189-726B: Modular Forms II
 Assignment 6

Due: Wednesday, February 20

1. Let $P=E_{2}=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}$ be the weight two Eisenstein series. Prove the claim made in class that $12 \theta P-P^{2}$ belongs to the space M_{4}.
2. Let $\Delta=\left(Q^{3}-R^{2}\right) / 1728$ be Ramanujan's Δ-function. Compute $\partial_{12}(\Delta)$ and conclude that $12 P$ is the logarithmic derivative of Δ. Deduce from this the infinite product formula for Δ.
3. Show that

$$
\theta R=-\Delta \quad(\bmod 5), \quad \theta Q=2 \Delta \quad(\bmod 7)
$$

and conclude the well-known congruences for the Ramanujan τ function:

$$
\tau(n) \equiv n \sigma_{5}(n) \quad(\bmod 5), \quad \tau(n) \equiv n \sigma_{3}(n) \quad(\bmod 7) .
$$

At this point, let me correct a mistake I made in class: the coefficient appearing in the formula for the weight 6 Eisenstein series $R=E_{6}$ is 504, not 540 (I miscopied...) So in fact, the only primes that require special treatment are 2 and 3, everything works for $p=5$, as Shahab said.
4. Show that the mod 5 modular form $\theta\left(E_{10}\right)$ has filtration (weight) 12 and relate it to Δ. How does this compare to what you calculated in 3 ?
5. Prove the assertion made in class that $\partial B=-Q A$, where A and B are the homogeneous polynomials of degrees $p-1$ and $p+1$ respectively satisfying $A(Q, R)=E_{p-1}$ and $B(Q, R)=E_{p+1}$.

