# 189-726B: Modular Forms II <br> Assignment 4 

Due: Wednesday, February 6

1. Show that the action of the Hecke operator $T_{n}$ and of the complex conjugation $c$ on the lattice $\Lambda=H_{1}\left(X_{0}(N)(\mathbf{C}), \mathbf{Z}\right) \subset S_{2}\left(\Gamma_{0}(N)\right)^{\vee}$ that were defined in class commute with each other.
2. Prove the assertion made in class that the set of orbits for the action of $\Gamma_{0}(N)$ on the set of ordered pairs of adjacent cusps in $\mathbf{P}_{1}(\mathbf{Q})$ is in natural bijection with $\mathbf{P}_{1}(\mathbf{Z} / N \mathbf{Z})$.
3. Compute the space $\mathcal{M}^{\Gamma 0(11)}$ of modular symbols relative to the group $\Gamma_{0}(11)$. Show that there is exactly one cusp form $f$ on this group, and compute $a_{2}(f)$ and $a_{3}(f)$ using the modular symbol algorithm. Check that your answer agrees with

$$
f(q)=q \prod_{n}\left(1-q^{n}\right)^{2}\left(1-q^{11 n}\right)^{2} .
$$

