−1
4

)
(mod p).

Serret used continued fractions: Suppose that r2 ≡ −1 (mod p) with 0 < r < p/2.
Let us suppose that p/r = [a0, a1, . . . , an]. By exercise C2.3.1 we know that an ≥ 2, and
this starts an induction hypothesis that shows that the entries in the first column of(

ak 1
1 0

)(
ak+1 1
1 0

)
. . .

(
an 1
1 0

)
,

are at least twice the corresponding entries in the second column. In particular, when
k = 0 we have p = pn ≥ 2pn−1 where pn/qn = p/r. Taking determinants we know that
−pn−1r ≡ pqn−1 − pn−1r = pnqn−1 − pn−1qn = ±1 (mod p), so that pn−1 ≡ ±r (mod p).
Now pn−1 ≡ ±r (mod p), together with 0 ≤ pn−1 < p/2, implies that pn−1 = r. Hence if
r2 + 1 = pℓ then (

p r
r ℓ

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
. . .

(
an 1
1 0

)
,

and we know that n + 1 is even taking determinants. Moreover by taking the transpose
we see that aj = an−j for each j. Hence if n+ 1 = 2m and we let(

a0 1
1 0

)(
a1 1
1 0

)
. . .

(
am 1
1 0

)
=

(
a b
c d

)
,
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then (
p r
r ℓ

)
=

(
a b
c d

)(
a c
b d

)
,

so that p = a2 + b2.

There is also a method due to Legendre using continued fractions: In section C2.5
we saw that

√
d+ [

√
d] = [2a0, a1, . . . , an−1] with aj = an−j for j = 1, 2, . . . , n− 1. Now

we have that(√
d
1

)
=

(
pm pm−1

qm qm−1

)(
αm+1

1

)
so that

(
αm+1

1

)
= (−1)m−1

(
qm−1 −pm−1

−qm pm

)(√
d
1

)
,

and so α =pm−1−qm−1

√
d

pm−qm
√
d

= pm−1pm−dqm−1qm+(−1)m
√
d

p2
m−dq2m

. Write a = (−1)m(p2m − dq2m) and

b = (−1)m(pm−1pm − dqm−1qm) so that (b +
√
d)/a = [am+1, am+2, . . . ], with a and b

integers.

If n is even, say n = 2m, then (b +
√
d)/a = [am+1, am+2, . . . , a3m] is periodic, and

the period is symmetric so that −a/(b −
√
d) = [a3m, . . . , am+1] = (b +

√
d)/a by the

discussion in section C2.4, which implies that d = a2 + b2.

One can show that if d is a prime p ≡ 1 (mod 4) then n is even and so we obtain
integers a and b for which p = a2 + b2. In fact n is even if and only if the fundamental
unit ϵd has norm −1, and thus in this case we always get a solution to d = a2 + b2 from
the continued fraction.

More on the number of representations. Given a discriminant d < 0 and an integer
a we are interested in how many inequivalent primitive representations of n there are by
binary quadratic forms of discriminant d. Let f(x, y) be a reduced form and suppose that
n = f(α, γ) where (α, γ) = 1. We choose integers β, δ so that αδ−βγ = 1 and transform f
to an equivalent binary quadratic form with leading coefficient n so that our representation
becomes n = f(1, 0). Next we transform x → x + ky, y → y so that f is equivalent to a
binary quadratic form nx2 + Bxy + Cy2 with B2 ≡ d (mod 4n) and −n < B ≤ n (and
C = (B2 − d)/4n).

Exercise F5.1. Prove that if f(αx+ βy, γx+ δy) = nx2 +Bxy+Cy2 then, no matter what integers β, δ

we take satisfying αδ − βγ = 1, we get the same value of B (mod 2n).

We need to determine whether any two representations of n by f lead to the same
nx2 + Bxy + Cy2. If so we have Tf = nx2 + Bxy + Cy2 = Uf for two different (and
invertible) transformations T,U and so T−1Uf = f . So we will now find all automorphisms
of reduced f = ax2 + bxy + cy2. Now given any such automorphism we must have a =
f(α, γ) and c = f(β, δ).

Exercise F5.2. (0) Prove that the automorphisms form a group, containing ±I (that is (x, y) → ±(x, y)).

(1) Use exercise 12.2.2(i) to show that if 0 < |b| < a < c then the only automorphisms are ±I.
(2) Show that if b = 0 and a < c we also have (x, y) → ±(x,−y).
(3) Show that if |b| < a = c we also have (x, y) → ±(y, x).
(4) Determine the complete set of automorphisms in all cases.
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We deduce then that, in all except certain special cases, the number, rd(n), of rep-
resentations of n by all binary quadratic forms of discriminant d is equal to the number
of solutions B (mod 2n) to B2 ≡ d (mod 4n). By the Chinese Remainder Theorem we
see that rd(n) is a multiplicative function, so suppose that n = pe where p is prime, with

(p, d) = 1. If p is odd then B2 ≡ d (mod pe) and B ≡ d (mod 2). Hence rd(p
e) = 1+

(
d
p

)
.

If p = 2 then rd(n) = 0 unless d ≡ 1 (mod 8) in which case rd(n) = 2. Hence if (n, d) = 1
then either rd(n) = 0 or rd(n) = 2ω(n).

We can also look at

N(x) = #{(a, b) ∈ Z : a2 + b2 ≤ x} =
∑
n≤x

r(n).

Notice that this should be well approximated by the area of the circle πx with an error
proportional to the circumference, that is bounded by a multiple of

√
x.

Let f(x, y) be a binary quadratic form and let rf (N) be the number of representations
of N by f ; that is, the number of pairs of integers m,n for which f(m,n) = N .

Lagrange’s Theorem. Every positive integer is the sum of four squares

Proof. We start from the identity

(a2 + b2 + c2 + d2)(u2 + v2 + w2 + x2) = (au+ bv + cw + dx)2 + (av − bu− cx+ dw)2

+ (aw + bx− cu− dv)2 + (ax− bw + cv − du)2,(F5.1)

which is much like what we saw for the sum of two squares. Hence it suffices to show that
every prime is the sum of four squares, and we can show any product of primes is the sum
of four squares using the above identity. Now 2 = 12 + 12 + 02 + 02 so we focus on odd
primes p: We know that there exist non-zero integers a, b, c, d such that a2+b2+c2+d2 ≡ 0
(mod p); select them so that m is minimal, where mp = a2 + b2 + c2 + d2. Our goal is to
show that m = 1.

Exercise F5.3. Prove that |a|, |b|, |c|, |d| < p/2, so that m < p.

Exercise F5.4. Show that m is odd: Show that if m is even then we can reorder a, b, c, d so that a−b and
c− d are both even. But then m

2
·p = (a−b

2
)2 + (a+b

2
)2 + ( c−d

2
)2 + ( c+d

2
)2 contradicting the minimality

of m.

Let u, v, w, x be the least residues, in absolute value, of a, b, c, d (mod m), respectively.
Therefore u2+v2+w2+x2 ≡ a2+b2+c2+d2 ≡ 0 (mod m). Moreover |u|, |v|, |w|, |x| < m/2
(since m is odd), and so u2 + v2 + w2 + x2 < 4(m/2)2 = m2. Hence we can write
u2 + v2 + w2 + x2 = mn for some integer n < m.

Exercise F5.5. Prove that au+bv+cw+dx ≡ av−bu−cx+dw ≡ aw+bx−cu−dv ≡ ax−bw+cv−du ≡ 0

(mod m).
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Let A =au+bv+cw+dx
m , B =av−bu−cx+dw

m , C =aw+bx−cu−dv
m , D =ax−bw+cv−du

m , which
are integers by the last exercise, and so

A2 +B2 + C2 +D2 =
(a2 + b2 + c2 + d2)

m
· (u

2 + v2 + w2 + x2)

m
= np.

This contradicts the minimality of m unless n = 0 in which case u = v = w = x = 0 so
that a ≡ b ≡ c ≡ d ≡ 0 (mod m) and so m2|a2 + b2 + c2 + d2 = mp. Therefore m = 1 as
m < p, which is what we wished to prove.

Exercise F5.6. Use the same approach to prove that every prime ≡ 1 (mod 4) is the sum of two squares.

Quaternions. Just as we saw that a proof of which primes are the sum of two squares
can be rephrased in terms of elements of Z[i], we can make a similar transition for our
proof of the sum of four squares, but now in terms of the mysterious quaternions: Here we
have three different special elements i, j, k for which i2 = j2 = k2 = −1, but which do not
commute:

ij = −ji = k, jk = −kj = i, ki = −ik = j,

so that (a+bi+cj+dk)(a−bi−cj−dk) = a2+b2+c2+d2, when we multiply a quaternion
by its conjugate. The key observation is that

(a− bi− cj − dk)(u+ vi+ wj + xk) = (au+ bv + cw + dx) + (av − bu− cx+ dw)i

+ (aw + bx− cu− dv)j + (ax− bw + cv − du)k

which allows us to recover (F5.1) when we multiply each side by its (quaternionic) conju-
gate.

Exercise F5.7. Rewrite the above proof, that every prime is the sum of four squares, in terms of quater-

nions.

Universality of quadratic forms. Once one knows that every positive integer can be
represented by the sum of four squares, but not as the sum of three squares, one might
ask for further positive definite quadratic forms with this property.

It turns out that no quadratic or ternary quadratic form can represent all integers.

In 1916 Ramanujan asserted that the quaternary quadratic forms with the following
coefficients represent all integers: {1, 1, 1, k}, {1, 2, 2, k}, : 1 ≤ k ≤ 7; {1, 1, 2, k}, {1, 2, 4, k} :
1 ≤ k ≤ 14; {1, 1, 3, k} : 1 ≤ k ≤ 6; {1, 2, 3, k}, {1, 2, 5, k} : 1 ≤ k ≤ 10; though this is not
quite true for {1, 2, 5, 5} since it represent every positive integer except 15. We deduce

The Fifteen criterion, I. Suppose that f is a positive definite diagonal quadratic form.
Then f represents all positive integers if and only if f represents all positive integers ≤ 15.

Proof. Suppose that f = a1x
2
1 + a2x

2
2 + . . .+ adx

2
d, with 1 ≤ a1 ≤ a2 ≤ . . . ≤ ad represents

all positive integers. Since f represents 1 we must have a1 = 1. Since f represents 2 we
must have a2 = 1 or 2. If a1 = a2 = 1 then, since f represents 3 we must have a3 = 1, 2
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or 3. If a1 = 1, a2 = 2 then, since f represents 5 we must have a3 = 2, 3, 4 or 5. Now

x21 + x22 + x23 represents m, 1 ≤ m ≤ 6, but not 7, and so 1 ≤ a4 ≤ 7;

x21 + x22 + 2x23 represents m, 1 ≤ m ≤ 13, but not 14, and so 1 ≤ a4 ≤ 14;

x21 + x22 + 3x23 represents m, 1 ≤ m ≤ 5, but not 6, and so 1 ≤ a4 ≤ 6;

x21 + 2x22 + 2x23 represents m, 1 ≤ m ≤ 6, but not 7, and so 1 ≤ a4 ≤ 7;

x21 + 2x22 + 3x23 represents m, 1 ≤ m ≤ 9, but not 10, and so 1 ≤ a4 ≤ 10;

x21 + 2x22 + 4x23 represents m, 1 ≤ m ≤ 13, but not 14, and so 1 ≤ a4 ≤ 14;

x21 + 2x22 + 5x23 represents m, 1 ≤ m ≤ 9, but not 10, and so 1 ≤ a4 ≤ 10.

Ramanujan’s result implies that a1x
2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 then represents every positive

integer except perhaps 15, and the result follows.

We could look to represent only 1, 2, 3, 5, 6, 7, 10, 14, 15 rather than all integers ≤ 15.
By the 1940s researchers had come up with complicated criteria to decide whether a

quadratic form represented all integers, but it took the genius of John Conway to come up
with the following simply checked criterion:

The Fifteen criterion, II. Suppose that f is a positive definite quadratic form, which
is diagonal mod 2. Then f represents all positive integers if and only if f represents all
positive integers ≤ 15.

Notice that this is sharp since x2 + 2y2 + 5z2 + 5w2 represents every positive integer
other than 15.

This was extended to all quadratic forms by Bhargava and Hanke:

The 290 criterion. Suppose that f is a positive definite quadratic form. Then f repre-
sents all positive integers if and only if f represents all positive integers ≤ 290.

