
Math 726: L-functions and modular forms Fall 2011

Lecture 22: Rankin-Selberg Method, continued

Instructor: Henri Darmon Notes written by: Bahare Mirza

Recall Let g, f be modular forms of weight k and ℓ, respectively, with their fourier

expansion given by

g =
∑

bnq
n, f =

∑
anq

n.

In the last session, we defined

D(f, g, s) =
∑

anbn
ns = L(f ⊗ g, s)ζ(2s+ 2− k − l)−1,

and proved

Theorem (Rankin)

D(f, g, k − 1) =
(4π)k−1

Γ(k − 1)
< Ek−ℓg, f >k .

And to understand more general values, we introduced

Er(z, s) =
∑

(m,n)∈(Z2)′

1

(mz + n)r
ys

|mz + n|2s
,

which converges absolutely (and uniformly on compact sets) when Re(s) > 1 − r/2, for all

r ∈ Z. This leads naturally to Hecke’s trick of realising the nonholomorphic Eisenstein series

of weight two as the limit of E2(z, s) as s tends to 0.

Then we proved

Theorem For all s ∈ C with Re(s) > 2− k/2 + ℓ/2 = 2− k−ℓ
2
,

D(f, g, k + s− 1) = (4π)k+s−1Γ(k + s− 1)−1 < Ek−ℓ(z, s)g, f >k .
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Remark This continues to make sense when k ≯ ℓ+2. In particular, it makes sense when

k = ℓ. In that case, the formula for D(f, g, s) involves

E(z, s) =
∑

(m,n)∈(Z2)′

ys

|mz + n|2s
,

which converges when Re(s) > 1.

Now we define

G(z, s) =
∑

(m,n)∈Z2

′ ys

|mz + n|2s
= ζ(2s)E(z, s).

Properties of G(z, s) For (z, s) ∈ H × CRe>1

• G, as a function of z satisfies

G(
az + b

cz + d
, s) = G(z, s)

for all

[
a b

c d

]
∈ SL2(Z).

So G(z, s) is a nonholomorphic Eisenstein series of weight 0.

• As a function of s, with z fixed

G(z, s) =
∑

(m,n)∈Z2

′ 1

Qs
z(m,n)

,

where Qz(m,n) = |mz+n|2
y

is a quadratic form in two variables, with disc(Qz) = −4.

Proof. Let z = x+ ıy,

1

y
|mz + n|2 = 1

y
(mz + n)(mz̄ + n)

=
1

y
(m2zz̄ +mn(z + z̄) + n2)

So,

∆ =
1

y2
[(z + z̄)2 − 4zz̄] =

1

y2
(z − z̄)2 = −4

and,

disc(Qz) = −4.

G(z, s) is also called the Epstein zeta function attached to Qz, when considered as a

function of s.
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Lemma

< G(z, s)g(z), f(z) >k= (4π)1−k−sΓ(k − 1 + s)L(f ⊗ g, k − 1 + s).

Proof.

< G(z, s)g, f >k = ζ(2s) < E(z, s)g, f >k

= ζ(2s)(4π)1−k−sΓ(k − 1 + s)L(f ⊗ g, k − 1 + s)ζ(2(k − 1 + s) + 2− 2k)−1

= (4π)1−k−sΓ(k − 1 + s)L(f ⊗ g, k − 1 + s).

Theorem Let z ∈ H be fixed,

1. The function G(z, s) has a meromorphic continuation to s ∈ C and is entire except for

a simple pole with residue π at s = 1.

2. G∗(z, s) := π−sΓ(s)G(z, s) is holomorphic except for simple poles at s = 1 and s = 0

with residues 1 and -1 respectively. Further,

G∗(z, s) = G∗(z, 1− s).

Proof. (Sketch)

Step 1 Let

Θz(t) =
∑

(m,n)∈Z2

e−πQz(m,n)t,

a two variable Guassian. We consider the Mellin transform of Θz and we get the following

formula,

G∗(z, s) = Γ(s)
∑

(m,n)∈Z2

′
[πQz(m,n)]−s =

∫ ∞

0

(Θz(t)− 1)ts
dt

t
.

Step 2 Poisson summation formula gives

Θz(1/t) = tΘz(t).

Step 3

G∗(z, s) =

∫ ∞

1

(Θz(t)− 1)t1−sdt

t
+

∫ ∞

1

(Θz(t)− 1)ts
dt

t
+ [

1

s− 1
− 1

s
].

Reference For a detailed proof see Notes on Modular Forms (of one variable), by D.

Zagier.
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Integral Representation of L(f ⊗ g, k − 1 + s) Define

Λ(f ⊗ g, k − 1 + s) :=< G∗(z, s)g, f >k

= 41−k(2π)−2sΓ(s)Γ(k − 1 + s)L(f ⊗ g, k − 1 + s)

This function has nice symmetries;

Theorem

1. Λ(f ⊗ g, k − 1 + s) extends to a meromorphic function of s.

2. It is holomorphic except at s = 0, 1 where it has simple poles with residues − < g, f >

and < g, f > .

Proof. This follows directly from the analytic continuation of G∗(z, s).

Ress=0 < G∗(z, s)g(z), f(z) >k =< Ress=0G
∗(z, s)g(z), f(z) >k

= − < g, f > .

Corollary

1. L(f ⊗ g, s) extends to a meromorphic function to s ∈ C.

2. The function has at worst a simple pole at s = k.

3. This pole is present if and only if < f, g ≯= 0.

Remark

• All our calculations were done with modular forms of level 1 and of equal weight.

• It can also be made to work for modular forms of level N, by working with linear

combinations of G(dz, s) for d|N.

Next Week We will discuss two applications of Rankin method;

1. EℓEk−ℓ ∈ Mk(SL2(Z)) is as far from being an eigenform as possible, for suitable ℓ.

4



Theorem For suitable ℓ, the set {Tn(EℓEk−ℓ)} spans the space Mk(SL2(Z)).

2. For f = g use the analytic properties of L(f ⊗ f̄ , s), in particular, the pole at s = k to

infer information about the rates of growth of |an(f)|

D(f, f̄ , s) =
∑

|an|2n−s.
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