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A Pari/GP Tutorial

by Robert B. Ash, Jan. 2007

The Pari/GP home page is located at http://pari.math.u-bordeaux.fr/

1. Pari Types

There are 15 types of elements (numbers, polynomials, matrices etc.) recognized by
Pari/GP (henceforth abbreviated GP). They are listed below, along with instructions on
how to create an element of the given type. After typing an instruction, hit return to
execute. A semicolon at the end of an instruction suppresses the output. To activate the
program, type gp, and to quit, type quit or \q
1. Integers
Type the relevant integer, with a plus or minus sign if desired.
2. Rational Numbers
Type a rational number as a fraction a/b, with a and b integers.
3. Real Numbers
Type the number with a decimal point to make sure that it is a real number rather than an
integer or a rational number. Alternatively, use scientific notation, for example, 8.46E17
The default precision is 28 significant digits. To change the precision, for example to 32
digits, type \p 32.
4. Complex Numbers
Type a complex number as a + b ∗ I or a + I ∗ b, where a and b are real numbers, rational
numbers or integers.
5. Integers Modulo n
To enter n mod m, type Mod(n, m).
6. Polynomials
Type a polynomial in the usual way, but don’t forget that ∗ must be used for multiplica-
tion. For example, type xˆ3 + 3*xˆ2 -1/7*x +8.
7. Rational Functions
Type a ratio P/Q of polynomials P and Q.
8. Polynomials Modulo a Polynomial P
To enter Q mod P , type Mod(Q, P ).
9. Vectors
Type a row vector as, for example, [1,2,3], and a column vector as [1,2,3]˜. The i-th
component of a vector v can be recovered via v[i].
10. Matrices
Separate components by commas, lines by semicolons. Thus [1, 2, 3; 4, 5, 6] gives the matrix

(

1 2 3
4 5 6

)

.
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To recover the ij element of a matrix A, type A[i, j]. The i-th row is A[i, ] and the j-th
column is A[, j].
11. Lists
L=listcreate(4) creates an empty list of (maximum) length 4. Then listput(L, a, 1) sets
the first entry of L to a. Similarly, after listput(L, b, 2), listput(L, c, 3), and listput(L, d, 4),
we have L = [a, b, c, d]. To recover the third entry, type L[3], just as with a row vector.
12. Strings
A string is any sequence of symbols. It is identified by enclosing it in quotation marks.
For example, s = “The following sequence is exact”.
13. Power Series and Laurent Series with Finitely Many Negative Powers
We can truncate the series at any point. For example,

4 ∗ z3 + 3 ∗ z2 + 2 ∗ z + 1
z2

+ O(z2)

will produce the output

z−2 + 2 ∗ z−1 + 3 + 4 ∗ z + O(z2)

GP will stop computing a Taylor or Laurent series at O(x16). To change the series
precision to something else, type, for example, \ps 19
14. p-adic Numbers
The syntax is similar to #13. For example, 905/7 + O(73) will produce output

2 ∗ 7−1 + 3 + 4 ∗ 7 + 2 ∗ 72 + O(73)

We can find the expansion of any integer in any base. For example, to find the base 6
expansion of 86, type 86 + O(63) (or 86 + O(6r), r > 3), to get 2 + 2 ∗ 6 + 2 ∗ 62 + O(63).
Replacing O(63) by O(62) will truncate the expansion.
15. Quadratic Numbers (Elements of a Quadratic Number Field)
If the number field is Q(

√
m), then there is a canonical integral basis (1, w), as follows.

If the discriminant d is congruent to 0 mod 4, then w =
√

m =
√

d/2 and d = 4m. If d is
congruent to 1 mod 4, then w = (1 +

√
m)/2 = (1 +

√
d)/2 and d = m. Therefore m ≡ 1

mod 4, so the first case corresponds to m $≡ 1 mod 4. This allows a quadratic number
field to be identified by its discriminant d, and this is what GP does via the instruction
w = quadgen(d). You might as well use w in this instruction, because GP will change
anything you write to w. The general element of the quadratic number field is written as
x + y ∗ w with x and y integers.
Some general advice

It is very convenient to name objects. If you are working with the polynomial x2 +
3 ∗ x + 4, type f=xˆ2+3*x+4, and then you can use f in any computation.

Creating functions is easy. Type f(x) = x2 + 3 ∗ x + 4, and then f(2) will return
4+6+4=14. Similarly for functions of several variables.

There are some reserved symbols that cannot be used as variable names. They include
I (the square root of -1), Pi (3.14159...), and O (big oh). Also, if you create a function
called g, you cannot use g as a variable name.
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Several expressions can be combined on a single line by separating them with semi-
colons.

Typing # activates a toggle switch that turns the timer on and off. Typing ## prints
the time taken by the latest computation.

To redefine a variable s, first type kill(s). To kill a function f , kill all of its variables
and then type kill (f).

Outputs are numbered %1,%2,... It is quite legal in a computation to use %n as
an abbreviation for the n-th output. Also, % with no number attached refers to the
immediately preceding output.

To display an output, use the print command. For example, if x = 3, the command
print(2 ∗ x + 1) will display the answer 7. If you want to call the output y, type
print(”y = ”, 2 ∗ x + 1). Then y = 7 will be displayed.

The Boolean comparison operators are
< less than
> greater than
<= less than or equal to
>= greater than or equal to
== equal
! = unequal

2. Transcendental and Other Nonrational Functions

Here is a list of many commonly used functions.
abs(x) is the usual absolute value on R or C

acos(x) is arc cos x

acosh(x) is arc cosh x

agm(x,y) is the arithmetic-geometric mean of x and y. Start with a0 = x, b0 = y and
define an and bn recursively by an+1 = (an + bn)/2 and bn+1 =

√
anbn. Then an and bn

will converge to a common limit agm(x, y).
arg(x) is the argument of the complex number x, taken in (−π,π].
asin(x) is arc sin x

asinh(x) is arc sinh x

atan(x) is arc tan x

atanh(x) is arc tanh x

bernfrac(n) gives the n-th Bernoulli number Bn (as a rational number)
bernvec(m) gives a vector whose components are the Bernoulli numbers B0, B2, B4, . . . , B2n

ceil(x) is the ceiling of x, the least integer greater than or equal to x.
conj(x) is the complex conjugate of x.
cos(x) is the cosine of x.
cosh(x) is the hyperbolic cosine of x.
cotan(x) is the cotangent of x
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dilog(x) is the special case m = 2 of polylog(m,x); see below.
eint1(x) is

∫ ∞
x (e−t/t) dt

eint1(x,n) is a vector whose n components are eint1(mx), m = 1, . . . , n

erfc(x) is the complementary error function (2/
√
π)

∫ ∞
x e−t2 dt

exp(x) is the exponential function
floor(x) is the floor of x, the greatest integer less than or equal to x

frac(x) is the fractional part of x, that is, x−floor(x)
gamma(x) is the gamma function Γ(x)
gammah(x) is Γ(x + 1