Notice that this is sharp since x2 + xy + 2y2 + xz + 4z2 + 29(a2 + ab+ b2) represents
every positive integer other than 290.

The number of representations. In 1834 Jacobi showed that there are 8σ(n) rep-
resentations of n as a sum of four squares if n is odd, and 24σ(m) representations if
n = 2km, k ≥ 1 is even.

Exercise F5.8. Prove that this can re-written as follows:∑
n∈Z

xn
2

4

= 8
∑
d≥1
4̸|d

dxd

1− xd
.

Representation by positive definite quadratic forms. Let us suppose that f is any
positive definite quadratic form in three or more variables. One might ask which integers
can be represented by f . In all of the examples we have seen f represents all integers,
or (like x2 + y2 + z2) all integers in certain residue classes. Is this true in general? We
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saw even in the quadratic form case that if an integer satisfies certain obvious congruence
conditions that it is represented by some form of the given discriminant, and this result
easily generalizes; however we are interesting in representation by a specific form.

In 1929 Tratowsky showed that for any positive definite quadratic form f of discrim-
inant D > 0 in five or more variables, if n is sufficiently large then n is represented by f
if and only if n is represented by f (mod D).

For three or four variables it usually makes sense (and is easier) to restrict our attention
to the representation of squarefree integers n. In 1926 Kloosterman introduced an analytic
method which implies that if f of discriminant D > 0 has four variables, and if n is a
sufficiently large squarefree integer then n is represented by f if and only if n is represented
by f (mod D). It was only in 1990, that Duke and Schulze-Pillot extended this to positive
definite quadratic forms f of discriminant D > 0 in three variables: If n is a sufficiently
large squarefree integer then n is represented by f if and only if n is represented by f
(mod D2); or more explicitly:

Theorem F5.1. There exists an absolute constant c > 0 such that if n is a squarefree
integer with n > cD337 then n can be represented by f if and only if there exist integers
a, b, c such that f(a, b, c) ≡ n (mod 8D3).

Waring’s problem. We have seen that every positive integer is the sum of four squares.
For n ≡ a (mod 6) with −2 ≤ a ≤ 3 we use the identity

n = (x+ 1)3 + (x− 1)3 + (−x)3 + (−x)3 + a3 = 6x+ a3

to note that every integer is the sum of five cubes. This is rather too easy so let us insist
on cubes of non-negative integers.

More generally we can ask whether, for each k ≥ 2, there exists an integer g(k) such
that every integer is the sum of g(k) kth powers of non-negative integers. Hilbert showed
that g(k) exists, and we have seen that g(2) = 4. Indeed g(3) = 9, g(4) = 19, g(5) =
37, g(6) = 73 . . . Actually g(k) grows fast, the reason being the large number of kth powers
needed to represent small integers. Some candidates for the worst are 2k − 1 which needs
2k − 1 times 1k, then 2k[(3/2)k]− 1 which requires [(3/2)k]− 1 times 2k, plus 2k − 1 times
1k. There is similarly a candidate a little smaller than 4k. Euler’s son thus conjectured
that g(k) = 2k + [(3/2)k]− 2 which is true if 2k(3/2)k + [(3/2)k] ≤ 2k which holds for all
k < 108 and is probably always true.

It turns out to be a good idea to ignore these small exceptional values. Hence we
define G(k) to be the smallest integer such that every sufficiently large integer is the sum
of G(k) kth powers of non-negative integers. Evidently G(2) = 4 and G(k) is ≤ g(k),
usually far smaller than g(k). We know that 4 ≤ G(3) ≤ 7, and in general G(k) ≤
klog k + klog log k + Ck for some constant C.

Taxicab numbers and other diagonal surfaces. When Ramanujan lay ill from pneu-
monia in an English hospital he was visited by G.H. Hardy, his friend and co-author.
Struggling for conversation, Hardy remarked that the number, 1729, of the taxicab he had
ridden from the train station to the hospital was extremely dull. Ramanujan contradicted
him noting that it is the smallest number which is the sum of two cubes in two different
ways:

13 + 123 = 93 + 103 = 1729.
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(Ramanujan might also have mentioned that it is the third smallest Carmichael number!).
There are many other such identities; indeed Euler showed that all solutions to

a3 + b3 = c3 + d3

can be obtained by scaling

a = r4 + (p− 3q)(p2 + 3q2)r, b = (p+ 3q)r3 + (p2 + 3q2)2,

c = r4 + (p+ 3q)(p2 + 3q2)r, d = (p− 3q)r3 + (p2 + 3q2)2.

How about a4+b4+c4 = d4? Euler conjectured that there are no non-trivial solutions,
but in 1986 Elkies showed that there are infinitely many, the smallest of which is

958004 + 2175194 + 4145604 = 4224814.

(It was rather lucky that this is just large enough to have avoided direct computer searches
to that time, since Elkies was inspired to give his beautiful solution to this problem). Euler
had even conjectured that there is no non-trivial solution to the sum of n − 1 powers
equalling an nth power, but that had already been disproved via the example

275 + 845 + 1105 + 1335 = 1445.
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G. Combinatorial number theory

G1. Partitions. Let p(n) denote the number of ways of partitioning n into smaller
integers. For example p(7) = 15 since

7 = 6 + 1 = 5 + 2 = 5 + 1 + 1 = 4 + 3 = 4 + 2 + 1 = 4 + 1 + 1 + 1 = 3 + 3 + 1

= 3 + 2 + 2 = 3 + 2 + 1 + 1 = 3 + 1 + 1 + 1 + 1 = 2 + 2 + 2 + 1

= 2 + 2 + 1 + 1 + 1 = 2 + 1 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1.

Euler observed that there is a beautiful generating function for p(n): In the generating
function p(n) is the coefficient of tn, and for each partition n = a1 + . . .+ ak we can think
of tn as ta1 . . . tak . Splitting this product up into the values of the ai, but taking (ta)j if
there are j of the ai’s that equal a, we see that

∑
n≥0

p(n)tn =
∏
a≥1

∑
j≥0

(ta)j

 =
1

(1− t)(1− t2)(1− t3) . . .
.

Similarly the generating function for the number of partitions into odd parts is 1/(1−t)(1−
t3)(1−t5) . . . , for the number of partitions with no repeated parts is (1+t)(1+t2)(1+t3) . . . ,
etc.

Exercise G1.1. Deduce that the number of partitions of n into odd parts is equals to the number of

partitions of n with no repeated parts.

Partitions can be represented by rows and columns of dots in a Ferrers diagram; for
example 27 = 11 + 7 + 3 + 3 + 2 + 1 is represented by

o o o o o o o o o o o

o o o o o o o

o o o

o o o

o o

o

the first row having 11 dots, the second 7, etc. Now, reading the diagram in the other
direction yields the partition 27 = 6+5+4+2+2+2+2+1+1+1+1. This bijection between
partitions is at the heart of many beautiful theorems about partitions. For example if a
partition has m parts then its “conjugate” has largest part m. Using generating functions,
we therefore find that the number of partitions with ≤ m parts, equals the number of
partitions with all parts ≤ m, which has generating function

1

(1− t)(1− t2)(1− t3) . . . (1− tm)
.

Using the Ferrers diagram the partitions come in pairs, other than those that are
self-conjugate; that is the conjugate partition is the same as the original partition. This
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implies a symmetry about the diagonal axis of the diagram. Hence a self-conjugate Ferrers
diagram looks like

o o o o o o 1 1 1 1 1 1 1

o o o o o 1 2 2 2 2

o o o 1 2 3

o o 1 2

o o 1 2

o 1

yielding 19 = 6+5+3+2+2+1. We have constructed another partition of 19, using the
same Ferrers diagram. The first element is obtained by peeling off the top row and top
column (which have a total of 11 entries), then what’s left of the second row and second
column (7 remaining entries), and finally the single element left (1 entry), yielding the
partition 19 = 11 + 7 + 1.

Exercise G1.2. Prove that there is a bijection between self-conjugate partitions and partitions where

all the entries are odd and distinct. Give an elegant form for the generating function for the number of

self-conjugate partitions.

The sequence p(n) begins p(1) = 1, 2, 3, 5, 7, 11, 15, 22, 30, p(10) = 42, 56, 77, 101,
135, 176, 231, 297, 385, 490, p(20) = 627, . . . with p(100) = 190, 569, 292 and p(1000) ≈
2.4×1031. Ramanujan was intrigued by these numbers, both their growth (which seems to
get quite fast) and their congruence conditions. For n = 1000 we see that there are roughly

10
√
n partitions, which is an unusual function in mathematics. Hardy and Ramanujan

proved the extraordinary asymptotic

(G1.1) p(n) ∼ 1

4n
√
3
eπ
√

2n/3,

and Rademacher developed their idea to give an exact formula. This is also too difficult
for this book, but we will discuss one or two of the main ideas a little later, and see how
this one proof gave birth to the circle method, still one of the most important techniques
in number theory.

Counting partitions and the circle method. The Dedekind eta function is defined
on the upper half-plane, that is H := {τ ∈ C : Im(τ) > 0}. For any such τ ∈ H, we let
q = e2iπτ , and define the eta function by

η(τ) := q
1
24

∞∏
n=1

(1− qn).

Hence the generating function for the p(n), can be written

P (q) :=
∑
m≥0

p(m)qm = q1/24/η(τ).



GAUSS’S NUMBER THEORY 235

The surprise is that η satisfies the equations

η(τ + 1) = e
πi
12 η(τ) and η(−1/τ) =

√
−iτ η(τ).

It is, incidentally, a bit more natural to define ∆(τ) := q
∏∞

n=1(1− qn)24 = η(τ)24 so that
∆(τ + 1) = ∆(τ) and ∆(−1/τ) = τ12∆(τ). Now we saw that the maps τ → τ + 1 and
τ → −1/τ generate all of SL(2,Z) and so for any integers a, b, c, d with ad − bc = 1 we
have the remarkable identity

∆

(
aτ + b

cτ + d

)
= (cτ + d)12∆(τ).

Now, suppose τ is a near to a rational number, say τ = −d/c + iδ (taking 1 in place
of 0). Then the above yields that ∆(−d/c + iδ) = (ciδ)−12∆

(
a/c+ i/c2δ

)
; here we can

take a to the inverse of d mod c. Now if N is very large and τ ≈ iN then ∆(iN) ≈ q.

Therefore ∆(−d/c + iδ) = (ciδ)−12e−2π/c2δe2iπa/c. This implies that η(−d/c + iδ) =

ξ(cδ)−1/2e−π/12c2δ for some ξ = ξd/c with |ξ| = 1.
We use the fact that if k is an integer then∫ 1

0

e2iπktdt =

{
1 if k = 0

0; otherwise,

so that if r = e−2πρ is < 1 then

p(n) =
∑
m≥0

p(m)rm−n

∫ 1

0

e2iπ(m−n)tdt =

∫ 1

0

P (e2iπ(t+iρ)) e−2iπn(t+iρ)dt

=

∫
0≤t≤1
τ=t+iρ

e−2iπ(n− 1
24 )τ

η(τ)
dt

We will let ρ→ 0 so that q moves towards the unit circle. The zeros of η(τ) will evidently
give rise to poles of the integrand, and they occur at e2iπa/b for all rationals a/b, of order
inversely proportional to b. Hence the largest will be at 0/1, and this is confirmed by
our formula above. Substituting in to the integrand with τ = t + iρ = iδ, the integrand
becomes a constant of absolute value 1 times

(ρ− it)1/2eπ/12(ρ−it)e2π(n−
1
24 )ρe−2iπ(n− 1

24 )t

This will not vary much as long as t is in an interval of length ≍ 1/n. We chose ρ =
1/
√
24n− 1. Hence the integrand is about

ρ1/2eπ/6ρ ≈ eπ
√

2n/3.

Getting the precise estimate (G1.1) is considerably more complicated.
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Partition congruences. Ramanujan also noted several congruences for the p(n):

p(5k + 4) ≡ 0 (mod 5), p(7k + 5) ≡ 0 (mod 7), p(11k + 6) ≡ 0 (mod 11),

for all k. Notice that these are all of the form p(n) ≡ 0 (mod q) whenever q|24n− 1, and
these seem to be the only such congruences. However Ono has found many more such
congruences, only a little more complicated: For any prime q ≥ 5 there exist primes ℓ such
that p(n) ≡ 0 (mod q) whenever qℓ3|24n− 1.

