Math 726: L-functions and modular forms Fall 2011

Lecture 21: Rankin-Selberg Method, continued

Instructor: Henri Darmon Notes written by: Bahare Mirza

In the last lecture, we proved that
L(f ® 978) - §(28 +2—k— E)D(fhg?S)v

where D(f, g,s) = Yo7, anb,n~*. Now we will investigate the analytic properties of D(f, g, s).

n=1
Goal To obtain a formula for D(f, g,k — 1) assuming k > ¢ + 2.

We will be using the following Eisenstein Series in expressing the above value
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Theorem

T k—1
D(f,g,]f — 1) = % < Ek_gg,f >r .

Note Fj_,g is not an eigenform anymore; Hecke operators respect addition, but not multi-
plication.

Proof.
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where (Z%) = {(m,n) € Z*|gcd(m,n) = 1}. To compute (1) we use the following lemma.
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Define U := {{ 0 j }, the subgroup of 2 X 2 unipotent matrices, then we have;

Lemma

1. The map UNSLy(Z) — (Z*)' defined by E 2] — (¢, d) is a bijection and we have,
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plying by any matrix of the form [O ﬂ . Injectivity and surjectivity are obvious.

2. Let v = la b},
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So we have,
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This method is called (Rankin’s) unfolding.
Now as UNH = {z + |0 <z <1,y > 0}, we have,
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But f is an eigenform for the Hecke operators and in the full level, these operators are
self-adjoint, so all the Fourier coefficients are real and we can replace a,, with a,,, to get,
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But the innermost parentheses is equal to the Kronecker delta function,
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where we have made the change of variable u = 4mwny for each integral in the sum. Note
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that one can check the convergence of the series X757 | 224 using the estimates for |a,| and
|b,| and the fact that k > ¢+ 2. O

Problem Can we get a similar formula for D(f, g,k — 1+ s)?

Idea Introduce the non-holomorphic Eisenstein series of weight k& — ¢,
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Some Properties of Fj_,

e Fi(z,s) converges for Re(s) >> 0 (for any k.)

. Ek(‘gis, s) = (cz + d)*Ej(z, s), so Ey behaves like a modular form as a function of z,

but is not holomorphic in z.

e Fy(z,s) is holomorphic in s and converges for Re(s) >> 0.
Theorem For Re(s) >> 0,

<Ek75<273)g>f>k: F(k+8—1)p(f,g,k+8—1)
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note

e The assumption Re(s) >> 0 ensures that the sum in Fjy_, and the integral in Peterson
product both converge.

e We recover the previous formula by setting s = 0.

Proof. The proof is exactly the same as the proof of the previous theorem; One can show
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using Ranking’s unfolding method, and by similar computations as the previous theorem
prove the assertion. O

Goal Use the integral representation of D(f, g, s) to get an analytic continuation and func-
tional equation for it.
Key Ingredient Functional equation satisfied by Ej(z, s) as a function of s.




