Lecture 28: Artin Representations Attached to Forms of Weight One

Instructor: Henri Darmon

Notes written by: Victoria de Quehen

We are trying to associate to f a homomorphism $\rho_f : G_{\mathbb{Q}} \to \mathrm{GL}_2(\mathbb{C})$. The steps we have taken are:

- 1. Given $\lambda \triangleleft \mathcal{O}_{K_p}$ we get $F_{\lambda} = f E_{\ell-1} \in S_{\ell}(D, \epsilon)$, an eigenform mod λ .
- 2. Prove the Delign-Serre lifting lemma: that there exists $\tilde{F}_{\lambda'} \in S_{\ell}(D, \epsilon)$ which is an eigenform with coefficients in K'_{λ}/K_f with $a_p(\tilde{F}_{\lambda'}) \cong a_p(f) \pmod{\lambda'}$ for all $p \nmid D$.
- 3. Now consider the mod λ' reduction of the λ' -adic representation attached to $\tilde{F}_{\lambda'}$:

$$\rho_{f,\lambda'}: G_{\mathbb{Q}} \to \mathrm{GL}_2(\mathcal{O}_{K'}/\lambda').$$

The characteristic polynomial of Frobenius mod λ' is:

$$\operatorname{char}(\rho_{f,\lambda'}(\operatorname{Frob}_p)) = x^2 - a_p(f)x + \epsilon(p)$$

Let $\bar{\rho}_{f,\lambda}$ denote the semisimplification of ρ_{λ} . We will apply the following lemma to $\bar{\rho}_{f,\lambda}$.

LEMMA 1. If $\rho : G_{\mathbb{Q}} \to \operatorname{GL}_2(L)$ is a semisimple odd representation and the characteristic polynomial of every element is in K[x], then ρ has a conjugate whose image is in $\operatorname{GL}_2(K)$.

At this stage we have

$$\overline{\rho_{f,\lambda}}: G_{\mathbb{Q}} \to \mathrm{GL}_2(\mathcal{O}_{K_f}/\lambda)$$

with the desired property.

Let $\Sigma = \{\lambda \triangleleft \mathcal{O}_{K_f} : \lambda | \ell \text{ and } \ell \text{ splits completely in } K_f/\mathbb{Q}\}$. By Chebotarev's density theorem Σ is infinite. For each $\lambda \in \Sigma$ let ℓ be the rational prime lying below it. Furthermore let

$$G_{\lambda} := \overline{\rho_{f,\lambda}}(G_{\mathbb{Q}}) \subseteq \mathrm{GL}_2(\mathbb{F}_{\ell}).$$

We wish to bound $|G_{\lambda}|$ independently of ℓ .

DEFINITION 1. Fix an integer X > 0. A subgroup $G \subset GL_2(\mathbb{F}_{\ell})$ is <u>X-sparse</u> if there is a subset $H \subset G$ such that

1. $|H| \ge \frac{3}{4} |G|$, and

2. the elements of H have at most X distinct characteristic polynomials.

LEMMA 2. There exists an X > 0 such that all the groups G_{λ} ($\lambda \in \Sigma$) are X-sparse.

Proof. Recall from last week that for all $\eta > 0$ there exists finite set $X_{\eta} \subset \mathbb{C}$ such that $a_p \in X_{\eta}$ for all p outside a set Y_{η} of density η . Take $\eta < \frac{1}{4}$ and set $X = |X_{\eta}| \operatorname{ord}(\varepsilon)$. We claim that G_{λ} is X-sparse. Let

$$H = \bigcup_{p \in Y_{\eta}} \rho_f(\operatorname{Frob}_p).$$

- 1. The density of $Y_{\eta} > \frac{3}{4}$ implies $|H| \ge \frac{3}{4} |G|$ (by Chebotarev density theorem).
- 2. The number of distinct characteristic polynomials of elements of H is less that $|X_{\eta}| \operatorname{ord}(\varepsilon)$.

DEFINITION 2. A subgroup G of $\operatorname{GL}_2(\mathbb{F}_\ell)$ is semisimple if the underlying 2 dimensional representation of G is semisimple, (that is, either irreducible or a direct sum of 1 dimensional representations).

EXAMPLE 3. The groups $\operatorname{GL}_2(\mathbb{F}_\ell)$ and $\operatorname{SL}_2(\mathbb{F}_\ell)$ are irreducible, hence semisimple.

EXAMPLE 4. If $G = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} | a, b \in \mathbb{F}_{\ell}^{\times} \right\}$ (the "split Cartan subgroup"), then G is semisimple and reducible.

EXAMPLE 5. Let $\mathbb{F}_{\ell^2}^{\times}$ act by left multiplication on \mathbb{F}_{ℓ^2} viewed as a \mathbb{F}_l vector space with any choice of basis. Let G be the image of $\mathbb{F}_{\ell^2}^{\times}$ in $\operatorname{Aut}_{\mathbb{F}_\ell}(\mathbb{F}_{\ell^2}) \cong \operatorname{GL}_2(\mathbb{F}_\ell)$ (a "non-split Cartan subgroup"). Then G is semisimple.

EXAMPLE 6. If G is the normalizer of a Cartan subgroup, then it is semisimple. (Note that the Cartan subgroup then has index 2 in G).

EXAMPLE 7. The group $G = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right\}$ is reducible but not totally reducible, hence G is not semisimple.

REMARK 1. Note that all the G_{λ} are semisimple by construction.

THEOREM 8. Fix X, there exists a constant A (depending on X but not ℓ) such that |G| < A for all semisimple X-sparse subgroups of $GL_2(\mathbb{F}_{\ell})$.

The proof relies on the following group theory fact.

Group Theory Fact: If $G \subset GL_2(\mathbb{F}_{\ell})$ is semisimple, then one of the following cases is true:

- 1. $G \supseteq \operatorname{SL}_2(\mathbb{F}_\ell),$
- 2. $G \subseteq T$ for some Cartan subgroup T,
- 3. $G\subseteq N(T)$ the normalizer of a Cartan subgroup but $G\nsubseteq T,$ or
- 4. the image of G in $PGL_2(\mathbb{F}_{\ell})$ is isomorphic to one of A_4, S_4, A_5 .