
Math 726: L-functions and modular forms Fall 2011

Lecture 29 : End of proof of the Serre-Deligne theorem

Instructor: Henri Darmon Notes written by: Francesca Gala

The goal of this lecture is to conclude the proof of the Serre-Deligne theorem, which

accompanied us along the last few lectures.

Recall that last week we associated to our eigenform f ∈ S1(D, ε) a family of representations:

ρf,λ : GQ −→ GL2(Fλ),

where λ ∈ Σ = {λ / OKf
|OKf

/λ ∼= F`}. We let

G := G` = ρf,λ(GQ).

We would like to bound the cardinality of G` independently of `.

Recall that G is a subgroup of GL2(F`), it is semisimple by construction and it is X-sparse

for a suitable integer X > 0, i.e. there exists a subgroup H ≤ G such that |H| ≥ 3
4
|G| and

the elements in H have at most X distinct characteristic polynomials.

Theorem 1. If G is a semisimple, X-sparse subgroup of GL2(Fl), then ∃A independent of

` such that |G| ≤ A.

Proof. To prove this theorem we will use the following proposition:

Proposition 1. If G is a semisimple subgroup of GL2(F`) then only the following four cases

can arise:

1. G ⊃ SL2(F`)

2. G is contained in a Cartan subgroup T , either split or non-split, which means that T '

F
×

` × F
×

` or T ' F
×

`2.

3. G ⊂ NGL2(F`)(T ), where NGL2(F`)(T ) is the normaliser of a Cartan subgroup T

Note that [N(T ) : T ] = 2 and there exists a split exact sequence:

1 → T → N(T ) → ±1 → 1.

4. G is an ’exceptional subgroup’, namely its image in PGL2(F`) is A4, S4 or S5

Proof. Reference: J. P. Serre, Proprietes galoisiennes des points d’ordre fini des courbes

elliptiques, chapter 2.
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Remark 1. The semisimplicity assumption is crucial, for example if we consider

G =

{(

1 a

0 1

)

|a ∈ F`

}

,

then G is 1-sparse but |G| = `, so clearly we are not able to bound the cardinality of G

independently of `.

Now we can prove Theorem 1 by analysing separately the four cases of the proposition.

Our strategy will be to bound the order of H by bounding the number of elements in GL2(F`)

which have the same characteristic polynomial, i.e. by bounding the number of elements in

a given conjugacy class.

1. We know that |GL2(F`)| = (`2 − 1)(`2 − l) = `(` + 1)(` − 1)2.

Let σ ∈ GL2(F`), then the cardinality of the set C(σ) := {τστ−1, τ ∈ GL2(F`)} is given by

|C(σ)| =
|GL2(F`)|

|Z(σ)|
,

where Z(σ) = {τ |τσ = στ} is the centraliser of σ in GL2(F`).

Let us suppose that char(σ) = (x− a)2. This means that σ ∈ C(

(

a 1

0 a

)

)∪C(

(

a 0

0 a

)

).

Since
∣

∣

∣

∣

Z(

(

a 1

0 a

)

) =

{(

u v

0 u

)

|u ∈ F
×

` , v ∈ F`

}
∣

∣

∣

∣

= (` − 1)`

we have that

∣

∣

∣

∣

C(

(

a 1

0 a

)

)

∣

∣

∣

∣

= `2 − 1 ,while clearly

∣

∣

∣

∣

C(

(

a 0

0 a

)

)

∣

∣

∣

∣

= 1. So we have that:

|{σ| char(σ) = (x − a)2}| = `2.

Now clearly:

∣

∣{σ| char(σ) = (x − a)(x − b), a, b ∈ F
×

` a 6= b}
∣

∣ =

∣

∣

∣

∣

C(

(

a 0

0 b

)

)

∣

∣

∣

∣

= `2 + `

since

∣

∣

∣

∣

Z(

(

a 0

0 b

)

)

∣

∣

∣

∣

= (` − 1)2.

The last case to consider is the one of σ ∈ GL2(F`) with char(σ) equal to a polynomial

p(x) = x2 + ax + b, which is irredubile over F`. In this case |Z(σ)| = `2 − 1, so that:

|C(σ)| = (` − 1)`.

Therefore we can deduce the following bound:

3

4
|SL2(F`)| =

3

4
`(` + 1)(` − 1) ≤ |H| ≤ X(`2 + `),
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which is a bound on H, independent of ` since for the inequalities to hold we must have

` − 1 ≤ X 4
3
.

2. In T there are at most two elements with a given characteristic polynomial, in fact since

char(σ) = x2 − tr(σ)+det(σ), then we have {σ ∈ T | char(σ) = x2 − ax+ b} = {σ, σ}. Hence

in this case we have |H| ≤ 2X which implies:

|G| ≤
8

3
X.

3. Let G0 = G ∩ T so that, since [N(T ) : T ] = 2, |G0| = 1
2
|G| and let H0 = H ∩ T so that

|H0| ≥
1
2
|G0|. Now from case 2. we can deduce that |H0| ≤ 2X, so that |G0| ≤ 4X which

implies |G| ≤ 8X.

4. Consider the map:
η : G → PGL2(F`) × F

×

`

σ 7→ (σ, det(σ))

Since we know that the image of G in PGL2(F`) is A4, S4 or A5 and X is the number of

different characteristic polynomials in H we have that: |η(H)| ≤ |A5|X = 60X and also

ker(η) =

{(

±1 0

0 ±1

)}

' Z/2Z.

This implies that |H| ≤ 120X and |G| ≤ 160X.

This concludes case 4. and the proof of the theorem.

We are now able to deduce a significant bound on the size of the Fourier coefficients of

the eigenform f ∈ S1(Γ0(D), ε).

Theorem 2. For all primes p, the coefficient ap(f) is a sum of roots of unity. In particular

|ap(f)| ≤ 2.

Proof. Let

PKf
= {g(x) = (x − α)(x − β) ∈ OKf

[x]|α and β are roots of unity of order ≤ A}

and, for every λ ∈ Σ,

Pλ = {g(x) = (x − α)(x − β) ∈ OKf
/λ[x]|α, β ∈ OKf /λ and ord(α), ord(β) ≤ A}.

We have that PKf
and Pλ are finite and there exists a reduction map mod λ:

redλ : PKf
→ Pλ,

which is bijective if ` > A.

If we let σ = Frobp, then the characteristic polynomial char(ρf,λ) = x2 − apx + ε(p) ∈
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OKf
/λ[x] belongs the set Pλ. Since PKf

is finite, there exists a polynomial g ∈ PKf
such that

redλ(g) ∼= x2−apx+ε(p) mod λ, for infinitely many λ, which implies that g = x2−apx+ε(p).

So we can conclude that

x2 − apx + ε(p) ∈ PKf
,

and the roots of x2 − apx + ε(p) are roots of unity of order ≤ A.

End of the proof of Serre-Deligne’s theorem.

The embedding of G` in GL2(F`) gives a two-dimensional representation ρ` of G` over the field

F`. Because G` is of cardinality prime to `, there is a complex two-dimensional representation

ρ of G` satisfying

tr(ρ(σ)) = tr(ρ`(σ)) mod λ

for a suitable prime λ above ` in the field generated by the traces of ρ. This representation

is the desired lift.
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