More identities. There are many beautiful identities involving the power series from
partitions. One of the most extraordinary is Jacobi’s powerful triple product identity: If
|x| < 1 then ∏

n≥1

(1− x2n)(1 + x2n−1z)(1 + x2n−1z−1) =
∑
m∈Z

xm
2

zm.

We shall determine some useful consequences of it:
Letting x = ta, z = tb and n = k + 1 in Jacobi’s triple product identity we obtain∏

k≥0

(1− t2ak+2a)(1 + t2ak+a+b)(1 + t2ak+a−b) =
∑
m∈Z

tam
2+bm.

Some special cases include a = 1, b = 0, yielding∏
n≥1

(1− t2n)(1 + t2n−1)2 =
∑
m∈Z

tm
2

;

and a = b = ± 1
2 , yielding ∏

k≥0

(1 + tk)(1− t2k+2) =
∑
m∈Z

t
m2+m

2 .

Exercise G1.3. By writing 1 + tk as (1− t2k)/(1− tk) or otherwise, deduce that

∑
m≥1

t
m2+m

2 =
(1− t2)(1− t4)(1− t6) . . .

(1− t)(1− t3)(1− t5) . . .

Letting x = ta, z = −tb and n = k + 1 in Jacobi’s triple product identity we obtain∏
k≥0

(1− t2ak+2a)(1− t2ak+a+b)(1− t2ak+a−b) =
∑
m∈Z

(−1)mtam
2+bm.

Some special cases include a = 1, b = 0, yielding∏
n≥1

(1− tn)(1− t2n−1) =
∑
m∈Z

(−1)mtm
2

;
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and a =3
2 , b =

1
2 , yielding Euler’s identity,

∏
n≥1

(1− tn) =
∑
m∈Z

(−1)mt
3m2+m

2 .

Exercise G1.4. Interpret this combinatorially, in terms of the number of partitions of m into unequal

parts.

Exercise G1.5. If (12/.) is the Jacobi symbol, show that

t1/24
∏
n≥1

(1− tn) =
∑
m≥1

(
12

m

)
t
m2

24 .

Letting x = t4 and z = −1 in Jacobi’s triple product identity we obtain∏
n≥1

(1− t8n)(1− t8n−4)2 =
∑
b∈Z

b even

(−1)b/2tb
2

.

Now letting x = t4 and z = −t4u in Jacobi’s triple product identity we obtain∏
n≥1

(1− t8n)(1− αt8nu)(1− t8n−8/u) =
∑
m∈Z

t4m
2+4m(−u)m.

In the product we change the exponent of the last term taking n in place of n − 1, and
hence we have a left over term of 1 − 1/u. On the right side we pair up the term for m
with the term for −m− 1. Dividing through by 1− 1/u then yields∏

n≥1

(1− t8n)(1− t8nu)(1− t8n/u) =
∑
m≥0

t4m
2+4m+1(−1)m(um + um−1 + . . .+ u−m).

Taking u = 1 we obtain

t
∏
n≥1

(1− t8n)3 =
∑
a≥1
a odd

(−1)
a−1
2 ata

2

.

Multiplying these together yields

(G1.2) t
∏
n≥1

(1− t4n)2(1− t8n)2 =
∑

a,b∈Z, a≥1,
a odd, b even

(−1)
a+b−1

2 ata
2+b2 =

∑
n≥1

ant
n,

for certain integers an. In particular if p is a prime ≡ 3 (mod 4) then ap = 0; if p is a

prime ≡ 3 (mod 4) then writing p = a2 + b2 with a odd, we have ap = 2(−1)
a+b−1

2 a.
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G2. The Freiman-Ruzsa Theorem. For finite sets of integers A,B subsets of an
additive group Z, we define A+B to be the sumset {a+ b : a ∈ A, b ∈ B}.

It is easy to see that |A + A| ≤ |A|(|A| + 1)/2, since the distinct elements of A + A
are a subset of {ai + aj : 1 ≤ i ≤ j ≤ |A|}
Exercise G2.1. Give an example of a set A with n elements where |A + A| = n(n + 1)/2. (Hint: You

could try A = {1, 2, 22, 23, . . . , 2n−1} or be more adventurous.)

Typically |A+A| is large and is only small in very special circumstances:

Lemma G2.1. If A and B are finite subsets of Z then |A+B| ≥ |A|+ |B| − 1. Equality
holds if and only if A and B are each complete finite segments of an arithmetic progression
to the same modulus (that is A = {a, a+ d, a+2d, . . . , a+(r− 1)d} and B = {b, b+ d, b+
2d, . . . , b+ (s− 1)d} for some a, b, r, s and d ≥ 1).

Proof. Write the elements of A as a1 < a2 < . . . ar, and those of B as b1 < b2 < . . . bs.
Then A+B contains the r + s− 1 distinct elements

a1 + b1 < a1 + b2 < a1 + b3 < · · · < a1 + bs < a2 + bs < a3 + bs < · · · < ar + bs.

If it contains exactly r+ s−1 elements then these must be the same, in the same order, as
a1+ b1 < a2+ b1 < a2+ b2 < a2+ b3 < · · · < a2+ bs < a3+ bs < · · · < ar + bs. Comparing
terms, we have a1 + bi+1 = a2 + bi for 1 ≤ i ≤ s − 1; that is bj = b1 + (j − 1)d where
d = a2 − a1. A similar argument with the roles of a and b swapped, reveals our result.

If A + B is small, not as small as |A| + |B| − 1 but not much bigger, then we might
expect to be able to use a similar proof to prove a similar structure theorem. However the
combinatorics of comparing different sums quickly becomes very complicated.

Looking for other examples in which A+B is small, one soon finds the possibility that
A and B are both large subsets of complete finite segments of an arithmetic progression
to the same modulus. For example, if A contains 2m integers from {1, 2, 3, . . . , 3m} then
A+A is a subset of {2, 2, 3, . . . , 6m}, and so |A+A| < 3|A|. One can find a criterion similar
to Lemma G2.1: If |A| ≥ |B| and |A+B| ≤ |A|+2|B| − 4 then A and B are each subsets of arithmetic

progressions with the same common difference, of lengths ≤ |A + B| − |B| + 1 and ≤ |A + B| − |A| + 1,

respectively.

A further interesting example is given by

A = B = {1, 2, . . . , 10, 101, 102, . . . 110, 201, 202, . . . 210},

or its large subsets. This can be written as 1+{0, 1, 2, . . . , 9}+{0, 100, 200}, a translate of
the sum of complete finite segments of two arithmetic progressions. More generally, define
a generalized arithmetic progression C = C(a0, . . . ak;N1, . . . , Nk) as

C := {a0 + a1n1 + a2n2 + · · ·+ aknk : 0 ≤ nj ≤ Nj − 1 for 1 ≤ j ≤ k}

where a0, a1, . . . ak are given integers, and N1, N2, . . . Nk are given positive integers. Note

that C(a0, a1, . . . ak;N1, N2, . . . , Nk) = a0 +
∑k

i=1 ai · {0, 1, . . . , Ni − 1}. This generalized
arithmetic progression is said to have dimension k and volume N1N2 . . . , Nk. Notice that

2C(a0, a1, . . . ak;N1, N2, . . . , Nk) = C(2a0, a1, . . . ak; 2N1 − 1, 2N2 − 1, . . . , 2Nk − 1).
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so that |2C| < 2k|C|. We think of C as an image of the k-dimensional lattice segment

{0, 1, . . . , N1 − 1} × {0, 1, . . . , N2 − 1} × . . .× {0, 1, . . . , Nk − 1}.

Indeed the inequality |2C| < 2k|C| generalizes to the “image” C in Z of any part of a
lattice inside a convex, compact region of Rk.

We can combine our two ideas so that if A is a large subset of a generalized arithmetic
progression then |A+A| < κ|A| for some smallish constant κ.

Are there any other examples of sets A and B for which A + B is small? Freiman
showed that the answer is “no”, having the extraordinary insight to suggest and prove that
A+A can be “small” if and only if it is a “large” subset of a “low” dimensional generalized
arithmetic progression of “not too big” volume.24

We have seen that if A+A is small then A has a lot of additive structure, that is, it
is a subset of a generalized arithmetic progression. In the prototypical case A is the set of
integers {1, 2, . . . , N}. In that case, we have seen that |A · A| < ϵN2 (the multiplication
table theorem) but it is not difficult to see, by taking the products of pairs of primes ≤ N ,
that |A ·A| ≥ π(N)2/2 > N2/3(log N)2, so that A ·A is not much smaller than N2. One
might guess that this happens whenever A+A is small.

Exercise G2.2. Explain the bijection between A ·A and log A+ log A.

If A+A is small then A has a lot of additive structure by the Freiman-Ruzsa Theorem.
If A+A is small then log A has a lot of additive structure by the Freiman-Ruzsa Theorem;
that is A has a lot of multiplicative structure. Can a set have both types of structure at
once? Erdős and Szemerédi conjectured that this is impossible, predicting the sum-product
inequality

max{|A+A|, |A ·A|} ≥ cϵ|A|2−ϵ

for some constant cϵ > 0 for any ϵ > 0. More daringly one might guess, from the same
reasoning that either |A + B| ≥ cϵ(|A||B|)1−ϵ or |A · C| ≥ cϵ(|A||C|)1−ϵ for any finite
sets of integers A,B,C. The best result in this area was given by Solymosi in 2009, we
showed that if A and B are two finite sets of real numbers with |A| ≥ |B| > 1 then

|AB||A+A||B +B| ≥ c
(|A||B|)2

log |B|
,

for some constant c > 0.

Exercise G2.3. Deduce the sum-product inequality for any ϵ > 2/3.

More additive number theory. Given a largish subset of the integers up to N one
can ask whether it contains certain simple structures, simply because of its large size. For
example are there necessarily two consecutive elements of our set? Are there necessarily
two elements of the set that add to a third? Are there three different elements of the set
in arithmetic progression? Rather than quantify “largish” one might instead partition the

24Freiman’s 1962 proof is both long and difficult to understand. Ruzsa’s 1994 proof of Freiman’s
result, is extraordinarily elegant and insightful, and heralded an explosion of ideas in this area.
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integers into two (or more) sets and ask whether either of them have the given structure.
This is a familiar theme from combinatorics, and ideas from that subject will allow us to
give a first answer to these questions.

We begin with a well-known result from graph theory:

Lemma G2.2. If the edges of the complete graph with N vertices are coloured with r
colours, with N ≥ N(r) then there is a monochromatic triangle.

Proof. By induction. Evidently N(1) = 3. For larger r consider the edges attached to any
one vertex v. If N ≥ r(N(r− 1)− 1)+ 2 then there must be some colour c for which there
are ≥ N(r − 1) edges adjacent to v of colour c. Let H be those vertices that share an
edge of colour c with v. If there are any two vertices in H that are attached by an edge of
colour c, then these two vertices along with v form a monochromatic triangle. Otherwise
the edges of H are coloured by just r − 1 colours and the result follows by induction.

Exercise G2.4. Justify that if N ≥ r(N(r− 1)− 1) + 2 then there must be some colour c for which there

are ≥ N(r − 1) edges adjacent to v of colour c. Show that we may take N(r) ≤ 3 r!

This is a typical Ramsey theory proof in that the proof is really just a greedy algorithm,
and leads to a bound that is probably far too big. Indeed there are questions in the subject
in which the bound cannot be discussed using primitive recursive functions.

There is a quite beautiful corollary:

Schur’s Theorem. If the integers up to N are coloured with r colours, with N ≥ N(r)
then there is a monochromatic solution to x+ y = z in positive integers x, y, z ≤ N

Proof. We construct the complete graph on N vertices, labeling the vertices 1, 2, . . . , N ,
and joining vertices i and j by the colour of |j − i|. Lemma 5.1 tells us that there is
a monochromatic triangle, say joining the vertices with labels i < j < k, and hence if
x = j − i, y = k− j and z = k− i, we know that these positive integers all have the same
colour and indeed satisfy x+ y = z.

In 1927 van der Waerden [20] answered a conjecture of Schur, by showing that if the
positive integers are partitioned into two sets then one set must contain arbitrarily long
arithmetic progressions.

van der Waerden’s Theorem (1927). Fix integers r ≥ 2 and k ≥ 3. If we colour the
integers with r colours then there is a monochromatic k-term arithmetic progression.

