
Math 726: L-functions and modular forms Fall 2011

Lecture 23 : Applications of Rankin-Selberg

Instructor: Henri Darmon Notes written by: Jason K.C. Polak

We shall describe the following two applications of Rankin-Selberg:

I For a suitable `, the set {TnEk−`E` : n ∈ N} spans Mk(SL2(Z)), and

II If f =
∑

anqn is a newform of weight k, level N , and character χ then
∑

|ap|
2p−s

converges for <(s) > k, and

∑

|ap|
2p−s ≤ log

(

1

s − k

)

+ O(1).

Before proving II we will first look at the simpler case of
∑

p p−s.

Theorem 1.
∑

p p−s = log
(

1
s−k

)

+ O(1).

Proof. Recall

ζ(s) =
∏

p

(1 − p−s)−1, <(s) > 1

and ζ(s) has a simple pole at s = 1. Taking logarithms and using the Taylor expansion for

the logarithm gives

log ζ(s) =
∑

p

− log(1 − p−s) =
∑

p

∞
∑

n=1

p−ms

m

=

∞
∑

i=1

gm(s)

where gm(s) =
∑

p
p−ms

m
and the last equality is due to switching the order of summation.

Since ζ(s) has a simple pole at s = 1 with a nonzero residue

lim
s→1+

(s − 1)ζ(s) 6= 0,

taking logarithms gives

lim
s→1+

[log(s − 1) + log ζ(s)] = O(1).
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Rearranging gives

lim
s→1+

log ζ(s) = log

(

1

s − 1

)

+ O(1)

so as s → 1+,

g1(s) +

∞
∑

m=2

gm(s) = log

(

1

s − 1

)

+ O(1).

We claim that the summation
∑∞

m=2 gm(s) converges for s = 1. Indeed,

∞
∑

m=2

gm(s) =
∑

p

∞
∑

m=2

p−ms

m

=
∑

p

∞
∑

m′=2

(

p−2m′s

2m
+

p−2(m′+1)s

2m′ + 1

)

≤
∑

p

∞
∑

m′=1

p−2m′s

m′

= log ζ(2s)

where the inequality comes from the inequality

p−2m′s

2m
+

p−2(m′+1)s

2m′ + 1
≤ 2p−2m′s2m′.

Now we prove the more general theorem. We restate it for convenience.

Theorem 2. If f =
∑

anqn is a newform of weight k, level N , and character χ then
∑

p-N |ap|
2p−s converges for <(s) > k, and

∑

p-N

|ap|
2p−s ≤ log

(

1

s − k

)

+ O(1).

Note that in this Lecture, we show the convergence, and in Lecture 24 we will show the

estimate.

Proof. We have already seen that

|an| ≤ cnk/2
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for some real c > 0. Thus

∞
∑

m=1

|an|n
−s

converges for <(s) > k/2 + 1. Let

LN(f ⊗ f, s) =
∏

p-N

Lp(f ⊗ f, s)

where

Lp(f ⊗ f, s) =

2
∏

i,j=1

(1 − αp,iαp,jp
−s)−1.

Here the αi,j are the roots of x2 = apx + χ(p)pk−1 and f =
∑

anqn ∈ Sk(N, χ). Define

DN(f, f , s) =
∑

(n,N)=1

|an|
2

ns
.

Then LN(f ⊗ f, s) = DN (f, f, s)ζN(2s − 2 − 2k) where

ζN(s) =
∏

p-N

(1 − p−s)−1 =
∏

p

(

∞
∑

n=0

|apr |2

prs

)

is the partial ζ function. Now let

D(f, f, s) =
∑

n∈N

|an|
2

ns
.

Recall that for normalized Hecke eigenforms f, g ∈ Sk(SL2(Z)),

L(f ⊗ g, s) = D(f, g, s)ζ(2s− 2 − 2k)

extends to a meromorphic function and has a unique simple pole at s = k if and only if

〈f, g〉 6= 0. In particular, this means that D(f, f, s)ζ(2s+2− 2k) extends to a meromorphic

function with a unique simple pole at s = k because 〈f, f〉 6= 0.

Note that

H(k) =
∏

p|N

(1 − p−2)
∏

p|N

(1 − |ap|
2p−k) 6= 0

by our bound |ap| < k/2. Since LN(f ⊗ f, s) has a simple pole, D(f, f, s) extends to a

meromorphic function holomorphic for <(s) > k + 1, and hence via the Lemma below, a

holomorphic function for <(s) > k by looking at the product LN(f ⊗ f), s).
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Lemma 1. Let Φ be a meromorphic function satisfying Φ(s) =
∑∞

n=1
an

ns for <(s) > σ ∈ R

for some fixed σ, cn ≥ 0. If Φ is holomorphic at s = σ then there exists a δ > 0 such that

Φ(s) =
∑∞

n=1
an

ns for <(s) > σ − δ.

Although we will not prove this lemma, we shall use this lemma to prove that

D(f, f , s) =

∞
∑

n=1

|an|
2

ns

converges absolutely for <(s) > k, where f =
∑

anqn is our newform of weight k. Indeed,

suppose that
∑ |an|2

ns diverges at s = σ for some σ ∈ R with k < σ ≤ k + 1. Let

r0 = sup

{

r ∈ R : k < r ≤ k + 1,
∑ |an|

2

nr
diverges

}

.

By definition of the supremum
∑ |an|2

ns converges for <(s) > r0. We already know that

D(f, f, s) is holomorphic at s = r0 because it is holomorphic except for a simple pole at

s = k and by hypothesis r0 > k; and so by Lemma 1, there is a δ > 0 such that
∑ |an|2

nr

converges for <(s) > r0 − δ, and this is a contradiction!

Note, the Weil conjectures imply that |ap| ≤ 2p
k−1

2 for k ≥ 2.
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