Math 726: L-functions and modular forms

Lecture 29 : End of proof of the Serre-Deligne theorem

Instructor: Henri Darmon

Notes written by: Francesca Gala

The goal of this lecture is to conclude the proof of the **Serre-Deligne theorem**, which accompanied us along the last few lectures.

Recall that last week we associated to our eigenform $f \in S_1(D, \epsilon)$ a family of representations:

$$\overline{\rho_{f,\lambda}}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_2(\mathbb{F}_{\lambda}),$$

where $\lambda \in \Sigma = \{\lambda \triangleleft \mathcal{O}_{K_f} | \mathcal{O}_{K_f} / \lambda \cong \mathbb{F}_\ell \}$. We let

$$G := G_{\ell} = \overline{\rho_{f,\lambda}}(G_{\mathbb{Q}}).$$

We would like to bound the cardinality of G_{ℓ} independently of ℓ .

Recall that G is a subgroup of $\operatorname{GL}_2(\mathbb{F}_\ell)$, it is semisimple by construction and it is X-sparse for a suitable integer X > 0, i.e. there exists a subgroup $H \leq G$ such that $|H| \geq \frac{3}{4} |G|$ and the elements in H have at most X distinct characteristic polynomials.

THEOREM 1. If G is a semisimple, X-sparse subgroup of $\operatorname{GL}_2(\mathbb{F}_l)$, then $\exists A \text{ independent of } \ell \text{ such that } |G| \leq A$.

Proof. To prove this theorem we will use the following proposition:

PROPOSITION 1. If G is a semisimple subgroup of $GL_2(\mathbb{F}_\ell)$ then only the following four cases can arise:

G ⊃ SL₂(𝔽_ℓ)
G is contained in a Cartan subgroup T, either split or non-split, which means that T ≃ 𝔽_ℓ[×] × 𝔽_ℓ[×] or T ≃ 𝔽_{ℓ²}.
G ⊂ N_{GL₂(𝔽_ℓ)}(T), where N_{GL₂(𝔽_ℓ)}(T) is the normaliser of a Cartan subgroup T Note that [N(T) : T] = 2 and there exists a split exact sequence:
T → N(T) → ±1 → 1.
G is an 'exceptional subgroup', namely its image in PGL₂(𝔽_ℓ) is A₄, S₄ or S₅

Proof. Reference: J. P. Serre, Proprietes galoisiennes des points d'ordre fini des courbes elliptiques, chapter 2. $\hfill \Box$

REMARK 1. The semisimplicity assumption is crucial, for example if we consider

$$G = \left\{ \left(\begin{array}{cc} 1 & a \\ 0 & 1 \end{array} \right) | a \in \mathbb{F}_{\ell} \right\},\,$$

then G is 1-sparse but $|G| = \ell$, so clearly we are not able to bound the cardinality of G independently of ℓ .

Now we can prove Theorem 1 by analysing separately the four cases of the proposition. Our strategy will be to bound the order of H by bounding the number of elements in $\operatorname{GL}_2(\mathbb{F}_{\ell})$ which have the same characteristic polynomial, i.e. by bounding the number of elements in a given conjugacy class.

1. We know that $|GL_2(\mathbb{F}_\ell)| = (\ell^2 - 1)(\ell^2 - l) = \ell(\ell + 1)(\ell - 1)^2$. Let $\sigma \in \operatorname{GL}_2(\mathbb{F}_\ell)$, then the cardinality of the set $C(\sigma) := \{\tau \sigma \tau^{-1}, \tau \in \operatorname{GL}_2(\mathbb{F}_\ell)\}$ is given by

$$|C(\sigma)| = \frac{|\operatorname{GL}_2(\mathbb{F}_\ell)|}{|Z(\sigma)|},$$

where $Z(\sigma) = \{\tau | \tau \sigma = \sigma \tau\}$ is the centraliser of σ in $\operatorname{GL}_2(\mathbb{F}_\ell)$.

Let us suppose that $\operatorname{char}(\sigma) = (x-a)^2$. This means that $\sigma \in C(\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}) \cup C(\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix})$. Since

$$Z(\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}) = \left\{ \begin{pmatrix} u & v \\ 0 & u \end{pmatrix} | u \in \mathbb{F}_{\ell}^{\times}, v \in \mathbb{F}_{\ell} \right\} = (\ell - 1)\ell$$

we have that $\left|C\begin{pmatrix}a & 1\\ 0 & a\end{pmatrix}\right| = \ell^2 - 1$, while clearly $\left|C\begin{pmatrix}a & 0\\ 0 & a\end{pmatrix}\right| = 1$. So we have that: $|\{\sigma|\operatorname{char}(\sigma) = (x-a)^2\}| = \ell^2.$ Now clearly:

$$\left|\{\sigma|\operatorname{char}(\sigma) = (x-a)(x-b), a, b \in \mathbb{F}_{\ell}^{\times}a \neq b\}\right| = \left|C\left(\begin{pmatrix}a & 0\\ 0 & b\end{pmatrix}\right)\right| = \ell^2 + \ell$$

since $\left| Z\left(\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \right) \right| = (\ell - 1)^2.$

The last case to consider is the one of $\sigma \in \operatorname{GL}_2(\mathbb{F}_\ell)$ with $\operatorname{char}(\sigma)$ equal to a polynomial $p(x) = x^2 + ax + b$, which is irredubile over \mathbb{F}_{ℓ} . In this case $|Z(\sigma)| = \ell^2 - 1$, so that:

$$|C(\sigma)| = (\ell - 1)\ell.$$

Therefore we can deduce the following bound:

$$\frac{3}{4}|\mathrm{SL}_2(\mathbb{F}_\ell)| = \frac{3}{4}\ell(\ell+1)(\ell-1) \le |H| \le X(\ell^2+\ell),$$

which is a bound on H, independent of ℓ since for the inequalities to hold we must have $\ell - 1 \le X \frac{4}{3}$.

