Math 726: L-functions and modular forms Fall 2011

Week 3. lecture 8: More on Modular Forms

Instructor: Henri Darmon Notes written by: Luiz Kazuo Taker

Recall

We are studying modular forms with respect to a congruence group I, i.e., a subgroup
I' < SLy(Z) such that I' D I'(V) for some integer N.

Recall our notations:
modular forms M;(T)

U
cusp forms  Si(I")

More on Modular Forms

CrLAM 1. (to be justified) Cusp forms (of an appropriate type) play the same role for 2-
dimensional representations of Gg as do Dirichlet characters for 1-dimensional representa-
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tions of Gg.

From now on, we assume

This implies that, for any f € Si(T),

We can then define the L-function attached to f by

L(f,s) = i apn®.
n=1

QUESTION 1. Where does this sum converge?

In order to answer this question, we will introduce some basic results about Mobius
transformations and modular forms. In what follows, we assume f € Si(T').

LeMMA 1.y (£5) = 4 for all (¢}) € SLy(R).
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Proof.
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COROLLARY 1. y*f(2)f(2) is invariant under T'. Hence, so is y*/?| f(z)|.

LEMMA 2. There ezists a constant Cy (depending on f) such that
|f(z +iy)| < Cry™*/?
forall z=z+1iy € H.

Proof. Since f is a cusp form, the values of y*/2|f(z)| are uniformly bounded in a neighbor-
hood of all the cusps. Hence, there exists C'y such that

Y2l (2)] < Cr.

PROPOSITION 1. There exists a constant C’} such that

lan| < Cn¥/2.
Proof. Let z=x + iy € H. Then
f(z) _ Z ane27rz‘n(x+iy) _ Z ane—27rny627rinm'
n=1 n=1

By Fourier inversion,
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0
So )
|ap|e 2™ < / |f(x 4 iy)|de < Cpy*/2.
0

And this implies that
|an| S ny_k/2€27my.

Notice that for each y > 0 we have a bound for |a,|. Choosing y = £ will minimize the
function on the right hand side and we obtain

la,| < C}nk/Q,

where C = CpkF/2(4m)k/2eM/2, O



COROLLARY 2. L(f,s) converges absolutely for Re(s) > 1+ k/2.

DEFINITION 1. The Mellin transform of f is

M(f)(s) = / e

PROPOSITION 2. M(f)(s) = (2m)~°I'(s)L(f,s).
Proof. The proof is similar to the proof of proposition 1 in lectures 5 and 6. O]

REMARK 1. If (' %) €T, then My(I") = {0} when k is odd.

THEOREM 2. Assume f € Si(SLa(Z)). Then L(f,s) extends to an analytic function on C
and, if

A(f,s) = (2m)°T(s) L(f, ),
then

A(f,5) = (=) 2A(f, k = 5).

Proof.
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Applying the change of variables t <> 1/t for the first integral gives us

ot
/1 Fl/e =,

Now, since
fi/t) = f(=1/it) = (it)" f(it),

the first integral becomes

& d e d
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Applying the same change of variables for the second integral gives us

(—1)kr2 / ra

So that

s = e ([T rane s [ anedt) = coage-s)



REMARK 2. If f € Si(SL2(Z)) then the sign in the functional equation for L(f,s) is

1, if k=0 (mod 4)
-1, ifk=2 (mod 4).

In particular, if £ =2 (mod 4), then L(f, k/2) = 0.
QUESTION 2. Where are the zeros of L(f,s) on Re(s) > 1+ k/27

QUESTIONS 3. (i) The proof of analytic continuation works well when (9 ') € I'. What
about other I' (e.g. To(N), T'1(N))?

(11) When does L(f,s) admit an Euler product factorization? And if so, what does it look
like?

The key tool for these questions is

Hecke operators|.




