189-726B: Modular Forms II Assignment 8

Due: Wednesday, March 19

1. Let F be an imaginary quadratic field with ring of integers $\mathbf{Z}+\mathbf{Z} \omega$. Complete the proof started in class that

$$
\delta_{k}^{r} G_{k}(\omega)=\frac{k(k+1) \cdots(k+r-1)}{(\omega-\bar{\omega})^{r}} \zeta_{F}(k+r,-r),
$$

where

$$
\delta_{k}^{r}=\delta_{k+2 r-2} \cdots \delta_{k+2} \delta_{k}
$$

is the Shimura-Maass operator,

$$
G_{k}(\tau)=\sum^{\prime}(m+n \tau)^{-k}
$$

is the weight k Eisenstein series, and

$$
\zeta_{F}(m, n)=\sum_{\alpha \in \mathcal{O}_{F}} \alpha^{-m} \bar{\alpha}^{-n} .
$$