2. In T there are at most two elements with a given characteristic polynomial, in fact since $\operatorname{char}(\sigma) = x^2 - \operatorname{tr}(\sigma) + \operatorname{det}(\sigma)$, then we have $\{\sigma \in T | \operatorname{char}(\sigma) = x^2 - ax + b\} = \{\sigma, \overline{\sigma}\}$. Hence in this case we have $|H| \leq 2X$ which implies:

$$|G| \le \frac{8}{3}X.$$

3. Let $G_0 = G \cap T$ so that, since [N(T):T] = 2, $|G_0| = \frac{1}{2}|G|$ and let $H_0 = H \cap T$ so that $|H_0| \geq \frac{1}{2} |G_0|$. Now from case 2. we can deduce that $|H_0| \leq 2X$, so that $|G_0| \leq 4X$ which implies $|G| \leq 8X$.

4. Consider the map:

$$\eta: G \to \operatorname{PGL}_2(\mathbb{F}_\ell) \times \mathbb{F}_\ell^\times \\ \sigma \mapsto (\overline{\sigma}, \operatorname{det}(\sigma))$$

Since we know that the image of G in $PGL_2(\mathbb{F}_\ell)$ is A_4, S_4 or A_5 and X is the number of different characteristic polynomials in H we have that: $|\eta(H)| \leq |A_5| X = 60X$ and also $\ker(\eta) = \left\{ \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix} \right\} \simeq \mathbb{Z}/2\mathbb{Z}.$ This implies that $|H| \leq 120X$ and $|G| \leq 160X$.

This concludes case 4. and the proof of the theorem.

We are now able to deduce a significant bound on the size of the Fourier coefficients of the eigenform $f \in S_1(\Gamma_0(D), \epsilon)$.

THEOREM 2. For all primes p, the coefficient $a_p(f)$ is a sum of roots of unity. In particular $|a_p(f)| \le 2.$

Proof. Let

$$\mathbb{P}_{\overline{K_f}} = \{g(x) = (x - \alpha)(x - \beta) \in \mathcal{O}_{\overline{K_f}}[x] | \alpha \text{ and } \beta \text{ are roots of unity of order } \le A\}$$

and, for every $\lambda \in \Sigma$,

$$\mathbb{P}_{\lambda} = \{g(x) = (x - \alpha)(x - \beta) \in \mathcal{O}_{K_f}/\lambda[x] | \alpha, \beta \in \overline{\mathcal{O}_{K_f/\lambda}} \text{ and } \operatorname{ord}(\alpha), \operatorname{ord}(\beta) \le A\}.$$

We have that $\mathbb{P}_{\overline{K_f}}$ and \mathbb{P}_{λ} are finite and there exists a reduction map mod λ :

$$\operatorname{red}_{\lambda} : \mathbb{P}_{\overline{K_f}} \to \mathbb{P}_{\lambda},$$

which is bijective if $\ell > A$.

If we let $\sigma = \operatorname{Frob}_p$, then the characteristic polynomial $\operatorname{char}(\overline{\rho_{f,\lambda}}) = x^2 - a_p x + \epsilon(p) \in$

 $\mathcal{O}_{K_f}/\lambda[x]$ belongs the set \mathbb{P}_{λ} . Since $\mathbb{P}_{\overline{K_f}}$ is finite, there exists a polynomial $g \in \mathbb{P}_{\overline{K_f}}$ such that $\operatorname{red}_{\lambda}(g) \cong x^2 - a_p x + \epsilon(p) \mod \lambda$, for infinitely many λ , which implies that $g = x^2 - a_p x + \epsilon(p)$. So we can conclude that

$$x^2 - a_p x + \epsilon(p) \in \mathbb{P}_{\overline{K_f}},$$

and the roots of $x^2 - a_p x + \epsilon(p)$ are roots of unity of order $\leq A$.

End of the proof of Serre-Deligne's theorem.

The embedding of G_{ℓ} in $\operatorname{GL}_2(\mathbb{F}_{\ell})$ gives a two-dimensional representation ρ_{ℓ} of G_{ℓ} over the field \mathbb{F}_{ℓ} . Because G_{ℓ} is of cardinality prime to ℓ , there is a complex two-dimensional representation ρ of G_{ℓ} satisfying

$$\operatorname{tr}(\rho(\sigma)) = \operatorname{tr}(\rho_{\ell}(\sigma)) \mod \lambda$$

for a suitable prime λ above ℓ in the field generated by the traces of ρ . This representation is the desired lift.