2 ). It is much faster than gamma(x + 1
2 )

imag(x) is the imaginary part of x

log(x) is the natural logarithm
max(x,y) is the maximum of x and y

min(x,y) is the minimum of x and y

To find the maximum or minimum of the components of a vector, use the commands
vecmax(v) and vecmin(v)
norm(x) is the product of x and its conjugates
polylog(m,x) is the analytic continuation of Lim(x) =

∑∞
n=1 xn/nm

psi(x) is the logarithmic derivative ψ(x) = Γ′(x)/Γ(x) of the gamma function
random(N) generates a random integer between 0 and N − 1
real(x) is the real part of x. If x is a quadratic number, this gives the coefficient of 1
with respect to the canonical integral basis {1, w}. The coefficient of w is obtained via
imag(x)
sign(x) is 1 if x > 0, −1 if x < 0, and 0 if x = 0
sin(x) is the sine of x

sinh(x) is the hyperbolic sine of x

simplify(x) will cancel common factors and change the type of an object when appro-
priate. For example, the complex number zero will be changed to the integer zero if the
command expects an integer.
sqr(x) is the same as x2, the square of x

sqrt(x) is the principal branch (angle in (−π,π]) of the square root of x

tan(x) is the tangent of x

tanh(x) is the hyperbolic tangent of x

truncate(x) chops everything after the decimal point. For power series or p-adic num-
bers, it chops O(xk) or O(pk)
zeta(s) is the Riemann zeta function

For n-th roots, a direct approach will work. For example, typing 2ˆ(1/5)will return
the positive 5-th root of 2. For a primitive 5-th root of unity, type exp(2∗Pi∗I/5). There
is a fancier method using sqrtn(x,k), which gives the principal branch of the k-th root
of x. For example, sqrtn(1.0,5) will return l.00000.... If you want a primitive fifth root of
unity, type sqrtn(1.0,5,&z) [or sqrtn(1,5,&z)]. GP will still return 1.00000... [or 1], but
now typing z will give a primitive root, and all the roots can be found via z2, z3 and z4.
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3. Arithmetic Functions

We now begin to do number theory. As an interesting example , we look at the problem of
expressing an integer in binary and other bases. (Also see the discussion of p-adic numbers
in Section 1.) Binary expansions are nice; if x is an integer, just type binary(x). For
example, b = binary(142) yields [1,0,0,0,1,1,1,0]. But what if we want base 4? Here is a
“workaround”. Type c = 142 + O(4k) where any k ≥ 4 will do (we must have 4k ≥ 142).
The output is 2 + 3 ∗ 4 + 2 ∗ 43 + O(4k), which displays the desired base 4 expansion.
Converting from base 4 back to decimal is accomplished via d=truncate(c), which chops
away the O(4k) and sums the series to get 142.

Let’s do a very quick refresher on continued fractions. The Euclidean algorithm for
dividing 41 by 18 looks like this:

41 = 2 × 18 + 5
18 = 3 × 5 + 3
5 = 1 × 3 + 2
3 = 1 × 2 + 1
2 = 2 × 1 + 0

The corresponding continued fraction expansion is obtained from the column immediately
to the right of the equals sign, traversed from top to bottom. We have

41
18

= 2 +
1

3 + 1
1+ 1

1+ 1
2

which is abbreviated

2 +
1

3+
1

1+
1

1+
1
2

or [2,3,1,1,2]. Note that division of 18 by 41 begins with 18 = 0 × 41 + 18 and then
proceeds as above. Thus 18/41 = [0, 2, 3, 1, 1, 2].

If x = 41/18, the command contfrac(x) gives the continued fraction expansion of x,
namely [2, 3, 1, 1, 2].

If x = [a0, a1, . . . , an] is a finite continued fraction, the convergents pi/qi, 0 ≤ i ≤ n, of
x are the successive continued fractions [a0], [a0, a1], . . . , [a0, . . . , an]. The pi and qi can
be computed recursively by

pm = ampm−1 + pm−2, qm = amqm−1 + qm−2

with initial conditions p0 = a0, q0 = 1, p1 = a1a0 + 1, q1 = a1. The command
contfracpnqn(x) will return a 2 by 2 matrix whose first column is (pn, qn) and whose
second column is (pn−1, qn−1). With x = [2, 3, 1, 1, 2] we get p4 = 41, q4 = 18, p3 =
16, q3 = 7. Thus p4/q4 = 41/18 and p3/q3 = 16/7 = [2, 3, 1, 1].

The instruction contfrac(x,l) will give an approximation to x based on l convergents.
For example, contfrac(41/18,3) returns [2,4], which is the same as [2,3,1] (write out the
expansion and check that the 3 and 1 can be added).
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The continued fraction expansion of an irrational number is infinite, but when the
irrational number is

√
N , there are very useful properties of periodicity and symmetry.

We will illustrate with two examples. The continued fraction expansion of
√

21 is written
as

√
21 = 4, 1, 1, 2, 1, 1, 8

The sequence under the overbar repeats periodically, so the complete expansion is
√

21 = [4, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 8, . . . ]

as can be verified by the instruction contfrac(sqrt(21)). The periodic sequence always
ends with twice the initial number. In this case, we have 8 = 4 × 2. The general pattern
is

[a0, a1, . . . , an, 2a0, a1, . . . , an, 2a0, a1, . . . , an, 2a0, . . . ]

where the segment a1, . . . , an is symmetrical about its midpoint. If n is odd, then the
n-th convergent gives a minimal solution of Pell’s equation. In our case, n = 5 and the
command contfracpnqn([4,1,1,2,1,1]) returns pn/qn = 55/12. And indeed we have

p2
n − Nq2

n = (55)2 − 21(12)2 = 3025 − 3024 = 1

Now consider
√

29 = 5; 2, 1, 1, 2, 10

which is an abbreviation of 5, 2, 1, 1, 2, 10. Proceeding as in the first example, we apply
the instruction contfracpnqn([5,2,1,1,2]) to get the fourth convergent 70/13. We compute
(70)2 − 29(13)2 = −1, not 1. In order to solve Pell’s equation, we must go to the second
period, specifically to position 2n + 1. In this case n = 4, 2n + 1 = 9, so the appropriate
command is contfracpnqn([5,2,1,1,2,10,2,1,1,2]). The program returns 9801/1820, and
(9801)2 − 29(1820)2 = 1.

A comment on what to do if the symmetrical segment is missing. For example,
√

2 =
1; 2 = [1, 2, 2, 2, . . . ]. We have n = 0, which is even, so for Pell’s equation we go to the
second period [1,2]=1+1/2=3/2. As expected, we get 32 − 2(22) = 1. Going back to the
first period, we have [1]=1/1, with 12 − 2(12) = −1.