Exercise G2.5. Prove van der Waerden’s Theorem for k = 3 and r = 2.

Exercise G2.6. Partition the integers into two sets neither of which has an infinitely long arithmetic

progression.

Szemerédi’s Theorem (1974). For any δ > 0 and integer k ≥ 3, there exists an integer
Nk,δ such that if N ≥ Nk,δ and A ⊂ {1, 2, . . . , N} with |A| ≥ δN then A contains an
arithmetic progression of length k.

Exercise G2.7. Show that if N ≥ Nk,δ and A is a subset of an arithmetic progression of length N , with

|A| ≥ δN , then A contains an arithmetic progression of length k .
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Exercise G2.8. Deduce van der Waerden’s Theorem from Szemerédi’s Theorem.

The k = 3 case was first proved in a cunning proof by Roth in 1952 using Fourier
analysis. In 1969 Szemerédi proved the k = 4 case by combinatorial methods and extended
this to all k in 1974. In 1977 Furstenberg proved Szemerédi’s Theorem in a very surprising
manner, using ergodic theory. It was not until 19**, that Tim Gowers finally gave an
analytic proof of Szemerédi’s Theorem, the proof based on the overall plan of Roth, but
involving a new kind of higher dimensional analysis (partly based on the Freiman-Ruzsa
theorem). Gowers’ proof was the starting point for

Green and Tao (2008). For any integer N one can find (infinitely many different) pairs
of integers a, d ≥ 1, such that a, a+ d, . . . , a+ (N − 1)d are all primes.

How much further can one develop Szemerédi’s Theorem? Erdős conjectured that any
set A of positive integers for which ∑

a∈A

1

a
= ∞

must contain arbitrarily long arithmetic progressions, a question that is still very open
today. Erdős stated this conjecture as a means to prove that there are arbitrarily long
arithmetic progressions of primes (but this is not how Green and Tao proceeded). Can
this even be proved in the k = 3 case?

How large is the largest subset S(N) of {1, 2, . . . , N} that has no three term arithmetic
progression? If one could show that |S(N)| < N/log N then one would know that there
are infinitely many three term arithmetic progressions of primes. Recently Tom Sanders
has come agonizingly close to this goal by showing that |S(N)| < c(log log N)5N/log N
for some constant c > 0. Is this close to the true size of S(N)? The best we know is the far

smaller lower bound S(N) > Ne−c
√
log N for some c > 0 given by a beautiful construction

of Behrend:

Exercise G2.9. Show that a, b, c are in arithmetic progression if and only if a+ c = 2b.

Exercise G2.10. Write a =
∑k

i=1 ai(2m)i−1 ∈ C := C(0, 1, 2m, (2m)2, . . . (2m)k−1;m,m, . . . ,m), etc.

(1) Show that a, b, c ∈ C are in arithmetic progression if and only if the vector a= (a1, . . . , ak) , b
and c are collinear.

(2) Let Cr = {a ∈ C : |a| = r}. Show no three distinct elements of Cr are collinear.
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G3. Bouncing billiard balls and nα mod 1. In chapter 11, Dirichlet’s Theorem stated
that if α is a real, irrational number then for each N ≥ 1 there exists a positive integer
n ≤ N such that 0 < |nα −m| < 1

N for some integer m. In other words nα mod 1 gets
arbitrarily close to 0. One might ask whether nα mod 1 gets arbitrarily close to any given
θ ∈ [0, 1) ? Now let us suppose that nα−m = δ where 0 < δ < 1/N (an analgous argument
works if −1/N < δ < 0); and let k be the largest integer ≤ θ/δ. Then k ≤ θ/δ < k + 1 so
that

0 ≤ θ − kδ < δ.

Now kδ = k(nα−m) = knα− km so that {knα} = {kδ} = kδ as 0 < kδ ≤ θ < 1. Hence

|{knα} − θ| < δ,

where δ < 1/N and kn ≤ θN/δ < 1/δ2. Hence we have proved:

Theorem G3.1. If α is a real irrational number then the numbers {nα} are dense on
[0, 1).

Exercise G3.1. Show that the conclusion of the Theorem is not true is α is rational.

Have you ever played billiards or pool? You play on a rectangular table, hitting your
ball along the surface. The sides of the table are cushioned so that the ball bounces off
the side at the opposite angle to which it hits. That is if it hits at αo then it bounces of
at (180 − α)o. Sometimes one miscues and the ball carries on around the table, coming
to a stop without hitting another ball. Have you ever wondered what would happen if
there was no friction, so that the ball never stops? Would your ball eventually hit the
ball it is supposed to hit, no matter where that other ball is placed? Or could it go on
bouncing for ever without ever getting to the other ball? We could rephrase this question
more mathematically by supposing that we play on a table in the complex plane, with two
sides along the x− and y− axes. Say the table length is ℓ, and width is w so that it is the
square with corners at (0, 0), (0, ℓ), (w, 0), (w, ℓ). Let us suppose that the ball is hit from
the point (u, v) along a line with slope α. As the line continues on indefinitely inside the
box, does it get arbitrarily close to every point inside the box?

Exercise G3.2. Show that by rescaling with the map x → x/ℓ, y → y/w we can assume, without any

loss of generality, that the billiard table is the unit square.

The ball would run along the line L := {(u + t, v + αt), t ≥ 0} if it did not hit the
sides of the table. Notice though that if after each time it hit a side we reflected the
true trajectory through the line that represents that side, then indeed the ball’s trajectory
would be L. Develop this to prove:

Exercise G3.3. Show that the billiard ball is at (x, y) after time t, where x and y are given as follows:

Let m = [u+ t] . If m is even let x = {u+ t}; if m is odd let x = 1− {u+ t}.
Let n = [v + αt]. If n is even let y = {v + αt}; if n is odd let y = 1− {v + αt}.

Exercise G3.4. Show that if α is rational then the ball eventually ends up exactly where it started from,

and so it does not get arbitrarily close to every point on the table.
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So how close does the trajectory get to the point (r, s), where r, s ∈ [0, 1)? Let us
consider all of those values of t for which x = r, with m and n even (to simplify matters),
and see if y is ever close to s.

Exercise G3.5. Show that [z] is even if and only if {z/2} ∈ [0, 1/2). Deduce that [z] is even and {z} = r

if and only if {z/2} = r/2.

Hence we want that (u+t)/2 = k+r/2 for some integer k; that is t = 2k+(r−u), k ∈ Z.
In that case v+αt = 2αk+α(r− u) + v so we want {αk+ (α(r− u) + v)/2} close to s/2.

That is kα mod 1 should be close to θ := { (s−v)+α(u−r)
2 }. Now, in the Theorem above,

we showed that the values kα mod 1 are dense in [0, 1) when α is irrational, and so in
particular there are values of k that allow kα mod 1 to be arbitrarily close to θ. Hence we
have proved the difficult part of:

Corollary G3.2. If α is a real irrational number then any ball moving at angle α (to
the co-ordinate axes) will eventually get arbitrarily close to any point on a 1-by-1 billiards
table.

Weyl’s criterion
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G4. Transcendental numbers.
Give the countable vs. uncountable argument
Prove that π is transcendental or irrational?

Exercise G4.1. Let α :=
√
2
√
2
. We wish to show that there exist irrational numbers x, y such that xy is

rational. Use either α or α
√

2 to prove this.
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H. Elliptic curves and beyond

H1. The group of rational points on elliptic curves. In section C11 we saw that
the general form y2 + dxy+ ey = x3 + ax2 + bx+ c+ k can be transformed to an equation
of the affine form

E : y2 = x3 + ax+ b

with a, b ∈ Z by linear maps with rational coefficients. This is called an elliptic curve.
In section 6.1 we saw that two rational points on the unit circle gave rise to a line with
rational coefficients and vice-versa; this allowed us to find all the rational points on the
unit circle. We extend that idea to elliptic curves. Let E(Q) denote all of the rational
points on E (that is (x, y) on E with x, y ∈ Q).

Exercise H1.1. Show that if (x, y) ∈ E(Q) then there exist integers ℓ,m, n such that x = m/n2, y = ℓ/n3

with (ℓm, n) = 1.

Exercise H1.2. Let ∆ = 4a3 + 27b2. Show that if a > 0 or if ∆ > 0 then x3 + ax + b = 0 has just one

real root. Show that if a,∆ < 0 then x3 + ax+ b = 0 has three real roots. Sketch the shape of the curve

y2 = x3 + ax+ b in the two cases.

Suppose that we are given two points (x1, y1), (x2, y2) ∈ E(Q). The line between
them, y = mx + ν has m, ν ∈ Q.25 These two points are both intersections of the line
y = mx+ ν with the elliptic curve y2 = x3 + ax+ b, that is x1, x2 satisfy

(mx+ ν)2 = y2 = x3 + ax+ b;

in other words x1 and x2 are two of the three roots of the cubic polynomial

x3 −m2x2 + (a− 2mν)x+ (b− ν2) = 0.

If the third root is x3 then x3 = m2 − x1 − x2 ∈ Q and if we let y3 = mx3 + ν we obtain
the third intersection of the line with E, and (x3, y3) ∈ E(Q). This method of generating
a third rational point from two given ones goes back to Fermat.

Actually one can do even better and generate a second point from a given one: If
(x1, y1) ∈ E(Q) let y = mx + ν be the equation of the tangent line to y2 = x3 + ax + b
at (x1, y1). To calculate this simply differentiate to obtain 2y1m = 3x21 + a and then
ν = y1 − mx1. Now our cubic polynomial has a double root at x = x1 and we again
compute a third point by taking x3 = m2 − 2x1, y3 = mx3 + ν so that (x3, y3) ∈ E(Q).

In these constructions we missed the case when the line is vertical (in the first case
x1 = x2 which implies that y2 = −y1; in the second case y = 0). Where is the third
point of intersection? One cannot see another point of intersection on the graph (that is
on the real plane), but the line stretches to infinity, and indeed the third point is, rather
surprisingly, the point at infinity, which we denote 0. Remember from section C11, in
projective co-ordinates the elliptic curve is y2z = x3 + axz2 + bz3 so the point at infinity
is (0, 1, 0).

25Or is of the form x = x1 = x2, a situation we will deal with a little later.
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Exercise H1.3. Prove that there cannot be four points of E(Q) on the same line.

Poincaré made an extraordinary observation: If we take any three points P,Q,R of
E on the same line then we can define a group by taking P + Q + R = 0. The line
at infinity tells us that the point at infinity is indeed the 0 of this group. Moreover we
have seen that (x, y) + (x,−y) = 0. Note that this implies that, in the notation above,
(x3,−y3) = (x1, y1) + (x2, y2)

It is clear that the operation is closed under addition (and, most interestingly, closed
in the subgroup E(Q)). The one thing that is complicated to justify is that Poincaré’s
operation (of addition) is indeed associative, and that hence we do indeed have a group.

Exercise H1.4. Show that the addition law given here is indeed associative

It is also obvious that the addition law is commutative. The question then becomes
to identify the structure of the group of rational points, E(Q).

Is E(Q) finite or infinite? Suppose that we have a rational point P . Take the tangent,
find the third point of intersection of the tangent line with E to obtain −2P , and then
reflect in the x-axis to obtain 2P . Fermat suggested that if we repeat this process over and
over again, then we are unlikely to come back again to the same point. If we never return
to the same point then we say that P has infinite order; otherwise P has finite order, the
order being the minimum positive integer n for which nP = 0 (points of finite order are
known as torsion points).

Exercise H1.5. Prove that the torsion points form a subgroup.

Exercise H1.6. Prove that if P = (x, y) with y ̸= 0 then 2P = (X,Y ) where

X =
(x2 − a)2 − 8bx

4y2
, Y =

x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3

8y3
.

Notice that the numerator and denominator of X are polynomials of degree four in x implying (roughly)

that the co-ordinates of 2P are about four times the length of the co-ordinates of P , unless there is

an enormous amount of cancelation between numerator and denominator. To express this better it is

convenient to define the height of P , h(P ) := max{|m|, n2}. Our observation is that h(2P ) ≈ h(P )4.

Exercise H1.7. Show that (x, y) has order 2 if and only if y = 0. Deduce that the number of points of

order 1 or 2 is one plus the number of integer roots of x3 + ax+ b; and therefore equals 1, 2 or 4.

