Lectures 32-33: Values of zeta functions

Instructor: Henri Darmon Notes written by: Clement Gomez

Recall from last lectures

$$\forall n \in \mathbb{N}, \zeta(-n) \in \mathbb{Q}$$

The proof is to consider the Mellin transform:

$$L(f,s) := \frac{1}{\Gamma(s)} \int_0^\infty f(t) t^s \frac{dt}{t}.$$

Then one can show that $L(f, -n) = (-1)^n f^{(n)}(0)$.

On the other hand, by a direct computation, $\zeta(s) = \frac{1}{s-1}L(f,s)$ where $f(t) = \frac{t}{e^t-1}$ Since $\frac{t}{e^t-1}$ has rational Taylor expansion, we conclude that $\forall n \in \mathbb{N}, \zeta(-n) \in \mathbb{Q}$.

PROBLEM 1. Understand the p-adic properties of $\zeta(-n)$:

IDEA: Express $\zeta(-n)$ as a p-adic Mellin transform of $\frac{t}{e^t-1}$.

Rudiments of p-adic integration theory:

DEFINITION 1. A **p-adic Banach** space B is a \mathbb{Q}_p -vector space, such that there exists a \mathbb{Z}_p -submodule B_0 with the following properties:

 $(i)B_0 \to \lim_{\leftarrow} B_0/p^n B_0$ is an isomorphism

 $(ii) \forall x \in B, \exists n \in \mathbb{Z} \text{ such that } p^n.x \in B_0$

We can define the valuation for any element of B, by $v_p(x) := min\{n \in \mathbb{Z} | p^n . x \in B_0\}.$

The norm is then defined by $||x|| := p^{-v_p(x)}$.

Remark 1. The Banach space is complete relative to this norm and $B_0 = \text{unit ball in } B$.

EXAMPLE 2. $B = \overline{\mathbb{Q}_p}$ is NOT a Banach space.

Indeed, $B_0 = \mathcal{O}_{\overline{Z_p}} \to \lim_{\leftarrow} B_0/p^n B_0$ is NOT an isomorphism

<u>Proof</u>: Considering elements of the form $\sum_{i=1}^{\infty} b_i p^i$ with $deg(b_i) \to \infty$. Theses elements are in $\lim_{\leftarrow} B_0/p^n B_0$ but one can show that some of thoses elements can NOT have finite degree over Q_p .

Let's give an example of this fact. Consider $\alpha := \sum_{k=0}^{\infty} p^{\frac{1}{2^{k^2}}}.p^k$.

By definition, α belongs to $\lim_{\leftarrow} B_0/p^n B_0$.

Suppose that α has degree N over \mathbb{Q}_p . Choose n such that $\frac{2^{n^2}N}{2^{(n+1)^2}} < 1$ then $\sum_{k=n+1}^{\infty} p^{\frac{1}{2^{k^2}}} . p^k$ belongs to $\mathbb{Q}_p(p^{\frac{1}{2^{n^2}}}, x)$ which is an extension of degree $\leq 2^{n^2} . N$.

So,
$$\mathbf{v}_p(\sum_{k=n+1}^{\infty} p^{\frac{1}{2^{k^2}}}.p^k).2^{n^2}.N \in \mathbb{Z}.$$

But on the other hand:

$$\begin{split} \mathbf{v}_p (\sum_{k=n+1}^{\infty} p^{\frac{1}{2^{k^2}}}.p^k).2^{n^2}.N &= \mathbf{v}_p (p^{\frac{1}{2^{(n+1)^2}}}.p^{n+1)}).2^{n^2}.N \\ &= (n+1).2^{n^2}.N + \frac{2^{n^2}.N}{2^{(n+1)^2}} \text{ is not an element of } \mathbb{Z} \text{ , a contradiction.} \Box \end{split}$$

EXAMPLE 3. We can complete the first example to get a p-adic Banach space:

$$B = \mathbb{C}_p := \widehat{\mathbb{Q}_p}$$

$$B_0 = \mathcal{O}_{\mathbb{C}_p} = \widehat{\mathcal{O}_{\overline{\mathbb{Q}_p}}}$$

EXAMPLE 4. $B = \mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p) = \{\text{continuous } \mathbb{Q}_p\text{-valued functions on } \mathbb{Z}_p\}$ $B_0 = \mathcal{C}(\mathbb{Z}_p, \mathbb{Z}_p)$

The property (ii) for a Banach space, follows from the compactness of \mathbb{Z}_p . $(f \in \mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p)$ has bounded valuation)

