
Math 726: L-functions and modular forms Fall 2011

Lecture 37 : The proof of a p-adic class number formula.

Instructor: Henri Darmon Notes written by: Francesc Castella

We will end this course with the proof of a p-adic analogue of the class number formula of

Dirichlet’s that was proven in the last Lecture. Before we can state it, we need to introduce

a p-adic analogue of the classical logarithm.

Lemma 1. There exists a unique function

logp : Gm(OCp
) −→ Cp

satisfying the following two properties:

1. logp(1 + t) =
∑

∞

n=1(−1)n+1 tn

n
, for all t ∈ O×

Cp
with |t| < 1;

2. logp(ab) = logp(a) + logp(b), for all a, b ∈ O×

Cp
.

Proof. Consider the reduction map

Gm(OCp
) −→ Gm(Fp).

Given x ∈ Fp, it lies in a finite extension of Fp, and so there exists a q = pm such that xq = x.

The Teichmüller lift of x is then defined by

ξx := lim
j→∞

x̃qj

∈ OCp

where x̃ denotes an arbitrary lift of x in OCp
under the reduction map. Note that

• the expression ξx defines an element in OCp
, since {x̃qj

}j is a Cauchy sequence and OCp

is complete;

• the value ξx ∈ OCp
is independent of the chosen lift x̃; and

• it satisfies ξq
x = ξx, as is readily seen from its definition.

Now any x ∈ O×

Cp
can be written as

x = ξx · (1 + t), for some t ∈ OCp
with |t| < 1,

(indeed, x and ξx have the same reduction) and we are led to set

logp(x) = logp(ξx) + logp(1 + t) = logp(1 + t) =
∞∑

n=1

(−1)n+1 tn

n
.

This gives a function with the desired properties, and uniqueness follows immediately.
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In order to evaluate the expression

Lp(1, χ) =

∫

Z
×

p

x−1dµχ(x)

we would need to consider the “measure” x−1µχ on Zp. This has a singularity at x = 0,

leading to difficulties when we try to integrate the constant function 1 =
(

x

0

)
against it. But

for n ≥ 1, the integration of
(

x

n

)
against x−1µχ on Zp causes no problem, and in fact

∫

Zp

(
x

n

)
x−1dµχ(x) =

1

n

∫

Zp

(
x − 1

n − 1

)
dµχ(x). (1)

These considerations lead us to introduce the regularised Amice transform

Ãx−1µχ
(T ) =

∞∑

n=1

(∫

Zp

(
x

n

)
x−1dµχ(x)

)
T n =

∫

Zp

[(1 + T )x − 1]x−1dµχ(x).

(Notice that the “regularisation” consists in removing the constant term in what would

correspond to the usual Amice transform.) We observe the following:

• As we see from (1), writting Ãx−1µχ
(T ) =

∑
∞

n=1 λnT n, the coefficients λn lie in 1
n
OCp

,

and hence Ãx−1µχ
(T ) /∈ Cp ⊗ OCp

[[T ]] since the λn have unbounded denominators.

Nevertheless, the power series Ãx−1µχ
(T ) still converges for |T | < 1.

• Ãx−1µχ
(T ) is a “primitive” of Aµχ

(T ), in the sense that

(1 + T )
d

dT
Ãx−1µχ

(T ) = Aµχ
(T ). (2)

Indeed:

(1 + T )
d

dT
Ãx−1µχ

(T ) = (1 + T )
d

dT

∞∑

n=1

(
1

n

∫

Zp

(
x − 1

n − 1

)
dµχ(x)

)
T n

= (1 + T )
∞∑

n=1

∫

Zp

(
x − 1

n − 1

)
dµχ(x)T n−1

=

∞∑

n=0

∫

Zp

[(
x − 1

n

)
−

(
x − 1

n − 1

)]
dµχ(x)T n

=

∞∑

n=0

∫

Zp

(
x

n

)
dµχ(x)T n

= Aµχ
(T ).
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Theorem 1. There exists a constant C ∈ Cp such that

Ãx−1µχ
(T ) =

−1

τ(χ−1)

D−1∑

a=0

χ−1(a) · logp(ζ
a
D(1 + T ) − 1) + C. (3)

Proof. Letting H(T ) denote the RHS of (3) (the constant is irrelevant here), we see that

• H(T ) defines a convergent power series for |T | < 1, since

logp(ζ
a
D(1 + T ) − 1) = logp(ζ

a
D − 1 + ζa

DT )

= logp((ζ
a
D − 1)(1 +

ζa
DT

ζa
D − 1

)) = logp(ζ
a
D − 1) + logp(1 +

ζa
DT

ζa
D − 1

)

= logp(ζ
a
D − 1) +

∞∑

n=1

(−1)n+1 ζan
D

n(ζa
D − 1)n

T n.

