189-726B: Modular Forms II
 Assignment 5

Due: Wednesday, February 13

1. Fill in the details of the argument explained in class to show that the p-adic L-function $L_{p}^{ \pm}(f, s)$ can be expressed as a convergent infinite sum:

$$
L_{p}^{ \pm}(f, s)=\sum_{j=0}^{\infty} a_{j}\binom{s-1}{j}
$$

and give an explicit formula for the coefficients a_{j} that occur in this expansion, in terms of the moments of $\mu_{f}^{ \pm}$that were defined in class.
2. Give an explicit formula for the first derivative of $L_{p}^{ \pm}(f, s)$ at $s=1$, in terms of these moments.
3. Suppose that N is a prime and that p is a primitive root $\bmod N$. Show that, if f is a weight 2 newform on $\Gamma_{0}(N)$, then the $L_{p}^{ \pm}(f, s)$ do not vanish identically on the domain $(\mathbf{Z} /(p-1) \mathbf{Z}) \times \mathbf{Z}_{p}$.
4. What if the assumption on N is relaxed? (I think this problem is challenging. I remember proving some results in this direction, but I can't remember how far I got, or what my proof was. So the idea here is really to see how far you can go!)

Remark. Proving that $L_{p}^{ \pm}(f, s)$ do not vanish identically on $(\mathbf{Z} /(p-1) \mathbf{Z}) \times \mathbf{Z}_{p}$ is (I think) a tractable problem. It is still not known how to show that $L_{p}(f, s)$ does not vanish identically on $\{1\} \times \mathbf{Z}_{p}$. It is widely believed that this is true. A proof would make an excellent PhD thesis!

