189-726B: Modular Forms II Assignment 11

Due: Wednesday, April 9

1. Let f be a p-adic modular form of weight $k \in \mathbb{Z}$ with fourier coefficients in \mathbb{Z}_p . Show that f can be written (not necessarily uniquely) as

$$f = \sum_{\nu=0}^{\infty} p^{a(\nu)} f_{\nu} E_{p-1}^{-\nu},$$

where the f_{ν} are *classical* modular forms of weight $k + (p-1)\nu$ with fourier coefficients in \mathbf{Z}_p , and $a(\nu) \longrightarrow \infty$ as $\nu \longrightarrow \infty$.

More precisely, show that for any ordinary test object $(A, \omega)_{/R}$ defined over a *p*-adic ring *R* (meaning that the natural map $R \longrightarrow \lim(R/p^n R)$ is an isomorphism), we have

$$f(A,\omega)_{/R} = \sum_{\nu=0}^{\infty} p^{a(\nu)} f_{\nu}(A,\omega) E_{p-1}(A,\omega)^{-\nu}$$

2. Let X be a non-singular projective algebraic curve over **C** and let η be a differential form of the second kind on X over **C**. Given subsets $U \subset V$ in $X(\mathbf{C})$, with U closed and V open for the usual topology, recall that there exists a smooth function $f_{U,V}$ on $X(\mathbf{C})$ which is identically 1 on U and vanishes outside V. Use this fact to give an explicit formula for a smooth differential form η^{an} on $X(\mathbf{C})$ representing the same class as η in the de Rham cohomology of $X(\mathbf{C})$. Your answer should involve the singularities P_1, \ldots, P_r of η , mutually disjoint open discs U_j containing P_j , and the local primitives F_j of η on U_j .

3. Let ω and η be differential forms of the first and second kind respectively on X over **C**. Use the expression for η^{an} obtained in part 2 to prove the assertion made in class that:

$$\langle \omega, \eta \rangle = \frac{1}{2\pi i} \int_{X(\mathbf{C})} \omega^{\mathrm{an}} \wedge \eta^{\mathrm{an}},$$

where the pairing on the left is the pairing on algebraic deRham cohomology defined in terms of residues of differential forms.