Elizabeth Lutz and Nagell showed that there are only finitely many torsion points in
E(Q). By suitably manipulating the above formulae26 they showed that if x(P ) = m/n2

with (m,n) = 1 and n > 1 then x(kP ) = M/N2 with (M,N) = 1 and N divisible by
n. An immediate consequence of this is that if P = (x, y) is a torsion point then x is an
integer, and hence y is an integer.

Now if P = (x, y) is a torsion point, that is nP = 0 then n · (2P ) = 2 · nP = 0 so 2P
is also a torsion point, and hence x, y,X, Y are all integers provided P, 2P < ne0. Now
m2 = 2x + X ∈ Z so that m = (3x2 + a)/2y ∈ Z; that is 2y divides 3x2 + a. Hence y
divides 9(3b− 2ax)(x3 + ax+ b) + (6ax2 − 9bx+ 4a2)(3x2 + a) = ∆ := 4a3 + 27b2. Since

26The proof is elementary but complicated.



GAUSS’S NUMBER THEORY 247

there are only finitely many divisors y of 4a3 +27b2, and each such y gives rise to at most
three values of x, hence there are only finitely many torsion points in E(Q).

Exercise H1.8. Show that (x, y) is a torsion point that y2 divides b(4a3 + 27b2).

Exercise H1.9. Show that the cancelation between the numerator and denominator in the expression for

2P above is bounded by ∆2. Deduce that there exists a constant c depending only on a and b such that

if h(P ) > c
√

|∆| then P has infinite order.

Mazur improved this showing that the torsion subgroup of E(Q) contains at most 16
points. In fact this subgroup is either Z/NZ for some 1 ≤ N ≤ 10 or N = 12, or it is
Z/2Z× Z/2NZ for some 1 ≤ N ≤ 4.

A final word on torsion points: There can be torsion points in fields other than Q.
One can ask for them in C; in fact their x-co-ordinates a roots of a polynomial with integer
coefficients, so they are algebraic numbers. One can show that the subgroup of torsion
points of order N is isomorphic to Z/NZ × Z/NZ for each N ≥ 1, so that there are N2

points of order dividing N .

Exercise H1.10. Prove that there are exactly N2
∏

p|N (1− 1
p2

) points of order N on E(C).

Given that E(Q) is abelian we can write it as T ×Zr. Here T is the torsion subgroup,
and r can be a integer ≥ 0, or even infinity. A remarkable theorem of Mordell shows
that r is always finite.27 His proof proceeds by descent: Given a point P on the elliptic
curve with large co-ordinates he shows how to find a point R from a finite set S such that
P − R = 2Q for some other point Q ∈ E(Q). This means that the co-ordinates of Q are
about a quarter the length of those of P . One repeats this process with Q, and keeps on
going until one arrives at a point of small height (call the set of such points H). This is
rather like the Euclidean algorithm, and when we reverse the process we find that P can
be expressed as linear combination of elements of S and H, and hence r ≤ |S|+ |H|.

There were several difficult calculations in Mordell’s original proof in finding R. Weil
made the astute observation that Mordell’s process is tantamount to expressing all of E(Q)
as a finite set of cosets of 2E(Q), and hence it is enough to show that E(Q)/2E(Q) is finite.
Weil came up with an elegant argument which generalizes to many other algebraic groups
(that is generalizations of E(Q)). We will exhibit this argument in the special case that
x3 + ax+ b has three integer roots.

So suppose that x3+ax+b = (x−r1)(x−r2)(x−r3) with r1, r2, r3 ∈ Z. Given a rational
point P = (m/n2, ℓ/n3) with (ℓm, n) = 1 we have ℓ2 = (m− r1n

2)(m− r2n
2)(m− r3n

2).
Since (m − rin

2,m − rjn
2) = (m − rin

2, ri − rj) each m − rin
2 = αiβ

2
i where αi is a

squarefree integer which divides (ri − rj)(ri − rk). Hence we define a map

ϕ : E(Q) → {(α1, α2, α3) ∈ Q∗/(Q∗)2 : α1α2α3 ∈ (Q∗)2}
given by ϕ(P ) = (x− r1, x− r2, x− r3),

where αi is a squarefree divisor of (ri − rj)(ri − rk). If one of the x − rj equals 0 then
we let αj be the product of the other two αi; for example if x = r1 then ϕ((r1, 0)) =
((r1 − r2)(r1 − r3), r1 − r2, r1 − r3).

27Mordell’s argument works in any number field.
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We will multiply two such vectors as (α1, α2, α3)(β1, β2, β3) = (α1β1, α2β2, α3β3).
Note that ϕ(P ) = ϕ(−P ).

Now suppose that we have three points P1, P2, P3 on the line y = mx+ b. Then their
x-co-ordinates are all roots of

(x− r1)(x− r2)(x− r3)− (mx+ b)2,

and so this polynomial equals (x− x1)(x − x2)(x − x3) where xj = x(Pj). Taking x = ri
we deduce that (x1 − ri)(x2 − ri)(x3 − ri) = (mri + b)2 ∈ (Q∗)2 so that

ϕ(P1)ϕ(P2)ϕ(P3) = (1, 1, 1),

In particular we deduce that ϕ(2P ) = (1, 1, 1).
On the other hand suppose that ϕ(Q) = (1, 1, 1) where Q = (U, V ), so that there exist

t1, t2, t3 ∈ Q such that U − ri = t2i for each i. Now

det

 t1 r1 1
t2 r2 1
t3 r3 1

 = det

 t1 U − t21 1
t2 U − t22 1
t3 U − t23 1


= det

 t1 t21 1
t2 t22 1
t3 t23 1

 = ±(t1 − t2)(t2 − t3)(t3 − t1) ̸= 0,

so there exists rational numbers u,m, b such that t1 r1 1
t2 r2 1
t3 r3 1

 u
m
b

 =

 t1r1
t2r2
t3r3

 .

Therefore mri + b = −ti(u − ri) for each i so that the monic polynomial (x − r1)(x −
r2)(x − r3) − (mx + b)2 takes value −(u − ri)

2t2i = (ri − u)2(ri − U) at x = ri. Hence
(x− r1)(x− r2)(x− r3)− (mx+ b)2 = (x− u)2(x− U). Taking x = u yields the rational
points ±P = (u,±(mu+ b)) on the curve, and one verifies that Q = −2P .

We have proved more than claimed, specifically that the image of ϕ is isomorphic to
E/2E (since the kernel of ϕ is 2E). Now if E = T ⊕ Zr then E/2E = T/2T ⊕ Zr.

Exercise H1.11. Prove that |T/2T | equals the number of points of order 1 or 2. Deduce if there are 2t

points of order 1 or 2 (the possibilities being t = 0, 1 or 2), and the image of ϕ contains 2s elements, then

the rank of E(Q) equals r = s− t.

In honor of their work the group of points E(Q) is known as the Mordell-Weil group.

Example: The elliptic curve E : y2 = x3 − x has three points of order two, namely
(−1, 0), (0, 0), (1, 0) and so t = 2 above. In the map ϕ we see that α1|(−1− 0)(−1− 1) =
2, α2|1 and α3|2. Moreover x − 1 < x < x + 1 so that x + 1 cannot be negative. Hence
the image of ϕ is a subgroup of a group G, which is generated, multiplicatively, by (2, 1, 2)
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and (−1,−1, 1) and hence s ≤ 2. Therefore r = s − t ≤ 2 − 2 = 0, and so E(Q) has
rank 0. Note that ϕ(−1, 0) = (−2,−1, 2), ϕ(0, 0) = (−1,−1, 1), ϕ(1, 0) = (2, 1, 2) and
ϕ(O) = (1, 1, 1) where O is the point at infinity, and so s = 2.

Another example: Four squares in an arithmetic progression: Fermat proved, by descent,
that there are no four distinct squares in an arithmetic progression. Let’s see how we can
prove this using the Mordell-Weil group and our map ϕ. If a − d, a, a + d and a + 2d
are all squares, say u2−1, u

2
0, u

2
1, u

2
2 then (−2d/a, 2u−1u0u1u2/a

2) is a point on the elliptic
curve

E : y2 = (x− 1)(x− 2)(x+ 2).

Here t = 2 again but things are a bit more complicated, since P = (0, 2) is a point of order
4. Then 2P = (2, 0) and the other points of order two are R = (1, 0) and R+2P = (−2, 0).
We also have another point of order four namely R−P = (4, 6), as well as −P and P −R.
Now ϕ(P ) = (−1,−2, 2), ϕ(P −R) = (3, 2, 6), ϕ(R) = (−3,−1, 3) and ϕ(2P ) = (1, 1, 1).

Exercise H1.12. Show that the image of ϕ is a subgroup of a group G, which is generated, multiplicatively,

by (−1,−1, 0), (1, 2, 2) and (3, 1, 3). Deduce that the image of ϕ either contains all of G or no more than the

four elements we have already identified. Prove also that the rank is therefore either 1 or 0, respectively.

In the next paragraph we will show that there is no point (x, y) ∈ E(Q) for which ϕ(x, y) =
(1, 2, 2) and thus the rank is 0 by the previous exercise. Now if S is a point that corresponds
to an example where a−d, a, a+d and a+2d are all squares, then ϕ(S) = (−1,−2, 2) and
we deduce that S = ±P = (0,±2) and hence d = 0. Therefore there are no four distinct
squares in an arithmetic progression.

If (x, y) ∈ E(Q) with ϕ(x, y) = (1, 2, 2) then we can write x − 1 = (b/c)2 where
(b, c) = 1 by exercise H1.1, and hence we also have b2 − c2 = 2v2, b2 + 3c2 = 2w2 for
some integers v and w. Now b and c are both odd (since b+ c ≡ 0 (mod 2) and they are
coprime), but then 2w2 ≡ 1 + 3 = 4 (mod 8) which is impossible.

Exercise H1.13. Use the previous result together with Szemerédi’s Theorem from section G2 to prove the

following: For any δ > 0 there exists a constant Mδ such that if N ≥Mδ then any arithmetic progression

of length N contains < δN squares. (It is conjectured that the N -term arithmetic progression with the

most squares is 1, 1 + 24, 1 + 24 · 2, . . . , 1 + 24(N − 1), which contains about
√

8N/3 squares; the best

bound proved to date is at most a little more than N3/5 squares.)

Exercise H1.14. Let E be the elliptic curve y2 = x(x+ 2)(x+ 16).

(1) Prove that the point P = (2, 12) ∈ E(Q) has infinite order. Deduce that r ≥ 1
(2) Prove that there are no integer solutions to u2 + 2v2 = 7w2. Deduce that s < 4.
(3) Show that t = 2 and hence deduce that r, the rank of E(Q), is one.

No rational points by descent: Suppose that x, y ∈ Q such that y2 = x3 + x, so that
x = p/t2, y = q/t3 with (pq, t) = 1 and

q2 = p(p2 + t4).

Now (p, p2 + t4) = (p, t4) = 1 so that both p and p2 + t4 are squares, say p = u2 and
p2 + t4 = w2. Therefore

t4 + u4 = p2 + t4 = w2,
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and we showed, in section 6.4, that this has no solutions. Hence there are no rational
points on y2 = x3 + x except with x = 0 or y = 0; that is, the point (0, 0).

In general one can write down generators of the Mordell-Weil group, say P1, P2, . . . , Pr

and all points on E(Q) can be written as a1P1 + a2P2 + . . . + arPr for some integers
a1, . . . , ar. If Pj has infinite order then we take any aj ∈ Z; if Pj has order mj then we
take aj (mod mj). We can add points, by adding the vectors of the aj componentwise,
and according to these rules.

If there are infinitely many points in E(Q), how are they spaced on the curve itself?
Are they dense on the curve? This sort of question can be answered but requires methods
from beyond this discussion.

How big the rank can get is an open question. Researchers have found elliptic curves
for which E(Q) has rank at least 28, and some people believe that ranks of E(Q) can get
arbitrarily large as we vary over elliptic curves E, though for now this is more a belief than
a conjecture.

We have already seen something similar to the notion of Mordell-Weil groups when
we were considering solutions to Pell’s equation. There all solutions take the form ±ϵa so
that this group of units is generated by −1 and ϵd and has structure Z/2Z × Z, this ±1
being torsion. There can be more torsion than just ±1; for example, in Z[i] we also have
the units ±i so the unit group structure is Z/4Z, generated by i.

Exercise H1.15. The size of ϵnd grows exponentially in n. How fast does 2kP grow (as a function of k)?

Can you then deduce a result about the growth of nP?

