Math 726: L-functions and modular forms Fall 2011
Lectures 32-33 : Values of zeta functions

Instructor: Henri Darmon Notes written by: Clement Gomez

Recall from last lectures
Vn e N,((—n) € Q

The proof is to consider the Mellin transform:

L(f,s) = Jo FOEF.

Then one can show that L(f, —n) = (—1)"f™(0).

On the other hand, by a direct computation, {(s) = Z=L(f,s) where f(t) = -
Since ﬁ has rational Taylor expansion, we conclude that ¥n € N, ((—n) € Q.
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PROBLEM 1. Understand the p—adic properties of {(—n):

IDEA: Express ((—n) as a p—adic Mellin transform of .

Rudiments of p—adic integration theory:

DEFINITION 1. A p-adic Banach space B is a Q,-vector space, such that there exists a
Zy,-submodule By with the following properties:
(1)By — lim. By /p" By is an isomorphism
(19)Vx € B,3In € Z such that p".x € By
We can define the valuation for any element of B, by v,(x) := min{n € Z|p".x € By}.
The norm is then defined by ||z|| := p~»®),

REMARK 1. The Banach space is complete relative to this norm and By = unit ball in B.

EXAMPLE 2. B = @p is NOT a Banach space.

Indeed, By = Oz — lim_By/p" By is NOT an isomorphism

Proof: Considering elements of the form > ° b;p* with deg(b;) — oo. Theses elements
are in lim. By/p™ By but one can show that some of thoses elements can NOT have finite
degree over @),.

Let’s give an example of this fact. Consider av:= "7, pﬁ.pk.
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By definition, « belongs to lim. By /p™By.
1
Suppose that o has degree N over Q,. Choose n such that 2 H)Q < 1then ) 2 g1 D2 Pk

belongs to Qp(p2 ,x) which is an extension of degree < on’ .N )

S0, V(Yo pyq P PR 2V N € Z.
But on the other hand:

oo L L
vi( Z p?? pF).2" N = vy (p2tn? P27 N
k=n+1

n2

=(n+1). 2" N + = is not an element of Z , a contradiction.]

2(n+1)

ExaMPLE 3. We can complete the first example to get a p—adic Banach space:
B=C,:= @p

BOZOCPZ(%

EXAMPLE 4. B =(C(Z,,Q,) = {continuous Q,-valued functions on Z,}

By = C(Zp’ Zp)

The property (i) for a Banach space, follows from the compactness of Z,. (f € C(Z,,Q))
has bounded valuation)

EXAMPLE 5. B =(C(Z,,C,)
By =C(Zy, Oc,)

EXAMPLE 6. Let I be an index set:
B =1((1,Q,) = {(X;)ier bounded ||X;|| < C,Vie I}
By =l(1,Z,)

EXAMPLE 7. Let I be an index set:
=0(1,Q,) := {(Xi)ier, (X;) is "summable” }
= {(Xy)|t{i € I|vp(X;) < C} < 00,VC > 0}.
By =10,(1,7Z,)
In particular, if (X;) belongs to ¢;(/,Q,), then )., X; € Q, makes sense.



DEFINITION 8. A Banach basis of B is a family of elements (e;);c; in Bo\pBy, such that
Vz € B there exists a unique (x;);er € ¢1({,Q,) such that:

Tr = E ZTi€;

icl
THEOREM 9. (e;)ier s a Banach basis for B if and only if (€;)icr is a Fy-basis for By/p™ By

Sketch of the proof:

(=)

Let T € By/p"By and choose z lifting . Then, v = ), ., x5¢;. So, T = ), T;.€; and
the sum is finite since (z;);e; belongs to ¢1(1, Z,)

(<)

Let ¢: ¢,(1,Q,) — B

(Ti)ier — D wiei

® 1s injective:

By multiplying (z;)ier by v,((2;)ier) and by reducting modulo p gives:

o(x) =0 & v,(z) = o0.

 is surjective:

Let z € B. Without a loss of generality, we can assume that © € By. By hypothesis,
T=>,7T1: & Take 2(¥ := > z,,e; (Recall that the sum is finite).

z— 20 € pB,.

By recurrence, = (@ + p.2® + . 4 p".2( 4 ... with 2 linear combination of e; with

coefficients in Z,,.
O

COROLLARY 1. FEwvery Banach space has a Banach basis

Proof:
Consider By/pBy. Let €;c; be a basis for By/pBy. Then, just take e; lift for ;.0
Sometimes, we can easily find an explicit expression of the basis:

ExampLE 10. B =(1(1,Q,).
A basis is given by (e;);er such that e; = 0; (6;(¢) =1, 6;(j) = 01if i # j).

But, sometimes, the explicit expression is not that clear.

EXAMPLE 11. B =((1,Q,)

By/pBy = functions(I,F,)

We know that there exists a basis. Its existence relies on the full strenght of the axiom
of choice but this basis is not countable.



LEMMA 1. The functions (%) := sle=b-le=ntl) poiong to By\pBy

n!