• H(T ) satisfies

(1 + T )
d

dT
H(T ) = Aµχ

(T ).

This follows from a straighforward computation that is left as an exercise.

These two facts together with (2), imply that Ãx−1µχ
(T ) and H(T ) differ by a constant.

It remains to compute Ãres
Z
×

p
(x−1µχ)(T ). In fact, since res

Z
×

p
(x−1µχ) is a honest measure,

the regularisation process is no longer neeeded, and so reflected in the following.

Proposition 1.

Ares
Z
×

p
(x−1µχ)(T ) =

−1

τ(χ−1)

(
1 −

χ(p)

p

)D−1∑

a=0

χ−1(a) · logp(ζ
a
D(1 + T ) − 1).

Proof. First, from Lemma 2 in Lecture 35, giving the formula for the Amice transform of a

measure restricted to pZp in terms of that of the original measure, we have

ÃrespZp (x−1µχ)(T ) =
1

p

∑

ξ∈µp

Ãx−1dµχ
(ξ(1 + T ) − 1).
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Using this, we compute

Ares
Z
×

p
(x−1µχ)(T ) = Ãx−1µχ

(T ) − ÃrespZp (x−1µχ)(T )

=
−1

τ(χ−1)

D−1∑

a=0

χ−1(a)


logp(ζ

a
D(1 + T ) − 1) −

1

p

∑

ξ∈µp

logp(ζ
a
Dξ(1 + T ) − 1)




=
−1

τ(χ−1)

D−1∑

a=0

χ−1(a)

(
logp(ζ

a
D(1 + T ) − 1) −

1

p
logp(ζ

ap
D (1 + T )p − 1)

)

=
−1

τ(χ−1)

(
D−1∑

a=0

χ−1(a) · logp(ζ
a
D(1 + T ) − 1) −

1

p

D−1∑

a=0

χ−1(a) · logp(ζ
ap
D (1 + T )p − 1)

)

=
−1

τ(χ−1)

(
D−1∑

a=0

χ−1(a) · logp(ζ
a
D(1 + T ) − 1) −

χ(p)

p

D−1∑

a=0

χ−1(a) · logp(ζ
a
D(1 + T ) − 1)

)

=
−1

τ(χ−1)

(
1 −

χ(p)

p

)D−1∑

a=0

χ−1(a) · logp(ζ
a
D(1 + T ) − 1),

where the penultimate equality follows after replacing ap by a in the right terms in the

preceding equality, so that χ(a) gets replaced by χ(a)χ−1(p). The result follows.

As an immediate consequence, the proof of the p-adic analogue of Dirichlet’s class number

formula follows. (Cf. Theorem 2 from Lecture 36.)

Theorem 2. Let χ be a primitive Dirichlet character of conductor D > 1 prime to p. Then

Lp(1, χ) =
−1

τ(χ−1)

(
1 −

χ(p)

p

)D−1∑

a=0

χ−1(a) · logp(1 − ζa
D).

Proof. Indeed, Proposition 1 gives the last of the following equalities

Lp(1, χ) =

∫

Z
×

p

x−1dµχ(x) = Ares
Z
×

p
(x−1µχ)(T )

∣∣∣
T=0

=
−1

τ(χ−1)

(
1 −

χ(p)

p

)D−1∑

a=0

χ−1(a) · logp(1 − ζa
D).

Some concluding remarks are in order. The above class number formula can be seen

as a manifestation of a rather elusive connection between two types of objects of a com-

pletely different nature, namely special values of L-functions –the values of the Dirichlet

L-function L(s, χ), as interpolated by Lp(s, χ)–, and special elements of arithmetic content

–the cyclotomic units 1 − ζa
D, in the form of their p-adic logarithms.
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In the literature one can find p-adic analogues of essentially each of the types of L-

functions that have been treated in this course: constructions due to Mazur and Swinnerton-

Dyer et.al., corresponding to the Hecke L-functions L(f, s); to Hida et.al., corresponding to

Rankin-Selberg L-functions like L(f ⊗ g, s); etc.. And for each of these other types of p-

adic L-functions, the connections that arise with arithmetic in the form of generalised class

number formulae is currently a broad and deep area of great mathematical interest, with

many of its gems still awaiting further exploration.
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