
Math 726: L-functions and modular forms Fall 2011

Lecture 30 : Serre-Deligne theorem and special values of L-functions.

Instructor: Henri Darmon Notes written by: Francesca Gala

Comments on the proof of Serre-Deligne Theorem.

In the last lecture we showed the existence, for every λ ∈ Σ = {λ / OKf
|OKf

/λ ∼= F`},

of a representation ρf associated to the eigenform f ∈ S1(Γ0(D), ε):

ρf : GQ −→ GL2(Kf,λ) ↪→ GL2(C),

which satisfies char(ρf (Frobp)) = x2 − apx + ε(p).

Ramification. By construction ρ is unramified outside of D · `, but in fact if we choose

another λ′ ∈ Σ above a prime `′ 6= `, then we obtain another representation ρ′
f :

ρ′
f : GQ −→ GL2(Kf,λ′) ↪→ GL2(C),

which is now unramified outside D · `′ and is such that ρ = ρ′, by semisimplicity and Cheb-

otarev density theorem. Hence ρ is unramified outside of the primes dividing D.

Irreducibility. We have the following proposition.

Proposition 1. Let f ∈ S1(D, ε) and ρf : GQ → GL2(C) the associated representation.

Then ρf is irreducible.

Proof. Consider L(f ⊗ f, s). Since f is a cusp form Rankin’s method shows that this L-

function has a simple pole at s = 1 and L(f ⊗ f, s) = L(ρf ⊗ ρf , s).

Suppose that ρf = χ1 ⊕ χ2. Since ρf is odd we can assume without loss of generality that

χ1(−1) = 1 and χ2(−1) = −1. We have the equality:

L(f ⊗ f, s) = ζ(s)2L(χ1χ2, s)L(χ2χ1, s)

up to finitely many Euler factors, which are non-zero at s = 1.

ζ(s)2 has a double pole at s = 1 and L(χ1χ2, 1)L(χ2χ1, 1) 6= 0, so we have a contradiction

since we had proved that ords=1 L(f ⊗ f, s) = −1

Summary of the proof of Serre-Deligne.

Step 1. Construction of f` = fE`−1 ∈ S`(D, ε) modular form of weight `, not necessarily
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an eigenform, but for which the reduction modulo ` is an eigenform, since E`−1 ≡ 1 mod `.

Step 2. By means of the Serre Deligne lifting theorem, we obtain an eigenform f̃` ∈

S`(D, ε).

Step 3. We use results of Eichler-Shimura theory to associate to f̃` a compatible system

of λ-adic representations

ρf,λ : GQ −→ GL2(K̃λ),

where in this case char(ρf,λ(Frobp)) = x2 − ap(f̃`)x + p`−1ε(p).

Step 4. We now reduce the ρf,λ to a system of semisimple representations modulo λ:

ρf,λ : GQ −→ GL2(OK̃λ
/λ).

Step 5. We prove, using the Rankin-Selberg method, that ρf,λ(GQ) are bounded inde-

pendently of `. Then we conclude that for λ large enough ρf,λ can be lifted to a complex

representation.

Remark 1. As a by-product of the proof of the Serre-Deligne theorem we obtained a ’very

nice’ analytic estimate on the coefficients of the eigenform f , that we did not have a priori.

We are now able to understand the following types of L-functions.

1. The Riemann zeta function ζ(s) and the Dirichlet L-function L(χ, s) attached to a

complex character χ : GQ → C×.

2. The L-function L(ρ, s) attached to certain (very special) two-dimensional Artin represen-

tations of GQ: those arising from cusp forms of weight 1.

3. The L-functions L(V, s) attached to certain (very special) 2-dimensional compatible sys-

tems of `-adic representations, namely those arising from modular forms of weight k ≥ 2.

The PROTOTYPICAL EXAMPLE of this case is the representation attached to a newform

form f ∈ S2(Γ0(N)) with rational Fourier coefficients. We have shown that in this case

ρf arises from lim
←−n

J0(N)[`n] and that we can associate to f an elliptic curve E such that

L(f, s) = L(E, s).

This examples are not so special!

In fact we have the following results:

- (Wiles et al, 1995) Every elliptic curve E/Q arises from a newform f ∈ S2(Γ0(N)) with

rational Fourier coefficients.

- (Taylor, Khare-Winterberg, Kisin, 1995-2006) If ρ : GQ → GL2(C) is an odd, irreducible

representation of GQ then there exists f ∈ S1(Γ0(D), ε) which satisfies L(ρ, s) = L(f, s).
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Special values of L-functions.

We would now like to investigate on the special values of L(V, s) at s = j.

Example 1 (Class Number Formula). Consider the Dedekind ζK(s) function. Recall

from the first lecture the following formulas:

ress=1(ζK(s)) =
2r1(2π)r2hKRk

1

2
|(O×

K)tors|
√

Disc(K)
,

where RK is the regulator of the field K and moreover

ζK(s) ∼
2r1(2π)r2hKRk

1

2
|(O×

K)tors|
.

Definition 2. Two compatible systems V1 and V2 are said to be congruent modulo n if the

characteristic polynomials of Frobenius which lie in Z[x] are congruent modulo n.

Question 3. If V1 ≡ V2 mod n, when can we conclude that L(V1, 0) = L(V2, 0) mod n?

Example 4. Let us consider the representations ρ1 := V1 = Z(j1) and ρ2 := V2 = Z(j2),

recall that these representations arise from compatible systems of representations which

satisfy ρ1(Frob`) = `j1 and ρ2(Frob`) = `j2. Then

L(ρ1, s) = ζ(s + j1)

and

L(ρ2, s) = ζ(s + j2).

Fix pm, then V1 ≡ V2 mod pm if and only if j1 ≡ j2 mod (p − 1)pm−1. Is it then true that

ζ(j1) ≡ ζ(j2)?

During the next lecture we are going to exploit another integral representation of the

zeta function, different from the one we used to determine analytic continuation, to find

information on the values of zeta at negative integers. We will then prove the following:

Theorem 5. If n ∈ Z≥0, then ζ(−n) ∈ Q and is non zero if and only if n is odd.

The proof of this theorem will follow by relating zeta to the Mellin transform of the

function of rapid decay

f(t) =
t

et − 1
= t(

e−t

1− e−t
) = t(e−t + e−2t + e−3t + · · · ). (1)

Let us be more precise.
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Definition 6. For any function f : R≥0 → C, which is smooth and of rapid decay, we

associate an L-function

L(f, s) :=
1

Γ(s)

∫ ∞

0

f(t)ts
dt

t
.

Lemma 1. If f(t) = t
et−1

then ζ(s) = 1

s−1
L(f, s− 1).

Proof. The result follows from a direct computation using equality (1).
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