189-726B: Modular Forms II Assignment 6

Due: Wednesday, February 20

1. Let $P = E_2 = 1 - 24 \sum_{n=1}^{\infty} \sigma_1(n)q^n$ be the weight two Eisenstein series. Prove the claim made in class that $12\theta P - P^2$ belongs to the space M_4 .

2. Let $\Delta = (Q^3 - R^2)/1728$ be Ramanujan's Δ -function. Compute $\partial_{12}(\Delta)$ and conclude that 12P is the logarithmic derivative of Δ . Deduce from this the infinite product formula for Δ .

3. Show that

 $\theta R = -\Delta \pmod{5}, \qquad \theta Q = 2\Delta \pmod{7},$

and conclude the well-known congruences for the Ramanujan τ function:

 $\tau(n) \equiv n\sigma_5(n) \pmod{5}, \quad \tau(n) \equiv n\sigma_3(n) \pmod{7}.$

At this point, let me correct a mistake I made in class: the coefficient appearing in the formula for the weight 6 Eisenstein series $R = E_6$ is 504, not 540 (I miscopied...) So in fact, the only primes that require special treatment are 2 and 3, everything works for p = 5, as Shahab said.

4. Show that the mod 5 modular form $\theta(E_{10})$ has filtration (weight) 12 and relate it to Δ . How does this compare to what you calculated in 3?

5. Prove the assertion made in class that $\partial B = -QA$, where A and B are the homogeneous polynomials of degrees p-1 and p+1 respectively satisfying $A(Q,R) = E_{p-1}$ and $B(Q,R) = E_{p+1}$.