Here are some arithmetic commands. Unless otherwise specified, the arguments ac-
cepted are integers and polynomials (if the command makes sense for polynomials).
bestappr(x,k) gives the best rational approximation to the real number x by a rational
number with denominator at most k.
bezout(x,y) returns u, v, d such that u ∗ x + v ∗ y = d, where d is the greatest common
divisor of x and y, and u and v are, according to the manual, minimal in a natural
sense. (This may mean the u and v found by the Euclidean algorithm.) For example
bezout(123,54) returns [−7, 16, 3], and we have −7 ∗ 123 + 16 ∗ 54 = 3.
bigomega(x) returns the number of prime divisors of |x|, counting multiplicity. Thus
bigomega(392) = 5 because 392 = 23 ∗ 72, so the sum of the exponents is 5.
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binary(x) computes the binary expansion of x, as noted earlier.
binomial(x,y) is

(x
y

)

, where y is an integer but x can be a real or even a complex
number. The general definition is

(x
y

)

= x(x − 1) · · · (x − y + 1)/y!
chinese(x,y) gives the following output. If x = Mod(a, m) and y = Mod(b, n), then the
program returns z such that z ≡ a mod m and z ≡ b mod n. Thus if x = 3 mod 5 and
y = 6 mod 7, then the output is 13 mod 35. Even if the moduli are not relatively prime,
GP will attempt to find a solution, and will give an error message if no solution exists. If
there are more than two simultaneous congruences, they can be handled by a workaround.
If z = Mod(c, p), we can let w = chinese(x, y) and then compute chinese(z, w). A more
systematic and general method will be given in the section on linear algebra. See the
command matsolvemod.
content(x) returns the greatest common divisor of the coefficients of a polynomial.
If x is a rational function, the output is the ratio of the contents of numerator and
denominator. If x is a vector or matrix, the result is the gcd of all the entries. If x is a
scalar, the output is simply x.
core(x): If n = cm2 where c is square-free, then core(n) = c. Thus c is the product of
the distinct prime factors that appear an odd number of times in the prime factorization
of n. In particular, if n is square-free, then core(n) = n.
divisors(x) returns the vector of divisors of x, in increasing order.
divrem(x,y) gives the Euclidean quotient and remainder. The remainder is always non-
negative. Thus divrem(346,24) returns [14,10]˜, and 346 = 14∗24+10; divrem(−346, 24)
returns [-15,14]˜, and −346 = −15 ∗ 24 + 14.
eulerphi(n) computes the Euler phi function ϕ(n).
factor(x) factors the integer or polynomial x. However, if x is an integer n, it is faster
to use factorint(n). The output gives all prime factors, with multiplicity. For example,
factor(x3 + 13/2 ∗ x2 + 12 ∗ x + 9/2) returns [x + 3 2] and [2x + 1 1]. The factorization
is (x + 3)2 ∗ (2x + 1). Thus GP will multiply by the least common denominator and then
factor the resulting polynomial.
factorial(x) is x!, regarded as a real number. To treat the factorial as an integer, type
x!.
factormod(f,p)) will factor a polynomial in Z[x] modulo the prime p. Possibly faster is
factorcantor(f,p). In either case, GP will divide by the leading coefficient and factor
the resulting monic polynomial. For example, if g = x3 + 7 ∗ x2 + 15 ∗ x + 9, then
factormod(g,11) will return the factorization (x + 1)(x + 3)2. Factormod(g,2) will return
(x + 1)3.
factormod(f,p,1) returns only the degrees of the irreducible polynomial factors. Thus if
p(x) is of degree 2 and p(x)5 appears in the factorization, the contribution to the output
will be [2 5]
fibonacci(n) gives the n-th fibonacci number.
ffinit(p,n,w) finds a monic irreducible polynomial of degree n over the finite field Fp.
For example, F = ffinit(3, 2, w) gives w2 +1. To express w4 in terms of the basis elements
1 and w, type Mod(Mod(1, 3) ∗ w4, F ), which returns

Mod(Mod(1, 3),Mod(1, 3) ∗ w2 + Mod(1, 3)).
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Thus w4 = 1 in GF(32), so w is not primitive.
gcd(x,y) finds the greatest common divisor of x and y

isfundamental(x) returns 1 (true) if x is 1 or x is the discriminant of a quadratic field,
and 0 (false) otherwise. Similarly for the Boolean operations isprime(x), issquare(x),
and issquarefree(x).
kronecker(x,y) returns the Legendre symbol (or its generalization, usually called the
Jacobi symbol) (x

y ). Thus kronecker(2,17)=1, kronecker(14,17)=-1, indicating that 2 is
a quadratic residue mod 17, but 14 is not. Also, kronecker(2,21) returns -1 because
( 2
3 ) = −1 and (2

7 ) = 1.
lcm(x,y) is the least common multiple of x and y.
moebius(x) is the Möbius function µ(n) = 0 if n contains a repeated prime factor, else
µ(1) = 1 and µ(n) = (−1)k, where k is the number of distinct prime factors of n.
nextprime(x) returns the smallest prime greater than or equal to x.
numdiv(x) is the number of divisors of |x|.
omega(x) is the number of distinct prime divisors of x.
precprime(x) is the largest prime less than or equal to x.
prime(n) is the n-th prime.
primes(n) returns a row vector whose components are the first n primes.
quaddisc(x) returns the discriminant of Q(

√
x).

quadgen(d) creates the quadratic number field of discriminant d. The instruction w =
quadgen(d) will identify the canonical integral basis {1, w}. This has been discussed in
Section 1, Pari type 15.
quadunit(d) returns the fundamental unit of the real quadratic field Q(

√
d), where d > 0

is the discriminant. As an example of how to use this instruction, suppose we want the
fundamental unit of Q(

√
m), where m = 11. Since m $≡ 1 mod 4, we have w =

√
11 and

d = 44; also Q(
√

11) = Q(
√

44). The fundamental unit is 10+3 ∗w = 10+3
√

11. On the
other hand, if m = 13 ≡ 1 mod 4, then w = (1 +

√
13)/2 and d = 13. The fundamental

unit is 1 + w = (3 +
√

13)/2.
sigma(x,k) is the sum of the k-th powers of the positive divisors of |x|. For example,
sigma(12,3) = 13 + 23 + 33 + 43 + 63 + 123 = 2044.
sqrtint(x) returns the largest integer less than or equal to

√
x, where x is an integer.

znorder(x) computes the order of x in Z/nZ, where x is an integer mod n. There is an
error message if x is not invertible. Thus typing a =Mod(36,49) followed by znorder(a)
will give the output 7, indicating that 36 has order 7 mod 49.
znprimroot(x) calculates a primitive root of x, where x is a power of a prime. If p is
prime and g is a primitive root mod p, then znlog(x,g) returns the discrete logarithm
of x (to the base g) in Z/pZ. For example, 3 is a primitive root mod 17, and we have
(mod 17) 30 = 1, 31 = 3, 32 = 9, 33 = 10, 34 = 13, 35 = 5, 36 = 15, 37 = 11, 38 = 16, 39 =
14, 310 = 8, 311 = 7, 312 = 4, 313 = 12, 314 = 2, 315 = 6, 316 = 1. Thus the discrete logs
mod 17 (to the base 3) are

log 1 = 0, log 2 = 14, log 3 = 1, log 4 = 12, log 5 = 5, log 6 = 15, log 7 = 11, log 8 = 10,
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log 9 = 2, log 10 = 3, log 11 = 7, log 12 = 13, log 13 = 4, log 14 = 9, log 15 = 6, log 16 = 8.

