
Math 726: L-functions and modular forms Fall 2011

Lectures 32-33 : Values of zeta functions

Instructor: Henri Darmon Notes written by: Clement Gomez

Recall from last lectures

∀n ∈ N, ζ(−n) ∈ Q

The proof is to consider the Mellin transform:

L(f, s) := 1
Γ(s)

∫∞
0

f(t)ts dt
t
.

Then one can show that L(f,−n) = (−1)nf (n)(0).

On the other hand, by a direct computation, ζ(s) = 1
s−1

L(f, s) where f(t) = t
et−1

Since t
et−1

has rational Taylor expansion, we conclude that ∀n ∈ N, ζ(−n) ∈ Q.

Problem 1. Understand the p−adic properties of ζ(−n):

Idea: Express ζ(−n) as a p−adic Mellin transform of t
et−1

.

Rudiments of p−adic integration theory:

Definition 1. A p-adic Banach space B is a Qp-vector space, such that there exists a

Zp-submodule B0 with the following properties:

(i)B0 → lim←B0/p
nB0 is an isomorphism

(ii)∀x ∈ B, ∃n ∈ Z such that pn.x ∈ B0

We can define the valuation for any element of B, by vp(x) := min{n ∈ Z|pn.x ∈ B0}.

The norm is then defined by ||x|| := p−vp(x).

Remark 1. The Banach space is complete relative to this norm and B0 = unit ball in B.

Example 2. B = Qp is NOT a Banach space.

Indeed, B0 = OZp
→ lim←B0/p

nB0 is NOT an isomorphism

Proof: Considering elements of the form
∑∞

i=1 bip
i with deg(bi) → ∞. Theses elements

are in lim←B0/p
nB0 but one can show that some of thoses elements can NOT have finite

degree over Qp.

Let’s give an example of this fact. Consider α :=
∑∞

k=0 p
1

2k2 .pk.

1



By definition, α belongs to lim←B0/p
nB0.

Suppose that α has degree N over Qp. Choose n such that 2n2
N

2(n+1)2
< 1 then

∑∞

k=n+1 p
1

2k2 .pk

belongs to Qp(p
1

2n2 , x) which is an extension of degree ≤ 2n2
.N .

So, vp(
∑∞

k=n+1 p
1

2k2 .pk).2n2
.N ∈ Z.

But on the other hand:

vp(

∞∑

k=n+1

p
1

2k2 .pk).2n2

.N = vp(p
1

2(n+1)2 .pn+1)).2n2

.N

= (n + 1).2n2

.N +
2n2

.N

2(n+1)2
is not an element of Z , a contradiction.�

Example 3. We can complete the first example to get a p−adic Banach space:

B = Cp := Q̂p

B0 = OCp
= ÔQp

Example 4. B = C(Zp, Qp) = {continuous Qp-valued functions on Zp}

B0 = C(Zp, Zp)

The property (ii) for a Banach space, follows from the compactness of Zp. (f ∈ C(Zp, Qp)

has bounded valuation)

Example 5. B = C(Zp, Cp)

B0 = C(Zp,OCp
)

Example 6. Let I be an index set:

B = `∞(I, Qp) := {(Xi)i∈I bounded ||Xi|| ≤ C, ∀i ∈ I}

B0 = `∞(I, Zp)

Example 7. Let I be an index set:

B = `1(I, Qp) := {(Xi)i∈I , (Xi) is ”summable” }

:= {(Xi)|]{i ∈ I|vp(Xi) ≤ C} < ∞, ∀C > 0}.

B0 = `1(I, Zp)

In particular, if (Xi) belongs to `1(I, Qp), then
∑

i∈I Xi ∈ Qp makes sense.
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Definition 8. A Banach basis of B is a family of elements (ei)i∈I in B0�pB0, such that

∀x ∈ B there exists a unique (xi)i∈I ∈ `1(I, Qp) such that:

x =
∑

i∈I

xiei

Theorem 9. (ei)i∈I is a Banach basis for B if and only if (ei)i∈I is a Fp-basis for B0/p
nB0

Sketch of the proof:

(⇒)

Let x ∈ B0/p
nB0 and choose x lifting x. Then, x =

∑
i∈I xiei. So, x =

∑
i∈I xi.ei and

the sum is finite since (xi)i∈I belongs to `1(I, Zp)

(⇐)

Let ϕ: `1(I, Qp) → B

(xi)i∈I →
∑

xiei

ϕ is injective:

By multiplying (xi)i∈I by vp((xi)i∈I) and by reducting modulo p gives:

ϕ(x) = 0 ⇔ vp(x) = ∞.

