
Math 726: L-functions and modular forms Fall 2011

Week 2, lectures 5 and 6: The functional equation for

Dirichlet L-functions. Remarks on Artin L-functions

attached to higher-dimensional representations.

Instructor: Henri Darmon Notes written by: Juan Ignacio Restrepo

Recall

Last lecture we explained L-functions attached to one dimensional representations of the

absolute Galois group of Q, GQ := Gal(Q/Q). By Class Field Theory, we showed that

L(ρ, s) = L(χ, s) for some Dirichlet character χ : (Z/qZ)× −→ C× for some integer q, called

the conductor of χ. Throughout these lectures, we will assume that q is prime. As an

exercise, think about the case of general conductor q.

Functional Equation of L(χ, s)

For the case of an even characater, i.e. χ(−1) = 1, we introduced

Λ(χ, s) = π−s/2qs/2Γ
(s

2

)

L(χ, s) =

∫

∞

0

ω(t, χ)ts/2dt

t
= M(ω(t, χ),

s

2
),

where ω(t, χ) =

∞
∑

n=1

χ(n)e−πn2t/q =
1

2

∑

n∈Z

χ(n)e−πn2t/q =
1

2
θ(t, χ).

As with the Riemann ζ function, using the Poisson Summation Formula we will derive a

functional equation for θ(t, χ) of the form

θ

(

1

t
, χ

)

= ∗
√
tθ(t, χ),

where ∗ is a factor we will determine soon.

Last time we derived the equation

∑

n∈Z

e−π(a+qn)2/qt =

√

t

q

∑

n∈Z

e−πn2t/qψa(n), (1)

where ψa : Z/qZ −→ C× is the additive character given by ψa(n) = e2πian/q. Now, to relate

the right hand side to θ(t, χ) it is necessary to replace the additive character ψa by by the
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multiplicative character χ, or, more precisely, to express the latter as a linear combination

of the characters ψa for some values of a. In order to do this we will do Fourier Analysis on

the finite group Z/qZ.

Let L2(Z/qZ,C) = {C-valued functions on Z/qZ} be the Hilbert space equipped with

the inner product

〈f, g〉 =
1

q

∑

a∈Z/qZ

f(a)g(a).

The characters ψ0, . . . , ψq−1 are an orthonormal basis of L2(Z/qZ,C) and in particular, for

all f ∈ L2(Z/qZ,C) we have f =

q−1
∑

j=0

〈f, ψj〉ψj. We are mainly interested in f = χ, in which

case we have the following properties:

(a) 〈χ, ψ0〉 = 0 (because χ 6= 1).

(b) 〈χ, ψ1〉 =
1

q

q−1
∑

j=0

χ(j)e−2πij/q =:
τ(χ)

q
. τ(χ) is called the Gauss sum attached to χ. Some

properties of the Gauss sums, which are left as an exercise are

• τ(χ) = χ(−1)τ(χ).

• τ(χ)τ(χ) = q, i.e., ‖τ(χ)‖ =
√
q.

(c) If a ∈ (Z/qZ)×, then ∃a′ ∈ (Z/qZ)× such that aa′ ≡ 1 (mod q). As j runs from 0 to

q − 1, so does a′j so

〈χ, ψa〉 =
1

q

q−1
∑

j=0

χ(j)e−2πiaj/q =
1

q

q−1
∑

j=0

χ(a′j)e−2πiaa′j/q

=
1

q

q−1
∑

j=0

χ(a′j)e−2πij/q = χ(a) · 1

q

q−1
∑

j=0

χ(j)e−2πij/q

= χ(a)
τ(χ)

q
.

From the previous properties we deduce that χ(n) =
τ(χ)

q

q−1
∑

a=0

χ(a)ψa(n). We multiply (1)

by
τ(χ)

q
· χ(a) and we sum over a = 0, . . . , q − 1 to obtain

τ(χ)

q

q−1
∑

a=0

χ(a)
∑

n∈Z

e−π(a+qn)2/qt =

√

t

q

∑

n∈Z

e−πn2t/qχ(n).
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The LHS can be written as

τ(χ)

q

∑

n∈Z

q−1
∑

a=0

χ(a+ qn)e−π(a+qn)2/qt,

because χ is q-periodic, but as a runs from 0 to q − 1 and n runs over all integers, a + qn

runs over all integers exactly once, so the LHS simplifies to

τ(χ)

q

∑

n∈Z

χ(n)e−πn2/qt

and thus we obtain
τ(χ)

q
θ

(

1

t
, χ

)

=

√

t

q
θ(t, χ),

which yields

θ

(

1

t
, χ

)