Example 5.
$$B = \mathcal{C}(\mathbb{Z}_p, \mathbb{C}_p)$$

 $B_0 = \mathcal{C}(\mathbb{Z}_p, \mathcal{O}_{\mathbb{C}_p})$

Example 6. Let I be an index set:

$$B = \ell_{\infty}(I, \mathbb{Q}_p) := \{(X_i)_{i \in I} \text{ bounded } ||X_i|| \le C, \forall i \in I\}$$

$$B_0 = \ell_{\infty}(I, \mathbb{Z}_p)$$

Example 7. Let I be an index set:

$$B = \ell_1(I, \mathbb{Q}_p) := \{ (X_i)_{i \in I}, (X_i) \text{ is "summable" } \}$$

:= \{ (X_i) | \pmu \{ i \in I | \nu_p(X_i) \le C \} < \infty, \forall C > 0 \}.

$$B_0 = \ell_1(I, \mathbb{Z}_p)$$

In particular, if (X_i) belongs to $\ell_1(I, \mathbb{Q}_p)$, then $\sum_{i \in I} X_i \in \mathbb{Q}_p$ makes sense.

DEFINITION 8. A **Banach basis** of B is a family of elements $(e_i)_{i \in I}$ in $B_0 \setminus pB_0$, such that $\forall x \in B$ there exists a unique $(x_i)_{i \in I} \in \ell_1(I, \mathbb{Q}_p)$ such that:

$$x = \sum_{i \in I} x_i e_i$$

Theorem 9. $(e_i)_{i\in I}$ is a Banach basis for B if and only if $(\overline{e_i})_{i\in I}$ is a \mathbb{F}_p -basis for B_0/p^nB_0

Sketch of the proof:

 (\Rightarrow)

Let $\overline{x} \in B_0/p^n B_0$ and choose x lifting \overline{x} . Then, $x = \sum_{i \in I} x_i e_i$. So, $\overline{x} = \sum_{i \in I} \overline{x_i} . \overline{e_i}$ and the sum is finite since $(x_i)_{i \in I}$ belongs to $\ell_1(I, \mathbb{Z}_p)$

 (\Leftarrow)

Let
$$\varphi \colon \ell_1(I, \mathbb{Q}_p) \to B$$

 $(x_i)_{i \in I} \to \sum x_i e_i$

 φ is injective:

By multiplying $(x_i)_{i\in I}$ by $v_p((x_i)_{i\in I})$ and by reducting modulo p gives:

$$\varphi(x) = 0 \Leftrightarrow \mathbf{v}_p(x) = \infty.$$

 φ is surjective:

Let $x \in B$. Without a loss of generality, we can assume that $x \in B_0$. By hypothesis, $\overline{x} = \sum_i \overline{x_{1,i}} \ \overline{e_i}$. Take $x^{(0)} := \sum_i x_{1,i} e_i$ (Recall that the sum is finite). $x - x^{(0)} \in pB_0$.

By recurrence, $x = x^{(0)} + p.x^{(1)} + ... + p^n.x^{(n)} + ...$ with $x^{(i)}$ linear combination of e_i with coefficients in \mathbb{Z}_p .

COROLLARY 1. Every Banach space has a Banach basis

Proof:

Consider B_0/pB_0 . Let $\overline{e}_{i\in I}$ be a basis for B_0/pB_0 . Then, just take e_i lift for $\overline{e_i}$. \square Sometimes, we can easily find an explicit expression of the basis:

Example 10. $B = \ell_1(I, \mathbb{Q}_p)$.

A basis is given by $(e_i)_{i\in I}$ such that $e_i = \delta_i$ $(\delta_i(i) = 1, \delta_i(j) = 0 \text{ if } i \neq j).$

But, sometimes, the explicit expression is not that clear.

Example 11. $B = \ell_{\infty}(I, \mathbb{Q}_p)$

$$B_0/pB_0 = functions(I, \mathbb{F}_p)$$

We know that there exists a basis. Its existence relies on the full strength of the axiom of choice but this basis is not countable.

LEMMA 1. The functions $\binom{x}{n} := \frac{x(x-1)...(x-n+1)}{n!}$ belong to $B_0 \setminus pB_0$

<u>Proof</u>: (i) $f_n(x) := \binom{x}{n}$ sends \mathbb{Z} to \mathbb{Z} . Since \mathbb{Z} is dense in \mathbb{Z}_p , it maps \mathbb{Z}_p to $\mathbb{Z}_p \Rightarrow f_n \in B_0$. (ii) $f_n(n) = 1 \Rightarrow f_n \in B_0 \setminus pB_0$.