ϕ is surjective:

Let x ∈ B. Without a loss of generality, we can assume that x ∈ B0. By hypothesis,

x =
∑

i x1,i ei. Take x(0) :=
∑

x1,iei (Recall that the sum is finite).

x − x(0) ∈ pB0.

By recurrence, x = x(0) + p.x(1) + ... + pn.x(n) + ... with x(i) linear combination of ei with

coefficients in Zp.

�

Corollary 1. Every Banach space has a Banach basis

Proof:

Consider B0/pB0. Let ei∈I be a basis for B0/pB0. Then, just take ei lift for ei.�

Sometimes, we can easily find an explicit expression of the basis:

Example 10. B = `1(I, Qp).

A basis is given by (ei)i∈I such that ei = δi (δi(i) = 1 , δi(j) = 0 if i 6= j).

But, sometimes, the explicit expression is not that clear.

Example 11. B = `∞(I, Qp)

B0/pB0 = functions(I, Fp)

We know that there exists a basis. Its existence relies on the full strenght of the axiom

of choice but this basis is not countable.
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Lemma 1. The functions
(

x

n

)
:= x(x−1)...(x−n+1)

n!
belong to B0�pB0

Proof: (i) fn(x) :=
(

x

n

)
sends Z to Z. Since Z is dense in Zp, it maps Zp to Zp ⇒ fn ∈ B0.

(ii) fn(n) = 1 ⇒ fn ∈ B0�pB0.�

Theorem 12. (Mahler)

The functions (fn)n∈N are a Banach basis of C(Zp, Qp)

Proof: Define the ”discrete derivative” (δf)(x) := f(x + 1)− f(x) and the Mahler coeffi-

cients of f by an(f) := (δnf)(0)

The proof follows from the lemma

Lemma 2. If f belongs to C(Zp, Qp) then:

(i)(an(f))n≥0 belongs to `1(I, Qp).

(ii)f(x) =
∑∞

0 an(f)
(

x

n

)
, ∀x ∈ Zp

(iii)vp(f) = vp((an(f))n∈N , ∀f ∈ C(Zp, Qp)

Proof of the lemma:

(i) Let’s assume without a loss of generality that f ∈ C(Zp, Zp)�pC(Zp, Zp).

an(f) = (δnf)(0)

vp(an(f)) ≥ vp(δ
nf) by definition.

The sequence vp(δ
nf) is clearly increasing, since δ preserves C(Zp, Zp) so it is enough to

show that vp(δ
nf) is unbounded as n → ∞.

f is continuous on Zp which is compact, hence f is uniformly continuous.

Hence, for all M , ∃pk satisfying: vp(f(x + pk) − f(x)) > M, ∀x ∈ Zp.

Let (sf)(x) := f(x + 1), δ = s − 1.

(δpk

f) = (s − 1)pk

(f) =
∑pk

j=0(−1)j
(

pk

j

)
sj.f

(δpk

f)(x) = f(x) − f(x + pk) +
∑pk−1

j=1 (−1)j
(

pk

j

)
f(x + j)

which means:

vp(δ
pk

f) ≥ min(M, 1 + vp(f))

So choosing M such that M ≥ 1 + vp(f), we get vp(δ
pk

f) ≥ 1 + vp(f).

Then taking δpk

f instead of f proves by recurrence that the sequence vp(δ
nf) is un-

bounded.

(ii) Let f̃ :=
∑∞

0 an(f)
(

x

n

)
.

δ(
(

x

n

)
) =

(
x+1
n

)
−

(
x

n

)
= (x+1)...(x−n+2)

n!
− x...(x−n+1)

n!
= (x+1−(x−n+1))x...(x−n+2)

n!
=

(
x

n−1

)

an(f̃) = (δnf̃)(0) = (δn.
∑∞

0 an(f)
(

x

n

)
)(0) = an(f)

The assignement f → (an(f))n∈N is injective. This is because, if δn(f)(0) = 0, ∀n ∈ N

then f(j) = 0, ∀j ∈ N.
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(Indeed, f(0) = 0 so f(1)− f(0) = 0 ⇒ f(1) = 0, so f(2)− 2f(1)+ f(0) = 0 ⇒ f(2) = 0

...)

