Math 726: L-functions and modular forms Fall 2011
Lecture 29 : End of proof of the Serre-Deligne theorem

Instructor: Henri Darmon Notes written by: Francesca Gala

The goal of this lecture is to conclude the proof of the Serre-Deligne theorem, which
accompanied us along the last few lectures.
Recall that last week we associated to our eigenform f € S;(D, €) a family of representations:

P s Gg — GLa(F)),
where A € ¥ = {A<1O,|Ok, /A = F;}. We let
G =Gy = pra(Go)-

We would like to bound the cardinality of G, independently of ¢.

Recall that G is a subgroup of GLy(FFy), it is semisimple by construction and it is X-sparse
for a suitable integer X > 0, i.e. there exists a subgroup H < G such that |H| > 2 |G| and
the elements in H have at most X distinct characteristic polynomials.

THEOREM 1. If G is a semisimple, X -sparse subgroup of GLo(IF,), then JA independent of
¢ such that |G| < A.

Proof. To prove this theorem we will use the following proposition:

PROPOSITION 1. If G is a semisimple subgroup of GLo(IF,) then only the following four cases
can arise:

1. G D SLy(Fy)

2. G is contained in a Cartan subgroup T, either split or non-split, which means that T ~
Ff xF) orT ~TFp.

8. G C Naryw)(T), where Naryw,)(T) is the normaliser of a Cartan subgroup T

Note that [N(T') : T| = 2 and there exists a split exact sequence:

1-T—NT)— +1—1.

4. G is an ’exceptional subgroup’, namely its image in PGLo(Fy) is Ay, Sy or Ss

Proof. Reference: J. P. Serre, Proprietes galoisiennes des points d’ordre fini des courbes
elliptiques, chapter 2. O



REMARK 1. The semisimplicity assumption is crucial, for example if we consider

o={(s §)rerd,

then G is l-sparse but |G| = ¢, so clearly we are not able to bound the cardinality of G
independently of ¢.

Now we can prove Theorem 1 by analysing separately the four cases of the proposition.
Our strategy will be to bound the order of H by bounding the number of elements in GLy(IF,)
which have the same characteristic polynomial, i.e. by bounding the number of elements in
a given conjugacy class.

1. We know that |GLy(Fy)| = (€2 —1)(¢> = 1) =L+ 1)(¢ — 1)2.
Let 0 € GLy(Fy), then the cardinality of the set C'(0) := {ro77,7 € GLy(F,)} is given by

_|GLy(Fy)|
|C(o)| = 2]

where Z (o) = {7|70 = o7} is the centraliser of o in GLy(F,).
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Let us suppose that char(c) = (z — a)?. This means that o € C(( g )) U C’(( a ! ))
a

0 a
‘Z((COL i)):{(ﬁ Z)\uewg,vem}‘:(g—ne

a 0
0 a

Since

we have that ‘C(( g L )) = (? — 1 ,while clearly 'C’(( ))‘ = 1. So we have that:
a

{o] char(o) = (v — a)*}|
Now clearly:

|{o] char(0) = (¢ — a)(& — b), a,b € Fya # b}| = '0(( ’ 2 ))‘ _ Py

a 0
Z
(5 3)
The last case to consider is the one of o € GLy(FFy) with char(o) equal to a polynomial
p(z) = 2% + ax + b, which is irredubile over F,. In this case |Z(0)| = ¢? — 1, so that:

since

— (0 1)

|C(o)] = (£ —1)L.
Therefore we can deduce the following bound:
3 3
1 ISLy(Fy)| = ZE(E + 1)t —1) < |H| < X(*+ 1),
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which is a bound on H, independent of ¢ since for the inequalities to hold we must have
(—1<X3.

2. In T there are at most two elements with a given characteristic polynomial, in fact since
char(o) = 22 — tr(o) + det(o), then we have {0 € T|char(c) = 2> —azx + b} = {0,7}. Hence
in this case we have |H| < 2X which implies:

8
G| < =X.
Gl <

3. Let Go = GNT so that, since [N(T) : T] = 2, |Go| = 5 |G| and let Hy = HNT so that
|Ho| > 3|Go|- Now from case 2. we can deduce that [Ho| < 2X, so that |G| < 4X which
implies |G| < 8X.
4. Consider the map:
n: G — PGLy(F,) xF/
o (7,det(0))

Since we know that the image of G in PGLy(F,) is A4, Sy or As and X is the number of
different characteristic polynomials in H we have that: |[n(H)| < |A5| X = 60X and also

ker(n) — {( j;l £1 )} ~ 7,)2Z.

This implies that [H| < 120X and |G| < 160X.
This concludes case 4. and the proof of the theorem. O

We are now able to deduce a significant bound on the size of the Fourier coefficients of
the eigenform f € S1(Iy(D),€).

THEOREM 2. For all primes p, the coefficient a,(f) is a sum of roots of unity. In particular
|ap(f)] < 2.

Proof. Let
Pr; ={9(2) = (z — a)(z — 3) € Og;[z]|o and 3 are roots of unity of order < A}
and, for every \ € ¥
Py ={g9(x)=(x —a)(z—pB) € (’)Kf/)\[x]\mﬁ € m and ord(«),ord(g8) < A}.
We have that IP’K—f and P, are finite and there exists a reduction map mod A:
redy : IP)K—f — Py,

which is bijective if £ > A.
If we let ¢ = Frob,, then the characteristic polynomial char(p;x) = 2% — a,x + €(p) €
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Ok, /x| belongs the set Py. Since Pg, is finite, there exists a polynomial g € P, such that
redy(g) = 2% —a,z+€(p) mod A, for infinitely many A, which implies that g = 2% —a,z+€(p).
So we can conclude that

2% — a,r + €(p) € P,

and the roots of 22 — a,x + €(p) are roots of unity of order < A. O

End of the proof of Serre-Deligne’s theorem.
The embedding of Gy in GLy(IF,) gives a two-dimensional representation p, of G over the field
F,. Because (G, is of cardinality prime to ¢, there is a complex two-dimensional representation
p of G, satistying
tr(p(e)) = tr(pe(e)) mod A

for a suitable prime A above ¢ in the field generated by the traces of p. This representation
is the desired lift.