THEOREM 12. (Mahler)

The functions $(f_n)_{n\in\mathbb{N}}$ are a Banach basis of $\mathcal{C}(\mathbb{Z}_p,\mathbb{Q}_p)$

<u>Proof:</u> Define the "discrete derivative" $(\delta f)(x) := f(x+1) - f(x)$ and the Mahler coefficients of f by $a_n(f) := (\delta^n f)(0)$

The proof follows from the lemma

LEMMA 2. If f belongs to $\mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p)$ then:

- $(i)(a_n(f))_{n\geq 0}$ belongs to $\ell_1(I,\mathbb{Q}_p)$.
- $(ii) f(x) = \sum_{n=0}^{\infty} a_n(f) {x \choose n}, \forall x \in \mathbb{Z}_p$
- $(iii)v_p(f) = v_p((a_n(f))_{n \in \mathbb{N}}, \forall f \in \mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p)$

Proof of the lemma:

(i) Let's assume without a loss of generality that $f \in \mathcal{C}(\mathbb{Z}_p, \mathbb{Z}_p) \backslash p\mathcal{C}(\mathbb{Z}_p, \mathbb{Z}_p)$.

$$a_n(f) = (\delta^n f)(0)$$

 $v_p(a_n(f)) \ge v_p(\delta^n f)$ by definition.

The sequence $v_p(\delta^n f)$ is clearly increasing, since δ preserves $\mathcal{C}(\mathbb{Z}_p, \mathbb{Z}_p)$ so it is enough to show that $v_p(\delta^n f)$ is unbounded as $n \to \infty$.

f is continuous on \mathbb{Z}_p which is compact, hence f is uniformly continuous.

Hence, for all M, $\exists p^k$ satisfying: $v_p(f(x+p^k)-f(x)) > M, \forall x \in \mathbb{Z}_p$.

Let
$$(sf)(x) := f(x+1), \delta = s-1.$$

$$(\delta^{p^k} f) = (s-1)^{p^k} (f) = \sum_{j=0}^{p^k} (-1)^j {p^k \choose j} s^j f$$

$$(\delta^{p^k} f)(x) = f(x) - f(x+p^k) + \sum_{j=1}^{p^k-1} (-1)^j {p^k \choose j} f(x+j)$$

which means:

$$v_p(\delta^{p^k}f) \ge min(M, 1 + v_p(f))$$

So choosing M such that $M \ge 1 + v_p(f)$, we get $v_p(\delta^{p^k} f) \ge 1 + v_p(f)$.

Then taking $\delta^{p^k} f$ instead of f proves by recurrence that the sequence $\mathbf{v}_p(\delta^n f)$ is unbounded.

(ii) Let
$$\tilde{f} := \sum_{n=0}^{\infty} a_n(f) {x \choose n}$$
.

$$\delta(\binom{x}{n}) = \binom{x+1}{n} - \binom{x}{n} = \frac{(x+1)\dots(x-n+2)}{n!} - \frac{x\dots(x-n+1)}{n!} = \frac{(x+1-(x-n+1))x\dots(x-n+2)}{n!} = \binom{x}{n-1}$$

$$a_n(\tilde{f}) = (\delta^n \tilde{f})(0) = (\delta^n \cdot \sum_{n=0}^{\infty} a_n(f)\binom{x}{n})(0) = a_n(f)$$

The assignment $f \to (a_n(f))_{n \in \mathbb{N}}$ is injective. This is because, if $\delta^n(f)(0) = 0, \forall n \in \mathbb{N}$ then $f(j) = 0, \forall j \in \mathbb{N}$.

(Indeed, f(0) = 0 so $f(1) - f(0) = 0 \Rightarrow f(1) = 0$, so $f(2) - 2f(1) + f(0) = 0 \Rightarrow f(2) = 0$

Hence f = 0 since \mathbb{N} is dense in \mathbb{Z}_p .

Finally, by injectivity, $\tilde{f} = f$.

(iii) Let $f \in \mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p)$, we know $f(x) = \sum_{n=0}^{\infty} a_n(f) \binom{x}{n}$ Since $v_p(\delta^n f) \to \infty$, then $\exists N$ such that $v_p(f) = v_p(\sum_{n=0}^N a_n(f) \binom{x}{n})$.

But $v_p(\sum_{n=0}^N a_n(f)\binom{x}{n}) \ge \min(v_p(a_n(f)\binom{x}{n})) \ge \min(v_p(a_n(f)))$ since $\binom{x}{n}$ $(n \ge 0)$ belongs to $\mathcal{C}(\mathbb{Z}_p,\mathbb{Z}_p)$.

