Math 726: L-functions and modular forms Fall 2011

Lecture 22: Rankin-Selberg Method, continued

Instructor: Henri Darmon Notes written by: Bahare Mirza

Recall Let g, f be modular forms of weight k£ and /¢, respectively, with their fourier
expansion given by

g=22buq",  f=anq"
In the last session, we defined
D(f,9,5) =2 = = L(f ®¢,5)((25 +2 =k = 1),
and proved
Theorem (Rankin)

k—1
D(fag’k_ 1) = % < Ek—fgaf >k

And to understand more general values, we introduced

E.(z,s) = Z ! Y

o ey (=) e+

S

which converges absolutely (and uniformly on compact sets) when Re(s) > 1 —r/2, for all
r € Z. This leads naturally to Hecke’s trick of realising the nonholomorphic Eisenstein series
of weight two as the limit of Ey(z,s) as s tends to 0.

Then we proved

Theorem For all s € C with Re(s) >2—k/2+ (/2 =2 — 21X,

D(f,g,k+s—1) = (47T)k+s_1f(k + 5 — 1)_1 < Ey_o(z,9)g, [ >k -



Remark This continues to make sense when k % ¢+ 2. In particular, it makes sense when
k = {. In that case, the formula for D(f, g, s) involves

S

_ Y
E(Z7S) - Z |mz—|—n|25’

(m.n)e(z?)
which converges when Re(s) > 1.
Now we define A
G(z,s) —( 2)222 e C(25)E(z, 5).

Properties of G(z,s) For (z,5) € H x Clte>!

e (5, as a function of z satisfies

b
d

So G(z, s) is a nonholomorphic Eisenstein series of weight 0.

for all [Z } € SLy(Z).

e As a function of s, with z fixed

/ 1
G(Zv 3) = E s )
(m,n)€Z2 Qz (m’ TL)

where Q.(m,n) = W is a quadratic form in two variables, with disc(Q,) = —4.

Proof. Let z = x 4wy,

1 1
—|mz 4+ n]* = ~(mz +n)(mz +n)
Y Y
1
= ;(mQZZ +mn(z + 2) + n?)
So,
]_ —\2 _ 1 —\2
A= ?[(z—kz) —4zzZ] = E(Z_Z) =—4
and,
disc(Q,) = —4.

]

G(z,s) is also called the Epstein zeta function attached to @, when considered as a

function of s.



Lemma
< G(2,8)9(2), f(2) >p= An)" " T(k =1+ s)L(f ® g,k — 1 + 5).
Proof.

< G<Z7S>g7f > = C(2S) < E(Z’S)gaf >k
= ((25)dm) " Tk — 1+ 8)L(f @ g,k —1+5)C(2(k —145) +2 —2k)~*
= (4n)" T (k= 1+ s)L(f® g,k — 1+ s).

Theorem Let z € H be fixed,

1. The function G(z, s) has a meromorphic continuation to s € C and is entire except for
a simple pole with residue 7w at s = 1.

2. G*(z,s) := 7 *I'(s)G(z, s) is holomorphic except for simple poles at s = 1 and s = 0
with residues 1 and -1 respectively. Further,

G*(z,5) =G (2,1 —s).

Proof. (Sketch)
Step 1 Let

O.(t)= Y e,

(m,n)€Z?
a two variable Guassian. We consider the Mellin transform of ©, and we get the following
formula,

625 =) Y rQutmn) = [ (0.0~ 0

(m,n)€Z?

Step 2 Poisson summation formula gives
0.(1/t) = tO,(t).
Step 3

G*(2,8) = /lm(@z(t) — 1)t1—5% + /loo(@z(t) - 1)155@ + 15 i 1 1]'

t S

]

Reference For a detailed proof see Notes on Modular Forms (of one variable), by D.
Zagier.



Integral Representation of L(f ® g,k — 1+ s) Define

ANf®Rgk—1+38):=<G*(2,8)9, f >
=47Fm) E ()T (k—1+s)L(f @ g,k — 1+ 5)

This function has nice symmetries;

Theorem
1. A(f®g,k—1+s) extends to a meromorphic function of s.

2. It is holomorphic except at s = 0,1 where it has simple poles with residues — < g, f >
and < g, f > .

Proof. This follows directly from the analytic continuation of G*(z, s).

Ress—g < G*(z,9)g(2), f(2) > =< Ress—0G"(z,9)g(2), f(2) >
=—<g,f>.

Corollary
1. L(f ® g, s) extends to a meromorphic function to s € C.
2. The function has at worst a simple pole at s = k.

3. This pole is present if and only if < f,g >+ 0.

Remark
e All our calculations were done with modular forms of level 1 and of equal weight.

e [t can also be made to work for modular forms of level N, by working with linear
combinations of G(dz, s) for d|N.

Next Week We will discuss two applications of Rankin method;

1. EyEy_y € Mp(SLo(Z)) is as far from being an eigenform as possible, for suitable /.

4



Theorem For suitable ¢, the set {T),(F¢FEr_¢)} spans the space My(SLoy(Z)).

2. For f = g use the analytic properties of L(f ® f, s), in particular, the pole at s = k to
infer information about the rates of growth of |a,(f)]

D(f, fa S) = Z |an|2n_s'