Integral points on elliptic curves. We change models of elliptic curves by linear
changes of variables, which allows us to keep consistent our notion of rational points
(as long as we are careful about points at infinity). However such transformations do not
preserve integer points, making such question a little more ad hoc, in the sense that the
question depends on the choice of model for the elliptic curve.

Siegel showed that there are only finitely many integral points on any model of an
elliptic curve, and indeed on any model of any curve that is not transformable to a linear
equation. The proof is a little beyond us here, but note that if we had x(x−1)(x+1) = y2

in integers, then either x − 1 and x are squares, or (x − 1)/2 and (x + 1)/2 are squares,
the only solution to consecutive squares being 0 and 1, and hence x = 1, y = 0. This proof
generalizes but in an example like x(2x+ 1)(3x+ 1) = y2 we see that there exist integers
u, v, w such that x = ±u2, 2x+1 = ±v2, 3x+1 = ±w2. Hence v2−2u2 = 3v2−2w2 = ±1.
Squaring the second solution gives (3v2 + 2w2)2 − 6(2vw)2 = 1, and so we get solutions
to a simultaneous Pell equation. Since the solutions to one Pell equation are so sparse, it
seems likely that there are few co-incidences between two.28

Sums of two cubes. Suppose that are studying rational solutions of a3 + b3 = k ( ̸= 0).
Writing u = a+ b, v = a− b and then y = 36kv/u, x = 12k/u we get y2 = x3 − 3(12k)2.

28Bennett et. al. proved that there are never more than two solutions to x2 − az2 = y2 − bz2 = 1

for given integers a > b ≥ 1. This cannot be improved since for any z we can select integers x and y such
that x2 ≡ y2 ≡ 1 (mod z2) and then take a = (x2 − 1)/z2, b = (y2 − 1)/z2.
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Exercise H1.16. Show that from every rational solution x, y to y2 = x3−3(12k)2 we can obtain a rational

solution a, b to a3 + b3 = k.

Hence we see that studying the sum of two cubes is also a problem about elliptic curves.
We have seen that 1729 is the smallest integer that can be represented in two ways. Are
there integers that can be represented in three ways, or four ways, or...? Actually this is
not difficult to answer: 13 + 123 = 93 + 103 = 1729. Using the doubling process on the
cubic curve a3 + b3 = 1729

If P = (a, b) then 2P = (A,B) then A = a
a3 − 3458

1729− 2a3
and B = b

a3 + 1729

1729− 2a3
.

So, starting from the solution (12, 1), we get further solutions (20760/1727,−3457/1727),
(184026330892850640/15522982448334911, 61717391872243199/15522982448334911), and
the next solution is pointless to write down since each ordinate has seventy digits! The
main point is that there are infinitely many different solutions, let us write them as
(ui/wi, vi/wi), i = 1, 2, . . . with w1|w2| . . . .29 Hence we have N solutions to a3 + b3 =
1729w3

N taking a = ui(wN/wi) and b = vi(wN/wi).
This scaling up of rational points seems like a bit of a cheat, so let’s ask whether there

exists an integer m that can be written in N ways as the sum of two cubes of coprime
integers? People have found examples for N = 3 and 4 but not beyond, and this remains
an open question.

29As we saw when discussing the proof of the Lutz-Nagell Theorem.
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H2. Elliptic curves and finite fields. Look at the curve E : y2 = x3 − x. Let Np be
the number of pairs (x, y) ∈ [0, p − 1]2 such that y2 ≡ x3 − x (mod p). By Corollary 8.2
we have

Np =

p−1∑
n=0

1 +

(
n3 − n

p

)
= p+

p−1∑
n=0

(
n

p

)(
n2 − 1

p

)
.

Now if p ≡ 3 (mod 4) then
(

(−x)3−(−x)
p

)
=
(

−(x3−x)
p

)
= −

(
x3−x

p

)
and so the sum on

the right side is 0. Hence Np = p.
It not so obvious how to easily calculate the sum when p ≡ 1 (mod 4). If we do

calculations we see that

N5 = 7, N13 = 19, N17 = 19, N29 = 39, N37 = 39, N41 = 51, N53 = 67, N61 = 71, N73 = 79,

and hence N5−5 = 2, N13−13 = 6, N17−17 = 2, N29−29 = 10, N37−37 = 2, N41−41 =
10, N53 − 53 = 14, N61 − 61 = 10, N73 − 73 = 6, . . . In Proposition F2.1, we saw that if
p = a2 + b2 with a odd then

Np = p− 2(−1)
a+b+1

2 a.

In section F4 we saw that

Np − p ≡ −
(p−1

2
p−1
4

)
(mod p).

Hence we deduce that (p−1
2

p−1
4

)
≡ 2(−1)

a+b+1
2 a (mod p),

a congruence found by Gauss. Beukers’ supercongruence allows us to determine rather
more. Select i such that i2 ≡ −1 (mod p) with i ≡ a/b (mod p2). Evidently a − bi ≡ 0
(mod p2), but (p2−1

2
p−1
4

)
≡ (−1)

a+b+1
2 (a+ bi) (mod p2).

In general, for any elliptic curve mod p there exists a complex number αp := a+
√
−db

with a, b, d ∈ Z for which p = a2 + db2 and Np = p − 2a = p − αp − αp. Thus there is
a link between the elliptic curve mod p and −d, which has the same squarefree part as
t2 − 4p where t = p−Np. Indeed the number of elliptic curves (up to isomorphism) with
Np = p − t is given by the number of equivalence classes of binary quadratic forms of
discriminant t2 − 4p whether or not they are primitive.

Statement of B SW-D. For each extra rank we increase by 1 the average number of
points in Fp by 1.

Heegner points? And so the Taniyama-Shimura conjecture.
What is Complex-Multiplication, and what is Sato-Tate? State Taylor’s Theorem.
The congruent number problem?
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H3. More L-functions. Let’s study how many solutions there are to y2 − dx2 = 1 with
|x| ≤ N , for N large. Now if x, y are a pair of positive integers for which 0 ≤ y2 − dx2 < 2
then y2 − dx2 = 1 so we could guess the number of such pairs is the volume of this region.
Given x it is more-or-less true that 0 ≤ y2−dx2 < 2 is equivalent to 0 ≤ y−

√
dx < 1/

√
dx,

and hence the volume with x ≤ N is

≈
∫ N

1

dx√
dx

=
log N√

d
.

Now this heuristic pre-supposes that any x, y of the right size are going to be solutions,
but we should try to take into account what we know from congruences. That is that the
proportion of pairs of integers x, y for which x2 − dy2 ≡ 1 (mod p) is not 1/p but rather

1/p times 1− 1
p

(
d
p

)
as we saw in section *. Hence we should multiply the above through

by ∏
p

(
1− 1

p

(
d

p

))
=

1

L(1,
(
d
.

)
)
.

Hence we might predict that the number of solutions is roughly

log N√
d L(1,

(
d
.

)
)
.

However we did see earlier that all solutions to y2−dx2 = 1 with x, y ≥ 1 are powers of the
fundamental solutions ϵd to Pell’s equation, and hence the number of solutions is actually
log N
log ϵd

. Equating the two we might thus guess that

log ϵd ≈
√
d L(1,

(
d

.

)
).

If one calculates one finds one gets equality here whenever h(d) = 1 but not otherwise!
In fact the classes of the class group form another thing we have to take into account.
Basically one can perform the same calculation corresponding to one reduced form from
each class and get different solutions to Pell’s equation. Hence we adjust our predicted

count to h(d)log N√
d L(1,( d

. ))
, leading to Dirichlet’s formula:

h(d)log ϵd =
√
d L(1,

(
d

.

)
).

How many rational points are there on an elliptic curve? Birch and Swinnerton-Dyer
reasoned that, like in the case of quadratics, if there are more mod p, on average, then
there are probably more rational points. Hence although we might expect p solutions to
y2 = x3+ax+b (mod p) we actually get p−ap and so we should adjust accordingly. Thus
a factor ∏

p

p− ap
p

=
∏
p

(1− ap/p)
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should come into play. We saw that ap = αp + αp for some quadratic complex number
for which αpαp = p. This suggest a factor which is more natural than 1 − ap/p, since it
factors, namely: (

1− αp

p

)(
1− αp

p

)
= 1− ap

p
+

1

p2
.

Hence it seems natural to define the elliptic curve for an L-function as

∏
p

(
1− ap

ps
+

1

p2s

)−1

though, as with the Dirichlet L-function, we may have to do something slightly different
for the primes p that divide the conductor; for Dirichlet L-functions that was the modulus
q; here it is some divisor of the discriminant, ∆.

This more-or-less defines the Hasse-Weil L-function of an elliptic curve L(E, s), and
we might ask to what extent it has the same properties as a Dirichlet L-function? We
claimed that giving an analytic continuation of L(s, χ) to the whole complex plane is not
too difficult; for L(E, s) this is substantially more difficult though we now know how to
do so (as will be explained shortly). One formula for L(s, chi) shows how values at s are
related to those at 1 − s. For L(E, s) this is true but the symmetry is between 1/2 + s
and 3/2− s. The center of that symmetry is the line Re(s) = 1/2 and we believe that all
non-trivial zeros of L(s, χ) lie on this line, a Riemann Hypothesis, and we believe that the
same is true for L(E, s).
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Transformations. It is interesting to make a power series out of the coefficients of a given
Dirichlet series. Hence for ζ(s) we obtain

∑
n≥1 t

n = t/(1− t). For a Dirichlet L-function

L(s, χ) we have, using the periodicity of χ (mod q), and so writing n = qr +m

∑
n≥1

χ(n)tn =

q∑
m=1

∑
r≥0

χ(m)tqr+m =

∑q
m=1 χ(m)tm

1− tq
,

a rational function. This is not quite as ad hoc a procedure as it seems at first sight since
by defining30

Γ(s) =

∫ ∞

0

e−tts−1dt

for Re(s) > 0 we have, by changing variable t→ nt, Γ(s) = ns
∫∞
0
e−ntts−1dt and so

Γ(s)L(s, χ) =
∑
n≥1

χ(n)

∫ ∞

0

e−ntts−1dt =

∫ ∞

0

∑q
m=1 χ(m)e−mt

1− e−qt
ts−1dt.

This provides an analytic continuation for L(s, χ).
Let E be the elliptic curve E : y2 = x3 − x. By Proposition F2.1 we have that

L(E, s) =
∑

n≥1 an/n
s where the an are given by (G1.2).31 In particular this implies that

Γ(s)L(E, s) ==

∫ ∞

0

e−t
∏
n≥1

(1− e−4nt)2(1− e−8nt)2ts−1dt.

So what is special about these integrands that they give rise to L-functions? The
formula in (G1.2) is not a rational function, but it is something elegant. Is there something
special about it that leads us to L-functions? This is the question that Taniyama asked
himself in 1955 and led to one of the most extraordinary chapters in the history of number
theory. More on this in section H7.

30Γ(s) is the function that extrapolates n!, so that Γ(n + 1) = n!. Because of this it is involved in

many beautiful combinatorial formulas many of which stem from

1

sΓ(s)
= eγs

∞∏
n=1

(
1+

s

n

)
e−s/n.

31Actually we only have this for ap immediately but the rest can be proved.
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H4. FLT and Sophie Germain. The first strong result on FLT was due to Sophie
Germain:

Lemma. Suppose that p is an odd prime for which q = 2p+ 1 is also prime. If a, b, c are
coprime integers for which ap + bp + cp ≡ 0 (mod q) then q divides at least one of a, b, c.

Proof. Since p = q−1
2 we know that tp ≡ −1 or 1 (mod q) for any integer t that is not

divisible by q, and so if q does not divide abc then ap + bp + cp ≡ −3,−1, 1 or 3 (mod q).
This is impossible as q = 2p+ 1 > 3.

Sophie Germain’s Theorem. Suppose that p is an odd prime for which q = 2p + 1
is also prime. There do not exist integers x, y, z for which p does not divide x, y, z and
xp + yp + zp = 0.

Proof. Assume that there is a solution. As we saw in Proposition 6.3 we may assume that
x, y, z are pairwise coprime so, by the lemma, exactly one of x, y, z is divisible by q: Let
us suppose that q divides x, without loss of generality since we may re-arrange x, y and z
as we please.

By exercise 3.1.21 there exist integers a, b, c, d such that

z + y = ap, z + x = bp, x+ y = cp and
yp + zp

y + z
= dp (as p ̸ |xyz), where x = −cd.