=

( √
q

τ(χ)

)

·
√
tθ(t, χ)

It is now easy to write down the functional equation for Λ(χ, s) and show that it extends

analytically to the whole complex plane. We will apply exactly the same techniques we

applied for the Riemann ζ-function; namely, we will use its expression as a Mellin transform,

we will split the integral into two parts, one of them with nice convergence everywhere and

in the other one we apply the substitution t 7→ 1/t, where we can use the functional equation

we just derived for θ(t, χ) as follows:

2Λ(χ, s) =

∫

∞

0

θ(t, χ)ts/2dt

t
=

∫ 1

0

θ(t, χ)ts/2dt

t
+

∫

∞

1

θ(t, χ)ts/2dt

t

=

∫

∞

1

θ

(

1

t
, χ

)

t−s/2dt

t
+

∫

∞

1

θ(t, χ)ts/2dt

t

=

√
q

τ(χ)

∫

∞

1

√
tθ(t, χ)t−s/2dt

t
+

∫

∞

1

θ(t, χ)ts/2dt

t

=
τ(χ)√
q

∫

∞

1

θ(t, χ)t
1−s
2

dt

t
+

∫

∞

1

θ(t, χ)ts/2dt

t
,

which clearly is entire, so Λ(χ, s) extends analytically to the whole complex plane. Further-

more, we can see the relation

Λ(χ, s) =

(

τ(χ)√
q

)

· Λ(χ, 1 − s).

Remarks:
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• Λ(χ, s) is everywhere holomorphic (no poles at s = 0 and/or s = 1).

• The functional equations relates Λ(χ, s) to Λ(χ, 1 − s) and involves a ”root number”

τ(χ)/
√
q.

• Since L(χ, s) admits an Euler product expansion for <[s] > 1, it does not vanish in

said half-plane. The analyticity of Λ(χ, s) and the poles of Γ(s) at the nonpositive

integers yield zeroes of L(χ, s) at the nonpositive even integers. These are the so-

called trivial zeroes of the L-function. The functional equation shows that there are

no more zeroes in the half-plane <[s] < 0 and it is conjectured that all the zeroes in

the critical strip (i.e., 0 ≤ <[s] ≤ 1) lie on the line <[s] = 1
2
. This is the Generalized

Riemann Hypothesis.

• Dirichlet proved that L(χ, 1) 6= 0, which is a key ingredient in his proof of the theorem

with his name on primes in arithmetic sequences.

Now we’ll deal with odd characters, i.e., χ(−1) = −1. Using exactly the same ideas as

for even characters is useless because θ(t, χ) is 0, unless we modify the definition of ω(t, χ),

so we will multiply by another function, or quasi-character, to make it an even character,

namely, instead of χ(n) we will write nχ(n). More concretely, the idea we will use is defining

ω(t, χ) =

∞
∑

n=1

nχ(n)e−πn2t/q =
1

2

∑

n∈Z

nχ(n)e−πn2t/q =
1

2
θ(t, χ).

Proposition 1. M
(

ω,
s

2

)

= qs/2π−s/2Γ
(s

2

)

L(χ, s− 1).

Proof. It’s just a simple computation.

M
(

ω,
s

2

)

=

∫

∞

0

ω(t, χ)ts/2dt

t
=

∫

∞

0

∞
∑

n=1

nχ(n)e−πn2t/qts/2dt

t

=

∞
∑

n=1

nχ(n)

(
∫

∞

0

e−πn2t/qts/2dt

t

)

=

∞
∑

n=1

nχ(n)

∫

∞

0

e−uqs/2π−s/2n−sus/2du

u

=

(

∞
∑

n=1

χ(n)n1−s

)

Γ
(s

2

)

π−s/2qs/2
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Corollary 1. M

(

ω,
s+ 1

2

)

= q
s+1

2 π−
s+1

2 Γ

(

s+ 1

2

)

L(χ, s).

Since we are using a different θ(t, χ), we can’t expect the same functional equation to work.

Instead, we will derive another one. Recall the identity obtained from the Poisson Summation

Formula,
∑

n∈Z

e−π(x+n)2/t =
√
t
∑

n∈Z

e−πn2te2πinx.

Since we have nice convergence properties on both sides of the equality, we are allowed

to take derivatives with respect to x and exchange the limit processes of summation and

differentiation, yielding the equation

∑

n∈Z

−2π(x + n)

t
e−π(x+n)2/t =

√
t
∑

n∈Z

2πine−πn2te2πinx,

whence

i
∑

n∈Z

(x + n)e−π(x+n)2/t = t3/2
∑

n∈Z

ne−πn2te2πinx.