So,
$$v_p(f) \ge v_p((a_n(f))_{n \in \mathbb{N}}).$$

Reciprocally, if $p^k f \in B_0$, then $\sum_{n=0}^{\infty} p^k a_n(f) {x \choose n} \in B_0$ and we want to show that $v_p(p^k(a_n(f))_{n\in\mathbb{N}}) \ge 0.$

Let $j = min_{n \in \mathbb{N}} \{n | \mathbf{v}_p(p^k(a_n(f)) < 0\}$. Then, $\mathbf{v}_p(p^k f(j)) \ge 0$ by hypothesis, but on the other hand $\mathbf{v}_p(\sum_{n=0}^{\infty} p^k a_n(f)\binom{j}{n}) = \mathbf{v}_p(\sum_{n=0}^{j-1} p^k a_n(f)\binom{j}{n} + p^k a_j(f)) = \mathbf{v}_p(p^k a_j(f)) < 0$ which is absurd. So $\{n|v_p(p^k(a_n(f))<0\}$ is empty and $v_p((a_n(f))_{n\in\mathbb{N}})\geq v_p(f)$ which finishes the proof. \square

In conclusion, we understand $\mathcal{C}(\mathbb{Z}_p,\mathbb{Q}_p) \to \ell_1(\mathbb{N},\mathbb{Q}_p)$. Now, we would like to understand its dual.

Dual spaces, measures, and integration:

For all this section , let B be a Banach space.

DEFINITION 13. A **B-valued measure** on \mathbb{Z}_p is a continuous linear map from $\mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p)$ to B.

NOTATIONS:
$$1/D(\mathbb{Z}_p, \mathbb{Q}_p) = \text{space of } \mathbb{Q}_p\text{-valued measures on } \mathbb{Z}_p.$$

$$D(\mathbb{Z}_p, B) = \text{space of } B\text{-valued measures on } \mathbb{Z}_p.$$

$$2/\text{ If } \mu \in D(\mathbb{Z}_p, \mathbb{Q}_p), \text{ we write } \mu(f) = \int_{\mathbb{Z}_p} f(x) d\mu(x)$$

Concrete description of $D(\mathbb{Z}_p, \mathbb{Q}_p)$

THEOREM 14. The map
$$D(\mathbb{Z}_p, \mathbb{Q}_p) \to \ell_{\infty}(\mathbb{N}, \mathbb{Q}_p)$$

 $\mu \to \mu(\binom{x}{n})$

is an isomorphism of p-adic Banach spaces, which identifies:

$$D(\mathbb{Z}_p, \mathbb{Z}_p) := \{ \mu | \mu(f) \in \mathbb{Z}_p, \forall f \in \mathcal{C}(\mathbb{Z}_p, \mathbb{Z}_p) \} \text{ with } \ell_{\infty}(\mathbb{N}, \mathbb{Z}_p)$$

Sketch of the proof: If $\mu \in D(\mathbb{Z}_p, \mathbb{Q}_p)$, $\mu(\binom{x}{n}) \in \mathbb{Q}_p$ have to be bounded. (indeed $\binom{x}{n} \in \mathcal{C}(\mathbb{Z}_p, \mathbb{Z}_p)$, and $\mathcal{C}(\mathbb{Z}_p, \mathbb{Z}_p)$ is a compact so $\mu(\mathcal{C}(\mathbb{Z}_p, \mathbb{Z}_p))$ is compact).

Conversely, given a sequence $(b_n)_{n\in\mathbb{N}}$ which is bounded, we can define:

$$\mu_b(f) := \sum_{n \in \mathbb{N}} a_n(f) b_n \in \mathbb{Q}_p$$

. \square

DEFINITION 15. Given $\mu \in D(\mathbb{Z}_p, \mathbb{Q}_p)$, the **Amice transform** of μ is the power serie;

$$A_{\mu}(T) := \sum_{n=0}^{\infty} \mu \binom{x}{n} T^n$$

$$= \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} \binom{x}{n} d\mu(x) T^n$$

$$= \int_{\mathbb{Z}_p} \sum_{n=0}^{\infty} \binom{x}{n} d\mu(x) T^n$$

$$= \int_{\mathbb{Z}_p} (1+T)^x d\mu(x)$$

Remark 2. $\mu \to A_{\mu}(T)$ gives an isomorphism $D(\mathbb{Z}_p, \mathbb{Q}_p) \to \mathbb{Q}_p \otimes \mathbb{Z}_p[[T]]$

Let's give some examples (or counterexamples) of measures

EXAMPLE 16. Haar measure

We would like to have a measure invariant by translation (1) and with value 1 for the constant function 1 (2):

It should satisfy $\mu(x+a) = \mu(x)$ by (1), but $\mu(x+a) = \mu(x) + a$ by 2/. That's absurd, so there exits NO Haar measure on \mathbb{Z}_p .

Example 17. Dirac measure

Let $a \in \mathbb{Z}_p$. The dirac measure associated to a is defined by the evaluation at a:

$$\delta_a(f) := f(a)$$

$$A_{\delta_a}(T) = \sum_{n=0}^{\infty} \delta_a {n \choose n} T^n = \sum_{n=0}^{\infty} {n \choose n} T^n = (1+T)^a$$