4. Polynomials and Power Series

algdep(x,k), where x is a real or complex number, finds a polynomial in Z[x] of degree
at most k with x as a root.
concat(f,g) yields a vector whose first component is f and whose second component is
g.
deriv(f,x) differentiates the polynomial or power series f with respect to x. If the variable
is omitted, so the command is deriv(f), then GP will choose the “main variable”. One
ranking sequence is x > y > z > w > u > v.
eval(f) will evaluate the polynomial f after an assignment of numbers to variables is
given. Thus the sequence f = x2 +y2; x = 3; y = 4; eval(f) will return f(3, 4) = 25.
Evaluation of power series is not yet implemented.
intformal(f,x) will antidifferentiate the polynomial or power series f with respect to x.
If the variable is omitted, GP will choose the main variable as in deriv(f).
polcoeff(f,d,x) returns the coefficient of degree d in the variable x of the polynomial f .
See above remarks for what happens if the variable is omitted.
poldegree(f,x) returns the x-degree of f . See above remarks for what happens if the
variable is omitted.
poldisc(f,x) returns the discriminant of f , where f is regarded as a polynomial in x. See
above remarks for what happens if x is omitted. If the roots of f are x1, . . . , xn, then the
discriminant is the product of (xi − xj)2 taken over all i < j.
polinterpolate(x,y), where x is the vector [x1, . . . , xn] and y = [y1, . . . , yn], interpolates
a polynomial through the n points (xi, yi). For example, let x = [1, 2, 3], y = [4, 7, 0]. The
polynomial −5x2 + 18x − 9 passes through (1, 4), (2, 7) and (3, 0).
polisirreducible(f) checks irreducibility of the polynomial f .
pollead(f,x) returns the leading coefficient of f , where f is regarded as a polynomial in
the variable x. See above comments for what happens when the variable is omitted.
pollegendre(n,v) gives the n-th Legendre polynomial with variable v (default is x).
polrecip(f) returns the polynomial obtained from f by giving the coefficients in reverse
order.
polresultant(f,g,x) computes the resultant of the polynomials f and g, regarded as
functions of x. See above comments for what happens if the variable is omitted. For
example, if f(x) = a0x2 + a1x + a2 and g(x) = b0 + b1x + b2x2 + b3x3, then the resultant
of f and g is

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 0 0 b0 0
a1 a0 0 b1 b0

a2 a1 a0 b2 b1

0 a2 a1 b3 b2

0 0 a2 0 b3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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The degree of f is 2 and the degree of g is 3, and there are 3 columns occupied by the
coefficients of f and their shifts, and 2 columns occupied by the coefficients of g and their
shifts.
polroots(f) returns a column vector whose components are the roots, each repeated
according to multiplicity. polroots(f,1) uses the Newton-Raphson algorithm, which is
faster but not guaranteed to converge.
polsym(f,s) returns a column vector giving the power sums of the roots x1, . . . , xn of f ,
up to the power s. The power sum tr is

∑n
i=1 xr

i , with t0 = n.
poltchebi(n,v) gives the n-th Chebyshev polynomial with variable v (default is x).
subst(f,y,z) replaces y by z in f , where f is a polynomial, rational function or power
series.
taylor(f,x) computes the Taylor expansion of f , regarded as a function of x, around
x = 0.

5. Linear Algebra

lindep(x), where x is a vector with real or complex coefficients, finds a linear dependence
relation satisfied by the components of x. For example, lindep([1,2,3,4]) returns [0, 1−2, 1].
matadjoint(A) computes the adjoint of the square matrix A (as in Cramer’s rule).
matcompanion(f) returns the left companion matrix of the polynomial f . For example,
if f = 7y3 + 2y2 + 3y + 4, then the output is





0 0 −4/7
1 0 −3/7
0 1 −2/7





matdet(A) computes the determinant of the square matrix A.
matdiagonal(v), where v is a vector, creates a diagonal matrix whose entries are the
components of v.
mateigen(A) returns the eigenvectors of A, as columns of a matrix. The eigenvalues can
be found from the eigenvectors. Here is an example:
A = [0, 4; 2,−2] followed by B =mateigen(A) returns B = [−1, 2; 1, 1]. Thus the eigen-
vectors are [−1, 1]˜ and [2, 1]˜. To get the eigenvalues, compute C = A ∗ B and D =
[C[1, 1]/B[1, 1], C[1, 2]/B[1, 2]] = [−4, 2]. The eigenvalues are −4 and 2. If component-
wise division of row 1 of C by row 1 of B runs into trouble because of division by zero,
switch to a different row.

Eigenvalues can also be found directly. With the matrix A as above, Id=matid(2)
creates the identity matrix of order 2. Then f =matdet(x ∗ Id−A) returns x2 +2 ∗x− 8,
and polroots(f) gives −4 and 2 as before. Alternatively, type f = charpoly(A) to
get the characteristic polynomial, and then apply polroots. [charpoly(A, y) returns the
characteristic polynomial in the variable y; the default variable is x.] When the matrix is
symmetric, eigenvalues and eigenvectors can be found with a single command, as we will
see shortly.
mathilbert(n) returns an n by n matrix whose ij element is 1/(i + j − 1).
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mathnf(A) computes the upper triangular Hermite normal form. (Allowable operations
are interchange of columns and addition of a constant times one column to another col-
umn.)
matid(n) creates an n by n identity matrix.
matimage(A) finds a basis for the image (column space) of A.
Assume that matrices A and B have the same number of rows, and the columns of each
matrix are linearly independent. Then
matintersect(A,B) finds a basis for the intersection of the column spaces (over Q).
matinverseimage(A,b) computes A−1b.
matisdiagonal(A) returns true iff A is a diagonal matrix.
matker(A) finds a matrix whose columns give a basis for the kernel (null space) of the
matrix A. If A is known to have integer entries, use matker(A,1).
matmuldiagonal(A,v) gives the same result as A∗matdiagonal(v), but is faster.
matmultodiagonal(A,B) gives the diagonal entries of A ∗ B, with zeros elsewhere. It
is faster than A ∗ B if the product is known to be diagonal.
matrank(A) returns the rank of A.
matsize(A) gives the number of rows and columns of A.
matsnf(A) computes the Smith normal form of A.
matsolvemod(A,m,y) generalizes the Chinese remainder theorem. A is a matrix with
integer entries, m is a column vector of positive integer moduli, and y is a column vector
with components in Z. The output is a “small” integer solution to

∑

j aijxj ≡ yi mod mi.
matsolvemod(A,m,y,1) returns, in addition to the column vector x just found, a matrix
whose columns are a basis for the homogeneous system Ax ≡ 0.