Proof: (i) f,(z) := (%) sends Z to Z. Since Z is dense in Z,, it maps Z, to Z, = f, € By.
(i1) fu(n) =1 = f, € BO\pBo.O

THEOREM 12. (Mahler)
The functions (fn)nen are a Banach basis of C(Z,,Q,)

Proof: Define the ”discrete derivative” (0f)(z) := f(x+ 1) — f(z) and the Mahler coeffi-

cients of f by a,(f) := (6"f)(0)
The proof follows from the lemma

LEMMA 2. If f belongs to C(Z,,Q,) then:
(1) (an(f))nz0 belongs to £1(1,Q,).
(i) f(x) = 325" an(f)(;) . Yz € Z,
(#0)vy(f) = vp((an(f)nen , Vf € C(Zy, Qyp)

Proof of the lemmas:

(i) Let’s assume without a loss of generality that f € C(Z,,Z,)\pC(Z,,Z,).

an(f) = (6"f)(0)

vp(an(f)) > v,p(0™f) by definition.

The sequence v, (6" f) is clearly increasing, since ¢ preserves C(Z,,Z,) so it is enough to
show that v, (0™ f) is unbounded as n — oo.

f is continuous on Z, which is compact, hence f is uniformly continuous.

Hence, for all M, 3p* satisfying: v,(f(z + p*) — f(x)) > M,Vx € Z,.

Let (sf)(z) == f(z+1),0 =s— 1.

(07 ) = (s = )" () = S0o(=1) (7)) s'.f

(6" (@) = f(@) = fla+p") + XI5 (=1 () S + )

which means:

vp(07" f) = min(M, 1+ v,(f))

So choosing M such that M > 1+ v,(f), we get vp(épkf) > 1+ v,(f).

Then taking 67" f instead of f proves by recurrence that the sequence v, (0™ f) is un-

bounded.
(i1) Let f:=>0° an(f)(%).

5((2)) _ (m:l) _ (x) _ (@+1)..(z—n+2) _ =z..(z—ntl) (zt1-(z—ntD)z..(z—n+2) _ ( x )

n = n—1

an(F) = (6"F)(0) = (6" 5 an(H)()(0) = an() |
The assignement f — (a,(f))nen is injective. This is because, if 6"(f)(0) = 0,¥Vn € N
then f(j) =0,Vj € N.



(Indeed, f(0) =0so f(1)—f(0)=0= f(1)=0,s0 f(2)—2f(1)+ f(0) =0= f(2) =

Hence f = 0 since N is dense in Z,.

Finally, by injectivity, f = f.

(iii) Let f € C(Z,,Q,), we know f(z) = S5 an(f)(%)

Since Vp(énf) — 00, then 3N such that v,(f) = VP(ZZLO an(f)(%)).

n

But VP(ZO an(f)(2)) = min(vy(a,(f)(2))) = min(vy(a,(f)) since (¥) (n > 0) belongs
to C(Zy, Zy).

So, vp(f) = vp((@n(f))nen)-
Reciprocally, if p*f € By, then > p*a,(f)(}) € By and we want to show that

Vp(pk(a'n(f))nEN) > 0.
Let j = minaen{n|v,(p*(a,(f)) < 0}. Then, v,(p*f(j)) > 0 by hypothesis, but on the

Mﬂmm%@umnKM—%ZHM%UU+pMM—%@Mm<Omm
is absurd. So {n|v,(p"(a,(f)) < 0} is empty and v, ((an(f))nen) > v,(f) which finishes the
proof. []

In conclusion, we understand C(Z,,Q,) — ¢1(N,Q,). Now, we would like to understand
its dual.

Dual spaces, measures, and integration:

For all this section ,let B be a Banach space.

DEFINITION 13. A B-valued measure on Z, is a continuous linear map from C(Z,, Q,) to
B.

NoraTioNs: 1/ D(Z,,Q,) = space of Q,-valued measures on Z,.
D(Z,, B) = space of B-valued measures on Z,.

2/ If pe D(Z,,Q,), we write u(f) = pr f(z)dp(z)

Concrete description of D(Z,,Q,)

THEOREM 14. The map D(Z,, Q,) — l-(N,Q,)
= u((}))

s an 1somorphism of p—adic Banach spaces, which identifies:

D(Z,,Z,) = {plu(f) € Zp,Vf € C(Z,, 7))} with Lo(N, Z,)



Sketch of the proof: If u € D(Z,,Q,), 1((%)) € Q, have to be bounded. (indeed () €
C(Z,,Z,), and C(Z,,Z,) is a compact so ((C(Z,, Z,) is compact).
Conversely, given a sequence (b, )neny which is bounded, we can define:

,Ub(f> = Zan(f)bn € @p

neN

. g

DEFINITION 15. Given p € D(Z,,Q,), the Amice transform of 1 is the power serie;

Au(T) = iu(i) "

n=0

_ g /Z (Z) dp(2)T"

_ / i(i)du(x)T"

ZP n=0

- [ @+ Ty duta)

REMARK 2. p — A,(T) gives an isomorphism D(Z,,Q,) — Q, ® Z,[[T]

Let’s give some examples (or counterexamples) of measures

ExXAMPLE 16. Haar measure

We would like to have a measure invariant by translation (1) and with value 1 for the
constant function 1 (2):

It should satisfy u(z + a) = u(x) by (1), but pu(z 4+ a) = p(z) + a by 2/. That’s absurd,
so there exits NO Haar measure on Z,.

ExaMPLE 17. Dirac measure
Let a € Z,. The dirac measure associated to a is defined by the evaluation at a:
0a(f) = fla)
A5 (T) = 32020 0a () T = 3205, ()T = (1 + 1)