Hence f = 0 since N is dense in Zp.

Finally, by injectivity, f̃ = f .

(iii) Let f ∈ C(Zp, Qp), we know f(x) =
∑∞

0 an(f)
(

x

n

)

Since vp(δ
nf) → ∞, then ∃N such that vp(f) = vp(

∑N

n=0 an(f)
(

x

n

)
).

But vp(
∑N

0 an(f)
(

x

n

)
) ≥ min(vp(an(f)

(
x

n

)
)) ≥ min(vp(an(f)) since

(
x

n

)
(n ≥ 0) belongs

to C(Zp, Zp).

So, vp(f) ≥ vp((an(f))n∈N).

Reciprocally, if pkf ∈ B0, then
∑∞

n=0 pkan(f)
(

x

n

)
∈ B0 and we want to show that

vp(p
k(an(f))n∈N) ≥ 0.

Let j = minn∈N{n|vp(p
k(an(f)) < 0}. Then, vp(p

kf(j)) ≥ 0 by hypothesis, but on the

other hand vp(
∑∞

0 pkan(f)
(

j

n

)
) = vp(

∑j−1
n=0 pkan(f)

(
j

n

)
+ pkaj(f)) = vp(p

kaj(f)) < 0 which

is absurd. So {n|vp(p
k(an(f)) < 0} is empty and vp((an(f))n∈N) ≥ vp(f) which finishes the

proof. �

In conclusion, we understand C(Zp, Qp) → `1(N, Qp). Now, we would like to understand

its dual.

Dual spaces, measures, and integration:

For all this section ,let B be a Banach space.

Definition 13. A B-valued measure on Zp is a continuous linear map from C(Zp, Qp) to

B.

Notations: 1/ D(Zp, Qp) = space of Qp-valued measures on Zp.

D(Zp, B) = space of B-valued measures on Zp.

2/ If µ ∈ D(Zp, Qp), we write µ(f) =
∫

Zp
f(x)dµ(x)

Concrete description of D(Zp, Qp)

Theorem 14. The map D(Zp, Qp) → `∞(N, Qp)

µ → µ(
(

x

n

)
)

is an isomorphism of p−adic Banach spaces, which identifies:

D(Zp, Zp) := {µ|µ(f) ∈ Zp, ∀f ∈ C(Zp, Zp)} with `∞(N, Zp)

.
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Sketch of the proof: If µ ∈ D(Zp, Qp), µ(
(

x

n

)
) ∈ Qp have to be bounded. (indeed

(
x

n

)
∈

C(Zp, Zp), and C(Zp, Zp) is a compact so µ(C(Zp, Zp) is compact).

Conversely, given a sequence (bn)n∈N which is bounded, we can define:

µb(f) :=
∑

n∈N

an(f)bn ∈ Qp

. �

Definition 15. Given µ ∈ D(Zp, Qp), the Amice transform of µ is the power serie;

Aµ(T ) :=
∞∑

n=0

µ

(
x

n

)
T n

=
∞∑

n=0

∫

Zp

(
x

n

)
dµ(x)T n

=

∫

Zp

∞∑

n=0

(
x

n

)
dµ(x)T n

=

∫

Zp

(1 + T )xdµ(x)

Remark 2. µ → Aµ(T ) gives an isomorphism D(Zp, Qp) → Qp ⊗ Zp[[T ]]

Let’s give some examples (or counterexamples) of measures

Example 16. Haar measure

We would like to have a measure invariant by translation (1) and with value 1 for the

constant function 1 (2):

It should satisfy µ(x + a) = µ(x) by (1), but µ(x + a) = µ(x) + a by 2/. That’s absurd,

so there exits NO Haar measure on Zp.

Example 17. Dirac measure

Let a ∈ Zp. The dirac measure associated to a is defined by the evaluation at a:

δa(f) := f(a)

Aδa
(T ) =

∑∞

n=0 δa

(
x

n

)
T n =

∑∞

n=0

(
a

n

)
T n = (1 + T )a
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