Now ap = z+ y ≡ (z+ x) + (x+ y) ≡ bp + cp (mod q) as q|x, and so we see that q divides
at least one of a, b, c by the Lemma. However since (q, b)|(x, z+ x) = (x, z) = 1 as q|x and
b|z + x and so q does not divide b, as well as c, analogously. Hence q divides a, that is
−z ≡ y (mod q). But then

dp =
yp + zp

y + z
=

p−1∑
j=0

(−z)p−1−jyj ≡
p−1∑
j=0

yp−1−jyj = pyp−1 (mod q).

Therefore, as y ≡ x+ y = cp (mod q) and q − 1 = 2p, we deduce that

4 ≡ 4d2p = (2dp)2 ≡ (2pyp−1)2 = (−1)2(c2p)p−1 ≡ 1 (mod q),

which is impossible as q > 3.

Hence if one can show that there are infinitely many pairs of primes p, q = 2p+1 then
there are infinitely many primes p for which there do not exist integers x, y, z for which p
does not divide x, y, z and xp + yp + zp = 0.

After Sophie Germain’s Theorem, the study of Fermat’s Last Theorem was split into
two cases:

I) Where p̸ |xyz; and II) where p|xyz.
One can easily develop Germain’s idea to show that if m ≡ 2 or 4 (mod 6) then there

exists a constant Nm ̸= 0 such that if p and q = mp+ 1 are primes for which q ̸ |Nm then
FLTI is true for exponent p. This was used by Adleman, Fouvry and Heath-Brown to
show that FLTI is true for infinitely many prime exponents.
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There were many early results on the first case of Fermat’s Last Theorem, which
showed that if there is a solution with p̸ |xyz, then some extraordinary other things must
happen. Here is a list of a few:

If there is a solution to FLTI then
i) We have 2p−1 ≡ 1 (mod p2). In section B3 we saw that this seems to happen rarely.

In fact one also has 3p−1 ≡ 1 (mod p2), 5p−1 ≡ 1 (mod p2), . . . , 113p−1 ≡ 1 (mod p2).
Indeed one can obtain as many criteria like this as one wishes after a finite amount of
calculation.

ii) p divides the numerator of Bp−3, Bp−5, . . . , Bp−r for r ≤ (log p)1/2−o(1). And p
divides the numerator of at least

√
p− 2 non-zero Bernoulli numbers Bn, 2 ≤ n ≤ p− 3.

iii)

Let us try to prove Fermat’s Last Theorem, ignoring many of the technical issues. Let ζ
be a primitive p the root of unity. Then we can factor

xp + yp = (x+ y)(x+ ζy)(x+ ζ2y) . . . (x+ ζp−1y).

Now we are working in the set Z[ζ], and we see that gcd(x+ζiy, x+ζjy) divides (x+ζiy)−
(x+ζjy) = (ζi−ζj)y and ζj(x+ζiy)−ζi(x+ζjy) = (ζj−ζi)x, so that gcd(x+ζiy, x+ζjy)
divides (ζi − ζj)(x, y). Note that ζk, 1 ≤ k ≤ p− 1 are the roots of xp−1 + xp−2 + . . .+ 1
and so

p−1∏
k=1

(1− ζk) =

p−1∏
k=1

(x− ζk)
∣∣
x=1

= xp−1 + xp−2 + . . .+ 1
∣∣
x=1

= p;

therefore if k = j − i then ζi − ζj = ζi(1 − ζk) divides p. So now assume that we have a
solution to FLTI, that is xp+yp = zp with gcd(x, y) = 1 and p̸ |z, and so x+y, x+ζy, x+
ζ2y, x+ ζp−1y are pairwise coprime elements of Z[ζ] whose roduct is a pth power. If this
works like the regular integers then each x + ζjy is a pth power. So we have gone from
three linearly independent pth powers to p linearly dependent pth powers! In particular if
x+ ζjy = upj then

(ζj−ζk)upi+(ζk−ζi)upj+(ζi−ζj)upk = (ζj−ζk)(x+ζiy)+(ζk−ζi)(x+ζjy)+(ζi−ζj)(x+ζky) = 0.

Ignoring for a moment two technical details: the coefficients and the fact that we are no
longer working over the integers, we see that we have found another solution to FLTI, this
time with pth powers which are divisors of the previous pth powers and hence are smaller.
Thus this seems to have the makings of a plan to prove FLTI by a descent process.

In 1850 Kummer attempted to prove Fermat’s Last Theorem, much along the lines
of last subsection. He however resolved a lot of the technical issues that we have avoided,
creating the theory for ideals for Z[ζ], much as we saw it discussed earlier for quadratic
fields. That such similar theories evolved for quite different situations suggested that there
was probably a theory of ideals that worked in any number field. Indeed such results were
proved by Dedekind and became the basis of algebraic number theory, and indeed much
of the study of algebra. Kummer’s exact criteria was to show that if p does not divide a
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certain class number (associated to Z[ζ]) then Fermat’s Last Theorem is true for exponent
p. He showed that p does not divide that certain class number, if and only if p does not
divide the numerators of B2, B4, B6, . . . , Bp−3.

In 1994 Wiles finally proved Fermat’s Last Theorem based on an extraordinary plan
of Frey and Serre to bring in ideas from the theory of elliptic curves. In fact Fermat’s Last
Theorem falls as a consequence of Wiles’ (partial) resolution of a conjecture about the
structure of elliptic curves that we will discuss in section *. The elliptic curve associated
to a solution ap + bp + cp = 0 is y2 = x(x+ ap)(x− bp), because then the discriminant ∆,
which is the product of the difference of the roots, squared, equals (abc)2p.

Another famous problem about powers in Catalan’s 1844 conjecture that the only
perfect powers that differ by 1 are 8 and 9 (that is if xp − yq = 1 then either x = 0, or
y = 0, or x = q = 3 and y = p = 2. After Baker’s Theorem it was known that there could
be only finitely many such pairs, but the conjecture was only proved in 2004 by Mihailescu
with a proof more along the lines of Kummer’s work on Fermat’s Last Theorem.

Now that the two key conjectures in this field have been resolved, one can ask about
other Diophantine equations involving powers. A hybrid is the Fermat-Catalan equation

xp + yq = zr.

However there can be many uninteresting solutions: For example if q = p and r = p + 1
one has solutions (a(ap + bp))p + (b(ap + bp))p = (ap + bp)p+1 for any integers a and b.
This kind of solution can be ignored by assuming that x, y and z are pairwise coprime.
However it is not hard to find some solutions:

1 + 23 = 32, 25 + 72 = 34, 73 + 132 = 29, 27 + 173 = 712, 35 + 114 = 1222.

and with a little more searching one finds five surprisingly large solutions:

177 + 762713 = 210639282, 14143 + 22134592 = 657, 92623 + 153122832 = 1137,

438 + 962223 = 300429072, 338 + 15490342 = 156133.

The Fermat-Catalan conjecture. There are only finitely many solutions to xp+yq = zr

in coprime integers x, y, z, where 1
p + 1

q + 1
r< 1.

A stronger version of the conjecture states that there are only the ten solutions listed
above. However this sort of conjecture is always a little feeble since if someone happens to
find one more isolated example, then would we not believe that those eleven solution are
all?

Several people have observed that all of the solutions above have at least one exponent
2, so that one can conjecture that there are only finitely many solutions to xp + yq = zr

in coprime integers x, y, z, where p, q, r ≥ 3.
The cases where 1

p + 1
q + 1

r≥ 1 are fully understood. When 1
p + 1

q + 1
r= 1 we only

have the solution 16 + 23 = 32.

Exercise Show that there are infinitely many coprime solutions to x2 + y2 = zr for any fixed r. (Hint:

Use your understanding of what integers are the sum of two squares.)
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For the other cases there are infinitely many solutions; for example the parametrization
(a(a3 − 8b3))3 + (4b(a3 + b3))3 = (a6 + 20a3b3 − 8b6)2 (due to Euler, 1756)

A proof of Fermat’s Last Theorem? Fermat claimed that there are no solutions to

(1) xp + yp = zp

for p ≥ 3, with x, y and z all non zero. If we assume that there are solutions to (1) then we
can assume that x, y and z have no common factor else we can divide out by that factor.
Our first step will be to differentiate (1) to get

pxp−1x′ + pyp−1y′ = pzp−1z′

and after dividing out the common factor p, this leaves us with

(2) xp−1x′ + yp−1y′ = zp−1z′.

We now have two linear equations (1) and (2) (thinking of xp−1, yp−1 and zp−1 as our
variables), which suggests we use linear algebra to eliminate a variable: Multiply (1) by y′

and (2) by y, and subtract, to get

xp−1(xy′ − yx′) = zp−1(zy′ − yz′).

Therefore xp−1 divides zp−1(zy′ − yz′), but since x and z have no common factors, this
implies that

(3) xp−1 divides zy′ − yz′.

This is a little surprising, for if zy′−yz′ is nonzero then a high power of x divides zy′−yz′,
something that does not seem consistent with (1).

We want to be a little more precise. Since we differentiated, we evidently never were
working with integers x, y, z but rather with polynomials. Thus if zy′ − yz′ = 0 then
(y/z)′ = 0 and so y is a constant multiple of z, contradicting our statement that y and z
have no common factor. Therefore (3) implies that

(p− 1) degree(x) ≤ degree(zy′ − yz′) ≤ degree(y) + degree(z)− 1,

since degree(y′) = degree(y)− 1 and degree(z′) =degree(z)− 1. Adding degree(x) to both
sides gives

(4) p degree(x) < degree(x) + degree(y) + degree(z).

The right side of (4) is symmetric in x, y and z. The left side is a function of x simply
because of the order in which we chose to do things above. We could just as easily have
derived the same statement with y or z in place of x on the left side of (4), so that

p degree(y) < degree(x) + degree(y) + degree(z)

and p degree(z) < degree(x) + degree(y) + degree(z).

Adding these last three equations together and then dividing out by degree(x)+degree(y)+
degree(z), implies

p < 3,

and so Fermat’s Last Theorem is proved! Well, not quite, but what we have proved (and
so simply) is still of great interest:
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Proposition 1. There are no genuine polynomial solutions x(t), y(t), z(t) ∈ C[t] to
x(t)p + y(t)p = z(t)p with p ≥ 3. By “genuine” we mean that the triple (x(t), y(t), z(t)) is
not a polynomial multiple of a solution of (1) in C.

That Fermat’s Last Theorem is easy to prove for polynomials is an old result, going
back certainly as far as Liouville (1851).

Fermat quotients. There are many questions around like whether p2 divides 2p−1 − 1.
We call qp(2) := (2p−1 − 1)/p the Fermat quotient. Similarly wp = ((p− 1)! + 1)/p is the
Wilson quotient. One interesting connection is that

pBp−1 − (p− 1)

p
≡ wp (mod p),

where Bp−1 is the (p − 1)st Bernoulli number. The von-Staudt Clausen Theorem states
that the denominator of Bn is the product of the primes p for which p− 1 divides n, and
pBp−1 ≡ −1 (mod p).

Another surprising congruence is that(
np

mp

)
≡
(
n

m

)
(mod p3),

not just mod p as we get from Lucas’ Theorem (the case n = 2,m = 1 is known as
Wolstenholme’s Theorem). This is always divisible by p4 if and only if p divides Bp−3, the
(p− 3)rd Bernoulli number.

In 1894 Morley showed that

(−1)
p−1
2

(
p− 1

(p− 1)/2

)
≡ 4p−1 (mod p3),

and this holds mod p4 if and only if p divides Bp−3.
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H5. Rational points on curves. We are interested when a curve has infinitely many
rational points. We will proceed here with some identities: Throughout we will suppose
that a, b, c are given non-zero integers for which a+ b+ c = 0. One can check that if r, s, t
are integers for which r + s+ t = 0 then

a(bs2 + ct2)2 + b(as2 + cr2)2 + c(at2 + br2)2 = 0

This can be applied to show that any quadratic equation Ax2 + By2 = Cz2 with one
non-zero integral point has infinitely many given as polynomials in r, s, t. To do so simply
select a = Ax2, b = By2, c = −Cz2 above and we obtain AX2 +BY 2 = CZ2 with

X = x(B(ys)2 − C(zt)2), Y = y(A(xs)2 − C(zr)2), Z = z(A(xt)2 +B(yr)2).