For example, consider the simultaneous equations x + y ≡ 0 mod 3, x + 2y ≡ 5
mod 7. Then A = [1, 1; 1, 2], m = [3, 7]˜, y = [0, 5]˜. The program returns the column
vector [1, 2]˜, indicating the solution x = 1, y = 2. If matsolvemod(A, m, y, 1) is used
(we say that the flag is set at 1), the output contains in addition the matrix [−21, 5; 0, 1].
Thus [−21, 0]˜ and [5, 1]˜ are a basis for x + y ≡ 0 mod 3, x + 2y ≡ 0 mod 7.
matsupplement(A) extends the columns of the matrix A (assumed linearly independent,
otherwise there will be an error message), to a basis for the entire space.
mattranspose(x) transposes a matrix or vector x.
qfgaussred(A) reduces the quadratic form associated with the symmetric matrix A to
a sum of squares. For example, let A = [1, 2, 3; 2, 4, 5; 3, 5, 6], with associated quadratic
form q = x2 + 4xy + 6xz + 4y2 + 10yz + 6z2. The output is the matrix

B =





1 2 3
0 1/3 0
0 1/3 −3





The quadratic form q can be expressed as

q = (x + 2y + 3z)2 + (1/3)y2 − 3(z + (1/3)y)2.
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The formula predicts what you might do in hand computation. Multiply out (x+2y+3z)2;
in order to get q, you need to add −3z2 − 2yz. Complete the square to get −3(z + y/3)2.
You still need y2/3, which is already in the desired form. The general formula is

q =
∑

i

bii(xi +
∑

j $=i

bijxj)2.

qfjacobi(A), where A is a real symmetric matrix, computes the eigenvalues and an
orthogonal matrix of eigenvectors. For example, let A = [4, 2, 2; 2, 4, 2; 2, 2, 4]. The eigen-
values are 2 and 8, with 2 a double root. The orthogonal matrix of eigenvectors is





1/
√

3 −1/
√

2 −1/
√

6
1/
√

3 1/
√

2 −1/
√

6
1/
√

3 0 2/
√

6





The columns of this matrix are the eigenvectors, with column 1 associated with the
eigenvalue 8 and columns 2 and 3 with 2.
qfsign(A) is the signature of the quadratic form associated with the symmetric matrix A,
that is, the number of positive terms and the number of negative terms in the reduction
to a sum of squares. If A = 1, 2, 3; 2, 4, 5; 3, 5, 6], the matrix considered in connection with
the instruction qfgaussred(A), there are two positive terms and one negative term, and
the signature is [2, 1].
trace(A) is the sum of the diagonal entries of the square matrix A.

GP regards a set as a row vector with strictly increasing entries, but you must instruct
the program to convert a vector to a set. For example, if v = [5, 4, 3, 2, 1], type Set(v),
and the result will be displayed as [“1”, “2”, “3”, “4”, “5”]. If v contains repeated entries,
the repetition will be ignored. Several natural operations are available.
setisset(x) returns 1 (true) iff x is a set.
setintersect(x,y) is x ∩ y.
setminus(x,y) is x \ y.
setsearch(x,y) returns j if y occupies position j of the set x. If y /∈ x, the output is 0.
setunion(x,y) is x ∪ y.
vecsort(v) sorts the vector v in ascending order.

6. Sums, Products and Integrals

intnum(x=a,b,f(x),j) numerically integrates f(x) from x = a to x = b. If the flag j
is 0 or omitted, it is assumed that f is continuous and can be evaluated everywhere in
[a, b], with a and b “not too large”. If j = 1, the program uses a relatively slow general
numerical integration routine. The setting j = 2 is designed to handle infinite values
of a or b. For practical purposes, infinity means 1.E4000, or much lower if the function
decreases rapidly. We must have ab > 0, and if b = ∞, then a should be as large as
possible, at least a ≥ 1. If j = 3, then f is allowed to be continuous except for removable
singularities, e.g., (sinx)/x at x = 0.
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For example, to integrate e1/x from 1 to 2, type intnum(x = 1, 2, exp(1/x)). The result is
2.0200586244...
prod(x=a,b,f(x),j) computes

∏b
x=a f(x). If the flag j is 1 or omitted, the computation

is done exactly. If j = 1., the computation uses real numbers with the default precision
(28 significant figures). If j = 1+O(xk), the computation uses power series with precision
at most k.
For example,

∏100
i=1(1 − xi) is a polynomial of degree

∑100
i=1 i = 5050. If we type the

instruction prod(i = 1, 100, 1−xˆi, 1+O(xˆ101)), the output will display the polynomial
up to the term of degree 100, namely

1 − x − x2 + x5 + x7 − x12 − x15 + x22 + x26 − x35 − x40 + x51 + x57 − x70 − x77 + x92

+x100 + O(x101).

prodeuler(x=a,b,f(x)) computes the product of f(x) as x ranges over all primes p such
that a ≤ p ≤ b.
prodinf(x=a,f(x)) computes

∏∞
x=a f(x).

prodinf(x=a,f(x),1) computes
∏∞

x=a(1 + f(x)).
solve(x=a,b,f(x)) finds a real root of f(x) between a and b, assuming f(a) ∗ f(b) ≤ 0.

sum(x=a,b,f(x),j) computes
∑b

x=a f(x). See prod for syntax, with 1 replaced by 0
in the setting of the flag j. For example, the instruction sum(i = 1, 5000, 1/i) yields a
rational number with a huge numerator and denominator, but sum(i = 1, 5000, 1/i, 0.)
results in a much faster computation and the comprehensible result 9.094508852984. . . .
A tricky point: sum(i = 1, 5000, 1/i, 1.) will compute with real numbers, but will add 1
to the original sum to get 10.094508852984 . . . . Similarly, replacing j = 1. in prod by
j = 2. will multiply the original product by 2.
sumalt(x=a,f(x)) computes

∑∞
x=a f(x), where the series is alternating.

sumdiv(n,x,f(x)) sums f(x) over all positive divisors of n. Note that sumdiv(n, x, xk)
is the same as sigma(x, k), but computation of sigma(x, k) is much faster because it takes
advantage of the multiplicativity of xk.
suminf(x=a,f(x)) computes

∑∞
x=a f(x).