Set x =
a

q
, a ∈ Z and replace t by

t

q
to obtain

i
∑

n∈Z

(a+ qn)e−π(a+qn)2/tq =
t3/2

√
q

∑

n∈Z

ne−πn2t/qψa(n).

After multiplying by
τ(χ)

q
· χ(a) on both sides and summing over a = 0, . . . , q − 1 we find

that

i · τ(χ)

q

∑

n∈Z

nχ(n)e−πn2/tq =
t3/2

√
q

∑

n∈Z

nχ(n)e−πn2tq

and it follows that

θ

(

1

t
, χ

)

=

( √
q

iτ(χ)

)

· t3/2θ(t, χ).

Now we get the following corollary.

Corollary 2. Let χ be an odd Dirichlet character. The function

Λ(χ, s) = q
s+1

2 π−
s+1

2 Γ

(

s+ 1

2

)

L(χ, s)

satisfies the functional equation

Λ(χ, s) =

(

iτ(χ)√
q

)

Λ(χ, 1 − s)

and is everywhere holomorphic.
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Proof. Exercise. (Hint: Follow the walkthrough given for even characters.)

Corollary 3. If χ is an odd Dirichlet character, L(χ, s) is an entire function with zeroes

at all negative odd integers. Moreover, it vanishes nowhere else outside of the critical strip

0 ≤ <[s] ≤ 1.

Question: What about more general continuous ρ : GQ −→ GLd(C) ∼= Aut(Vρ), Vρ
∼= Cd,

L(ρ, s) =
∏

p

det(1 − ρ(σp)p
−s

	 V Ip

ρ )−1

=

∞
∑

n=1

ann
−s ap = tr(σp 	 Vρ),

where σp is the Frobenius element at p? What kind of patterns do the coefficients in this

Dirichlet series satisfy?

Artin-Conjecture: Let ρ be any continuous non trivial irreducible representation of GQ.

Then L(ρ, s) extends to an analytic function on all of C. Moreover, there is a prediction for

what the functional equation looks like!! (Generalization of Class Field Theory to nonabelian

representations.)

Status of the conjecture:

(a) It is known for d = 2, det ρ(−1) = −1. This was finished around 2006 putting to-

gether the work of Hecke, Langlands-Tunnell, Serre-Deligne, Wiles, Taylor, Khare-

Wintenberger. It is highly nontrivial.

(b) Very little is known for d > 2.

A much easier result is available.

Theorem 1 (Artin). The function L(ρ, s) extends to a meromorphic function of s ∈ C.

Sketch of Proof. Observe that if ρ is a general representation, we can write ρ =
t
⊕

i=1

miρi,

where mi ∈ Z>0 and the ρi are irreducible. L(ρ, s) =
t
∏

i=1

L(ρi, s)
mi .

Key remark: Class Field Theory over a field K allows us to analyse the L-function LK(ρ, s)

attached to ρ : GK := Gal(K/K) −→ C×,

LK(ρ, s) =
∏

℘/OK

(1 − ρ(Frob℘)N(℘)−s)−1 (= 0 if ρ(I℘) 6= 1).
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Class Field Theory for K shows that LK(ρ, s) = LK(χ, s) where χ is a ”Hecke character” of

K.

Theorem 2 (Hecke(Tate’s Thesis)). LK(ρ, s) extends to a holomorphic function of s

when ρ 6= 1 (with eventually a pole at s = 1).

We have the examples ζK(s) = L(IndQ
K1K, s) (assignment) and LK(χ, s) = L(IndQ

Kχ, s),

where IndQ
K is a one dimensional representation of GQ. Then, Artin’s conjecture is true

for all ρ which are induced from abelian characters of K (K varying). More generally, if

there exist K1, . . . , Kt number fields and χ1, . . . , χt Hecke characters of these fields such

that ρ =
t
⊕

i=1

miInd
Q
Ki
χi with mi ≥ 1 then L(ρ, s) satisfies Artin’s conjecture.

Theorem 3 (Brauer’s Theorem). Let ρ be any representation of a finitely generated

group G. Then, there exist

• subgroups H1, . . . , Ht ≤ G

• charachters χj : Hj −→ C×

• (not necessarily positive) integers m1, . . . , mt

such that

ρ =
t
∑

i=1

miInd
G
Hi
χi

When applied to ρ : Gal(K/Q) −→ GLd(C) we get Ki = KHi and χi such that

L(ρ, s) =

t
∏

i=1

LKi
(χi, s)

mi.
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