For example, for the equation x2 + y2 = 2z2 starting from the solution (1, 1, 1) we
obtain the parametrization X = s2−2t2, Y = s2−2r2, Z = t2+r2, which we can re-write,
taking t = −s− r, as −X = 2r2 + 4rs+ s2, Y = s2 − 2r2, Z = 2r2 + 2rs+ s2. Hence we
see that any quadratic with one solution has infinitely many given parametrically.

We also have a+ b+ c = 0, we have

a(b− c)3 + b(c− a)3 + c(a− b)3 = 0

so from any given solution to ax3 + by3 = cz3 we can find another significantly larger
solution, that is aX3 + bY 3 = cZ3 with

X = x(by3+cz3) = x(ax3+2by3), Y = −y(ax3+cz3) = −y(2ax3+by3), Z = z(ax3−by3).

This is really the doubling process that we saw earlier but here it is rather more elegant
to give such a formula, if we simply want to show that there are infinitely many solutions.
Notice though that these solutions are considerably more rare than in the case of quadratic
equations.

In section * we saw a proof of Fermat’s Last Theorem for polynomials, though we do
we have solutions for quadratic polynomials: Not only (t2 − 1)2 = (2t)2 = (t2 + 1)2 but in
fact we just saw that any diagonal quadratic that has one solution has a polynomial family
of solutions. The intent now is to extend the idea in our proof of Fermat’s Last Theorem
for polynomials to as wide a range of questions as possible. It takes a certain genius to
generalize to something far simpler than the original. But what could possibly be more
simply stated, yet more general, than Fermat’s Last Theorem? It was Richard C. Mason
(1983) who gave us that insight: Look for solutions to

(5) a+ b = c.

We will just follow through the proof of FLT and see where it leads: Start by assuming, with
no loss of generality, that a, b and c are all non-zero polynomials without common factors
(else all three share the common factor and we can divide it out). Then we differentiate
to get

a′ + b′ = c′.
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Next we need to do linear algebra. It is not quite so obvious how to proceed analogously,
but what we do learn in a linear algebra course is to put our coefficients in a matrix and
solutions follow if the determinant is non-zero. This suggests defining

∆(t) :=

∣∣∣∣ a(t) b(t)
a′(t) b′(t)

∣∣∣∣ .
Then if we add the first column to the second we get

∆(t) =

∣∣∣∣ a(t) c(t)
a′(t) c′(t)

∣∣∣∣ ,
and similarly

∆(t) =

∣∣∣∣ c(t) b(t)
c′(t) b′(t)

∣∣∣∣
by adding the second column to the first, a beautiful symmetry.

We note that ∆(t) ̸= 0, else ab′ − a′b = 0 so b is a scalar multiple of a (with the
same argument as above), contradicting hypothesis. To find the appropriate analogy to
(3), we interpret that as stating that the factors of x (as well as y and z) divide our
determinant to a high power. So now suppose that α is a root of a(t), and that (t − α)e

is the highest power of (t − α) which divides a(t). Evidently (t − α)e−1 is the highest
power of (t − α) which divides a′(t), and thus it is the highest power of (t − α) which
divides ∆(t) = a(t)b′(t)−a′(t)b(t) (since α is not a root of b(t)). Therefore (t−α)e divides
∆(t)(t− α). Multiplying all such (t− α)e together we obtain

a(t) divides ∆(t)
∏

a(α)=0

(t− α).

In fact a(t) only appears on the left side of this equation because we studied the linear
factors of a; analogous statements for b(t) and c(t) are also true, and since a(t), b(t), c(t)
have no common roots, we can combine those statements to read

(6) a(t)b(t)c(t) divides ∆(t)
∏

(abc)(α)=0

(t− α).

The next step is to take the degrees of both sides and see what that gives. Using the three
different representation of ∆ above, we have

degree(∆) ≤


degree(a) + degree(b)− 1,

degree(a) + degree(c)− 1,

degree(c) + degree(b)− 1.

The degree of
∏

(abc)(α)=0(t−α) is precisely the total number of distinct roots of a(t)b(t)c(t).

Inserting all this into (6) we find that

max{degree(a), degree(b), degree(c)} < #{α ∈ C : (abc)(α) = 0}.

Put another way, this result can be read as:
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The abc Theorem for Polynomials. If a(t), b(t), c(t) ∈ C[t] do not have any common
roots and provide a genuine polynomial solution to a(t) + b(t) = c(t), then the maximum
of the degrees of a(t), b(t), c(t) is less than the number of distinct roots of a(t)b(t)c(t) = 0.

This is a “best possible” result in that we can find infinitely many examples where
there is exactly one more zero of a(t)b(t)c(t) = 0 than the largest of the degrees. For
example the familiar identity

(2t)2 + (t2 − 1)2 = (t2 + 1)2;

or the rather less interesting

tn + 1 = (tn + 1).

Back to the above, we wish to know for what n there can be parametric solutions to

axn + byn = czn.

That is for given integers a, b, c, can there be (coprime) polynomials x, y, z ∈ Z[t] or even
C[t] satisfying this equation? If so, then if the maximum of the degrees of x, y, z is d, then
we have dn < 3d so that n ≤ 2, by the abc-theorem for polynomials. That is the quadratic
examples that we found, provide all of the possible examples.

In the cubic case we wrote x, y, z as polynomials in a, b, c, where x, y, z have no common
factors given that a+ b = c. By looking only at the term of highest degree we may assume
that x, y, z are homogenous polynomials in a, b, c of degree d, say. Now we may write a = ct
and b = c(1− t) for some t, and then, dividing through x, y, z by cd, we obtain an identity
tun +(1− t)vn = wn where u, v, w are polynomials of degree d (or less) in t. Applying the
abc-theorem for polynomials we have dn+ 1 < 3d+ 2 and so n ≤ 3.

The abc-conjecture. Could there be an analogous result for the integers, which would
also imply Fermat’s Last Theorem, and perhaps much more? The idea would be to bound
the size of the integers involved (in place of the degree) in terms of their distinct prime
factors (in place of the number of roots). A first guess at an analogous result might be
if a + b = c with a, b, c pairwise coprime positive integers then a, b and c are bounded in
terms of the number of prime factors of a, b, c but if, as we believe, there are infinitely many
pairs of twin primes p, p + 2 then we have just three prime factors involved in p + 2 = q,
and they get arbitrarily large. It therefore seems sensible to include the size of the prime
factors involved in such a bound so we might guess at c ≤

∏
p|abc p, but again a simple

example excludes this possibility: Let 1 + (2n − 1) = 2n. If we take any prime q and then
n = q(q − 1) we have q2|2n − 1 and so

∏
p|(2n−1)2n p ≤ 2(2n − 1)/q < 2n. In this case

q ≈
√
n ≈

√
log n so even though our guess was wrong it is not too far out. This suggests

that our guess is almost correct and could be made correct by fudging things a little bit:

The abc-conjecture. For any fixed ϵ > 0 there exists a constant κϵ such that if a, b, c are
pairwise coprime positive integers for which

a+ b = c
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then

c ≤ κϵ

 ∏
p prime
p|abc

p


1+ϵ

.

In particular one might guess that κ1 = 1; that is c ≤
(∏

p|abc p
)2

. We can apply the

abc-conjecture to FLT: Let a = xp, b = yp, c = zp with 0 < x, y < z so that∏
p|abc

p =
∏
p|xyz

p ≤ xyz < z3.

The abc-conjecture implies that zp ≤ κϵ(z
3)1+ϵ.

Exercise Deduce that if p > 3 then z is bounded independently of p.

Exercise Suppose that p, q, r are positive integers for which 1
p
+ 1

q
+ 1

r
< 1.

(1) Show that 1
p
+ 1

q
+ 1

r
≤ 41

42

(2) Show that the abc-conjecture implies that if xp+yq = zr with (x, y, z) = 1 then x, y, z are bounded

independently of p, q, r.
(3) Deduce that if the abc-conjecture is true then the Fermat-Catalan conjecture is true.

Faltings’ Theorem née Mordell’s conjecture. Let f(x, y) ∈ Z[x, y] be an irreducible
polynomial in two variables with integer coefficients. We are interested in finding rational
numbers u and v for which f(u, v) = 0.

We have seen how to completely resolve this for f of degree 1 or 2: there are either
no solutions, or an infinite of rational solutions , as a rational function of the variable t.

For f of degree 3 and sometimes 4 we can sometimes reduce the problem to an elliptic
curve, and given one solution we can find another as a function of that solution, and thus
get infinitely many solutions unless we hit on a torsion point (of which there are no more
than 16).

Faltings’ Theorem tells us that these are the only two ways in which an equation like
f(u, v) = 0 have infinitely many rational solutions. That is, if put to one side all solutions
of f(x, y) = 0 that come from the two methods above, then we are left with finitely many
solutions. Therefore, for higher degree f , there are only finitely many “sporadic” solutions.
It is even feasible that the number of rational points left over is bounded by a function
of the degree of f . Faltings’ extraordinary theorem has many wonderful consequences ...
For any given p ≥ 4 there are only finitely many positive coprime integer solutions to
xp + yp = zp. Similarly

x4 + y4 = 17z4 and x2 + y3 = z7

each have only finitely many coprime integer solutions. More generally there are only
finitely many positive coprime integer solutions x, y, z to the Fermat-Catalan equation

axp + byq = czr
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for any positive coprime integers a, b, c whenever 1
p + 1

q + 1
r< 1.32

One important failing of Faltings’ Theorem is that it does not give an upper bound
on the size of the solutions, and so no “algorithm” for finding them all, even though we
know there are only finitely many.

In 1991 Elkies showed that using an explicit version of the abc-conjecture (that is, with
a value assigned to κε for each ϵ), one can deduce an explicit version of Faltings’ Theorem.
The proof revolves around a careful study of the extreme cases in the abc-Theorem for
polynomials.

Moret-Bailly, building on ideas of Szpiro, went a step further. He showed that if one
could get good upper bounds for the size of the co-ordinates of the rational points on33

y2 = x5−x in any number field34 then the abc-conjecture follows. (“Good” bounds, in this
case, are bounds that depend explicitly on the discriminant of the number field over which
the points are rational). Therefore, in a certain sense, this problem and the abc-conjecture
are equivalent.

H6. The local-global principle. Currently section 9.3.

32Notice that this is not the full Fermat-Catalan conjecture, since here we have proved that there

are only finitely many solutions for each fixed p, q, r (for which 1
p
+ 1

q
+ 1

r
< 1), rather than there are only

finitely many solutions, in total, over all possible p, q, r.
33Or, for the initiated, on any other smooth algebraic curve of genus > 1.
34That is, a finite field extension of Q.
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H7. Modularity and eπ
√
163. Jacobi’s theta function is defined by

θ(s) :=
∑
n∈Z

eiπn
2s for all s for which Im(s) > 0.

Jacobi showed an extraordinary relationship:

θ(−1/s) = (is)1/2 θ(s).

This was the basis for Riemann’s ability to analytically continue the Riemann zeta-function
to the whole complex plane, and to prove that the value of resulting function at 1− s can
be easily expressed in terms of its value at s.

Exercise Prove that we also have θ(s+ 2) = θ(s).

There are other functions that also satisfy such equations, which we now briefly dis-
cuss:

What functions of the reals are periodic? That is satisfy f(x) = f(x + n) for all x.
The trigonometric functions are examples, and it can be shown that all such functions are
rational functions in the basic trigonometric functions.

One way to view this periodicity is that the function stays constant under the map
x→ x+ n.

Jacobi’s result shows that s1/4θ(s) stays constant under the map s → 1/s. Note
though that here θ is a function defined on a half plane.

One can ask whether there are any functions that satisfy both? Simply can we find
a function f such that f(s) stays fixed under the map s → s + 1 and under the map
s → −1/s, and hence under all the possible compositions of the two maps. Notice that
we have seen this pair of maps before when we were dealing with binary quadratic forms.
Together they generate all of SL(2,Z). So we want functions f(s) that stay constant under
the action of SL(2,Z). This is a guess in it turns out to not quite be correct. What we
really want is something, like θ(z), which is easily understood under such transformations.
Strangely we work with functional equations like

f

(
at+ b

ct+ d

)
= (ct+ d)kf(t).

Exercise Verify that if this holds for f(−1/t) and f(t+ 1) then it holds for all f
(

at+b
ct+d

)
.