7. Basic Programming

for(x=a,b,seq) evaluates seq from x = a to x = b in increments of 1, where a and b are
real numbers. (If a > b, the program does nothing.) Note that the local variable x cannot
be used to define a function inside the for loop. Functions should be defined before the
loop is entered, as in the example below.
f(x) = x + 1
g(x) = x2

for(n = 1, 5, print(f(n) + g(n))
The output is 3,7,13,21,31. (f(4) + g(4) = 5 + 16 = 21, etc.)
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fordiv(n,x,seq) evaluates seq as x goes through all positive divisors of the integer n.
With f and g as above,
fordiv(12, x, print(f(x) + g(x)))
yields the output 3,7,13,21,43,157, corresponding to the divisors 1,2,3,4,6 and 12.
forprime(x=a,b,seq) evaluates seq as x goes through all primes p such that a ≤ x ≤ b.
At the end of each iteration, x is incremented to the next higher prime, so the last term
evaluated is the largest prime less than or equal to b.
forstep(x=a,b,s,seq) evaluates seq as x goes from a to b in increments of s, where s is
a nonzero real number, possibly negative.
forvec(w=v,seq) can be used to implement multiple for loops. Here is a sample program
with annotations.
w = [x, y] %w is a vector of variables
v = [[1, 3], [1, 4]]% v is a vector indicating the range of the variables, namely

1 ≤ x ≤ 3, 1 ≤ y ≤ 4.
forvec(w = v, print(w[1] + 2 ∗ w[2]))
% We are evaluating x + 2y for x and y in the given range. Variables farther to the right
move first, so y moves before x. Thus the output is 1 + 2 ∗ 1 = 3, 1 + 2 ∗ 2 = 5, 1 + 2 ∗ 3 =
7, 1+2∗4 = 9, 2+2∗1 = 4, 2+2∗2 = 6, etc. The entire sequence is 3,5,7,9,4,6,8,10,5,7,9,11.
if(a,seq) evaluates seq if the Boolean variable a is not zero, otherwise does nothing.
if(a,,seq) (note the two commas) evaluates seq if a = 0, and otherwise does nothing. An
equivalent command is if(!a,seq). (The exclamation mark indicates “not”.)
if(a,seq1,seq2) evaluates seq1 if a $= 0, else evaluates seq2.

If we want to test whether a statement a = b is true or false, we write the statement
as a==b.

As an example, we will find integer solutions to f(x, y) = x3 − y2 − 2 = 0 for x and y
between 0 and 100. Assuming that f has already been defined, a program is
w = [x, y]
v = [[1, 100], [1, 100]]
forvec(w = v, if(f(w[1], w[2]) == 0, print(“x = ”, w[1], “y = ”, w[2])))
The output is x = 3, y = 5. With x and y arbitrary integers, it can be shown that the
only solutions are (3,±5).

If you want to type the print instruction on a new line without triggering an error
message, enclose the entire loop in braces, i.e. {forvec(...,print(...))}.

The same computation can be implemented via two for loops:
for(x = 1, 100, for(y = 1, 100, if(f(x, y) == 0 ,print(“x = ”, x, “y = ”, y))))

Here is a simple example illustrating how to name a procedure.
mult(f, g) = f ∗ g
f = x2

g = x3

mult(f, g)
//The output is x5
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8. Algebraic Number Theory

We illustrate some basic calculations in number fields.

polcyclo(n) displays the n-th cyclotomic polynomial. If n = 105, you can verify that
the polynomial does not have all its coefficients ±1. It can be shown that any n with this
property must be divisible by at least three distinct odd primes. The smallest number
with this property is 3 ∗ 5 ∗ 7 = 105. Thus for n < 105, all coefficients are ±1.

Let f = x4 + 24 ∗ x2 + 585 ∗ x + 1791. The command polisirreducible(f) will check that
f is irreducible.

F=nfinit(f) creates the number field defined by the monic irreducible polynomial f with
integer coefficients.

nfbasis(f) finds an integral basis. The elements of the basis are

1, x, (1/3)x2, (1/1029)x3 + (33/343)x2 − (155/343)x − (58/343)

where x is a root of f .

nfdisc(f) finds the field discriminant 18981.

The representation of ideals is tricky. Suppose f = x5 − 3 and F = nfinit(f) creates
the number field defined by f . nfbasis(f) yields the integral basis 1, x, x2, x3, x4. Let
g = 1 + x + x2. Then g generates a principal ideal in the ring of algebraic integers. The
command

idealhnf(F,g) gives a Z-basis for this ideal, not a basis of algebraic integers (hnf stands
for Hermite normal form). The result is the 5 by 5 matrix













13 4 10 12 4
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













The generators are 13w1, 4w1 +w2, 10w1 +w3, 12w1 +w4, and 4w1 +w5, where the wi are
components of the integral basis just found. The instruction idealhnf(F,g,h) will give a
Z-basis for the ideal generated by g and h, but the program will not accept more than two
generators. (An ideal in a Dedekind domain can be generated by at most two elements.)

As another example, let f = x2 − 13, F = nfinit(f); an integral basis is w1 = 1, w2 =
1/2 + 1/2 ∗ x where x =

√
13. The instruction idealhnf(F, 1/2 + 1/2 ∗ x) is equivalent to

idealhnf(F, [0; 1]). In each case, the output is [3, 0; 0, 1], a diagonal matrix with entries
3 and 1. The generators are 3 and 1/2 + 1/2 ∗

√
13. On the other hand, idealhnf(F, x)

produces [13, 6; 0, 1], with generators 13 and 6 + 1/2 + 1/2 ∗
√

13 = 1/2 ∗ (13 +
√

13). (In
the above paragraph, 1/2 ∗ y means (1/2)y.)

To convert a polynomial g to an element of the number field F defined by f , type
Mod(g,f).
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Another example: g = x4 − 7, G = nfinit(g); nfbasis(g) yields the integral basis
1, x, x2, x3. Then the command idealhnf(G, 1 + x + x2 + x3) returns the 4 by 4 matrix









6 0 0 1
0 6 0 1
0 0 6 1
0 0 0 1









A Z-basis of the ideal consists of 6, 6x, 6x2, 1 + x + x2 + x3.
Here is the way to get maximum information about a number field with a minimum

of instructions.
f = x4 − x3 − 21 ∗ x2 + 17 ∗ x + 133//f is an irreducible polynomial.
F =bnfinit(f) creates the number field defined by f ; bnf stands for “big number field”.
G =bnfclassunit(f). The program returns a column vector with 10 components and lots
of good stuff. Type G[1, 1] to recall the polynomial f . G[2, 1] gives [r1, r2] where r1 is the
number of real embeddings and 2r2 is the number of complex embeddings. In this case,
r1 = 0, r2 = 2. G[3, 1] is the field discriminant 18981 and the index 7. (The index of an
algebraic integer α is [OK : Z[α]].) G[4, 1] gives an integral basis
[1, x, x2, 1/7 ∗x3 +2/7 ∗x2 − 1/7 ∗x]. G[5, 1] is a vector with three components. The first
component is the class number, which is 4. The second component gives the structure
of the ideal class group as a product of cyclic groups of various orders ni. In this case,
the ideal class group is cyclic of order 4. The third component of G[5, 1] gives ideals in
Hermite normal form that generate the cyclic components of the ideal class group. In
our case there is only one component, so a single generator is given, represented by the
matrix [7, 5, 3, 6; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1].

G[6, 1] computes the regulator 3.794..., and G[7, 1] is a measure of correctness of the
regulator computation. (It should be close to 1.) In our case it is about .889; see the
manual for details. G[8, 1] gives the number m of roots of unity in the number field K,
along with a primitive m-th root of unity. We have m = 6 with a primitive 6-th root of
unity w = 1/7∗x3−5/7∗x2−8/7∗x+8. To check that w6 is 1 in K, type u = Mod(w, f)
and compute u6. G[9, 1] gives a system of fundamental units. In our case, r1 + r2−1 = 1,
and there is only one fundamental unit, namely x+3. G[10, 1] is a measure of correctness
of the calculation of fundamental units; it should be greater than 20 (we get 105). See
the manual for details.

If you type G =bnfclassunit(f) and hit return, you will get all 10 components of G
at once, which is likely to cause an information overload. To avoid this, put a semicolon
after bnfclassunit(f) to suppress the output. Then you can view the components of G one
at a time. The same comment applies to F =bnfinit(f) [or nfinit(f)].

We now illustrate many computations involving ideals by annotating a long example.
f = x3 − 2
F =bnfinit(f);
//We adjoin a cube root of 2 to the rationals.
//The powers of x form an integral basis.
i =idealhnf(F, 1 + x)
//The principal ideal generated by (1+x) is represented by the matrix [3, 1, 2; 0, 1, 0; 0, 0, 1],
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//so the generators are 3, 1 + x and 2 + x2.
j =idealhnf(F, 2 + 3 ∗ x)
//The principal ideal generated by 2+3∗x is represented by the matrix [62, 42, 34; 0, 1, 0; 0, 0, 1].
idealcoprime(F,i,j)
//This command produces an element α in the number field such that the ideals i and αj
//are relatively prime. In our case, the output [1,0,0]˜ says that i and j are already
//coprime. On the other hand, idealcoprime(F, i, i) gives [1/3,−1/3, 1/3]˜. In general,
// the coefficients of α are on an integral basis. Our case simplifies to
//α = 1/3 − 1/3 ∗ x + 1/3 ∗ x2.
idealaddtoone(F,i,j)
//Given relatively prime ideals i and j, we get elements a ∈ i and b ∈ j such that a+b = 1.
//The result is a = [1,−2,−3]˜, b = [0, 2, 3]˜. In general, the coefficients of a and b are
//on an integral basis.
idealadd(F,i,j)
//This adds the two ideals i and j. As expected, the sum is the unit ideal.
idealintersect(F,i,j)
//The intersection is represented by [186, 166, 158; 0, 1, 0; 0, 0, 1].
a1 = 1 − 2 ∗ x − 3 ∗ x2

i1 =idealhnf(F, a1)
//We create the principal ideal generated by a1, which is [159, 88, 47; 0, 1, 0; 0, 0, 1].
idealmul(F,i1,i)
//This returns the product of the ideals i1 and i, which is [159, 105, 64; 0, 3, 2; 0, 0, 1].
//But if we multiply 1− 2 ∗ x− 3 ∗ x2 by 1 + x in the number field, we get, using x3 = 2,
//−5 − x − 5 ∗ x2. The command idealhnf(F,−5 − x − 5 ∗ x2) produces the same matrix
//[159, 105, 64; 0, 3, 2; 0, 0, 1], as expected.

Commands with the prefix “nfelt” automatically convert a polynomial to an element
in a number field, in other words, it is not necessary to type Mod(g, f). We continue the
example with f = x3 − 2.
a = x2 + 3 ∗ x + 5
b = x + 1
nfeltdiv(F,a,b) computes a/b in the number field, which is x2 + 3.
c = x2 + 2
nfeltdiveuc(F,b,c) finds an algebraic integer q such that b − qc = r is “small”. We get
q = x and r = −x − 1. The same result is obtained by applying the command round( )
to the output of nfeltdiv(F, b, c).
nfeltmul(F,a,b) multiplies a and b in the number field. The result is 4 ∗ x2 + 8 ∗ x + 7.
nfeltdivmodpr(F,x,y,P) computes x/y modulo the prime ideal P .
nfeltmul(F,x,y,P) computes xy modulo the prime ideal P .

Let F be the number field defined by the monic irreducible polynomial f . If g is a
polynomial with integer coefficients, we convert g to an element of the number field with
the command y=Mod(g,f).
trace(y), norm(y), charpoly(y) find the trace, norm and characteristic polynomial of
y, respectively. The minimal polynomial is the unique irreducible factor of the character-
istic polynomial.
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We now consider factoring of prime ideals in extensions. Let F be the number field
defined by the monic irreducible polynomial f(x) = x3 + 10 ∗ x + 1.
idealprimedec(F,2) factors (2) in the ring of algebraic integers of F . The output is
[[2,[1,1,0]˜,1,1,[1,1,1]˜,[2,[1,1,1]]˜,1,2], [1,1,0]˜]]]. The first factor is (2, 1 + x) (coefficients
are on an integral basis, in this case 1, x, x2). The ramification index and residue class
degree are e = 1 and f = 1. The term [1,1,1]˜ can be ignored. The second factor is
(2, 1 + x + x2) with e = 1 and f = 2.

Similarly, the command idealprimedec(F, 13) yields, ignoring the last term of the out-
put, [[13,[13,0,0]˜,1,3]]. Thus (13) remains prime, with e = 1 and f = 3. The command
factormod (f, 13) confirms that f is irreducible over F13.

Here are some other useful commands.
polred(f) finds polynomials with “reasonably small” coefficients defining subfields of the
number field defined by f .
idealinv(F,i) computes the inverse of the ideal i in the number field F .
ideallist(F,B) lists all ideals of norm n, n = 1, 2, . . . , B.
idealnorm(F,i) computes the norm of the ideal i in the number field F .
idealpow(F,i,k) computes the k-th power of the ideal i in the number field F .
idealprincipal(F,a) creates the principal ideal generated by the algebraic number a in
the number field F .
bnfisprincipal(F,i) tests whether the ideal i is principal (this holds iff the first compo-
nent of the output is zero).
idealval(F,i,P) gives the valuation of the ideal i at the prime ideal P .
nfeltval(F,x,P) gives the valuation of the ideal (x) at the prime ideal P .
F.diff gives a Z-basis for the different of the number field F (components with respect
to an integral basis).
nfalgtobasis(F,a) converts the expression for the algebraic integer a in the number field
F in terms of algebraic numbers to an expression in terms of an integral basis.
nfbasistoalg(F,a) is the inverse of nfalgtobasis. For example, in the number field
Q(

√
13), with x =

√
13, nfalgtobasis will convert x to [-1,2]˜. Since the integral basis

consists of 1 and 1/2 + 1/2 ∗
√

13, we get −1 + 2 ∗ (1/2 + 1/2 ∗
√

13) =
√

13. The inverse
operation will convert the vector [-1,2]˜ to x, represented as Mod(x, x2 − 13).
nfrootsof1(F) will find the number t of roots of unity in the number field F , and a
primitive t-th root of unity, expressed in terms of an integral basis.
nffactor(F,g) factors the polynomial g over the number field F . Use y for the variable
of the defining polynomial f , and x as the variable of g (x has higher priority than y).
nfroots(F,g) finds the roots of g in the number field F , with the same variable-naming
convention as in nffactor.
nffactormod(F,g,P) factors g mod the prime ideal P , with the same variable-naming
convention as above.
nfsubfields(F,d) finds all subfields of F of degree d. If d is omitted,
nfsubfields(F) finds all subfields of F .
Additional Number Field Ideas (Thanks to Darrin Doud)
If an ideal i is principal, the second component of bnfisprincipal(F,i) will provide a
generator. In general, idealtwoelt(F,i) will give two generators of i as OF -module. If
one of the generators is 0, the ideal is principal. An example:
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f = x3 + 10x + 1
F = bnfinit(f);
i = idealhnf(F, 2, 1 + x)//[2,1,1;0,1,0;0,0,1]
idealtwoelt(F, i)//[2,[1,1,0]˜]. The generators are 2 and 1 + x, as expected.
polcompositum(f,g) produces a list of polynomials defining a number field Q(a, b),
where a is a root of f and b is a root of g. The list may contain more than one member
because of relations between the roots. For example, let f = g = x3 − 3. There are
two polynomials on the list, and the first defines Q(a, a) = Q(a). The second defines
Q(a, b), Q(a, c), or Q(b, c). (These three fields are isomorphic.) To (possibly) simplify
one of these polynomials h, type polredabs(h).

We have seen that in the finite field GF(32), the polynomial x2 + 1 is irreducible but
not primitive. Here is a general script that will find a primitive polynomial. The algorithm
successively eliminates elements whose order properly divides pn − 1.
primpoly(p, n, w, s, f) = f = wpn−1) − 1; s = divisors(pn − 1); for(k = 1,length(s)− 1, f =
f/ gcd(f, ws[k] − 1));factormod(f, p)[1, 1]
To get a primitive polynomial for F9, type primpoly(3,2,w,s,f). The output is w2 +w +1.

To clarify the general situation, look at the specific case p = 3, n = 2 and consider a
script for that case.
f = x8 − 1
s = divisors(8)
for(k = 1,length(s) − 1, f = f/ gcd(f, xs[k] − 1))
factormod(f, 3)[1, 1]
//The output is x2 + x + 1. Note that [1,1] can be omitted in the last step. In that case,
the output will be a vector whose first component is the primitive polynomial, and whose
second component is the multiplicity, namely 1.

9. Elliptic Curves

An elliptic curve is represented in general Weierstrass form: y2+a1xy+a3y = x3+a2x2+
a4x + a6.
E=ellinit([a1,a2,a3,a4,a6],1) creates an elliptic curve E with the given coefficients.
The short Weierstrass form has a1 = a2 = a3 = 0. If the flag (the “1” at the end of the
sequence) is 0 or omitted, the output of E will contain 19 quantities instead of 13. In par-
ticular, if the curve is defined over R, then E[14] will return the roots of the Weierstrass
equation. In both cases, the first 13 quantities are a1, a2, a3, a4, a6, b2, b4, b6, b8, c4, c6, ∆
(the discriminant) and j (the j-invariant). The discriminant can be recovered by either
E[12] or E.disc, and the j-invariant by E[13] or E.j
elladd(E,z1,z2) adds the points z1 and z2 on the elliptic curve E, with addition ac-
cording to the group law. Points on the curve are represented by [x, y], with the point at
infinity represented by [0].
ellak(E,n) computes the coefficient an of the L-function of the elliptic curve E. If n is
not prime to the conductor, E must be in minimal Weierstrass form. If it isn’t, then first
use ellglobalred(E).
ellan(E,n) outputs a vector containing the first n coefficients of the L-function.
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ellap(E,p), with p prime, computes ap, where the number of finite points in E(Fp) is
p − ap. (Counting the point at infinity, we have p + 1 − ap.) For example,
E = ellinit([0, 0, 0,−4, 0]) creates the elliptic curve y2 = x3 −4x. Then ellap(E, 11) yields
output 0, so the number of finite points of E over F11 is 11. This can be checked by the
following program:
w = [x, y]
v = [[0, 10], [0, 10]]
forvec(w = v, if(Mod(w[1]3 − 4 ∗ w[1] − w[2]2, 11) == 0, print(w)))

The 11 points are (0, 0), (2, 0), (3,±2), (4,±2), (6,±4), (9, 0), (10,±5).
To add the points (3,2) and (10,5), type elladd(E,Mod([3,2],11),Mod([10,5],11)). The
result is the point (2,0).

A change of coordinates that preserves Weierstrass form is given by x = u2x′ + r, y =
u3y′ + su2x′ + t.
ellchangecurve(E,v), where v is the vector [u, r, s, t], gives the coefficients of the Wer-
erstrass equation in the new coordinate system.
ellchangepoint(x,v) gives the coordinates of the point x in the new system.
ellisoncurve(E,z) is true iff z is on E.
elllseries(E,s) returns the L-series of E at the real number s. Note that the command
has three consecutive l’s.
ellorder(E,z) gives the order of z if z is a torsion element, otherwise retuns 0.
ellordinate(E,x) finds y such that (x, y) is on E. If there is no such y, then the output
is [ ]. If there is exactly one y, the output is [y], and if there are two or more y’s, the
output produces two of them, in the form [y1, y2].
ellpow(E,z,n) computes nz, where z is on the curve E.
ellsub(E,z1,z2) finds z1− z2, where z1 and z2 are points on E. To get the inverse of z,
take z1 = [0] and z2 = z.
elltors(E), where E is defined over Q, returns [t, v1, v2], where t is the order of the tor-
sion subgroup, v1 gives the structure of the torsion group as a product of cyclic groups,
sorted in increasing order, and v2 gives generators of the cyclic groups. For example,
E = ellinit([0, 0, 0,−1, 0]) creates the elliptic curve y2 = x3 − x. Then elltors(E) outputs
[4, [2, 2], [[0, 0], [1, 0]]]. The torsion subgroup has order 4 and is isomorphic to the product
of two cyclic groups of order 2. Generators for the cyclic groups are [0,0] and [1,0].


