
Math 726: L-functions and modular forms Fall 2011

Lecture 21: Rankin-Selberg Method, continued

Instructor: Henri Darmon Notes written by: Bahare Mirza

In the last lecture, we proved that

L(f ⊗ g, s) = ζ(2s+ 2− k − ℓ)D(f, g, s),

whereD(f, g, s) =
∑∞

n=1 anbnn
−s.Now we will investigate the analytic properties ofD(f, g, s).

Goal To obtain a formula for D(f, g, k − 1) assuming k > ℓ+ 2.

We will be using the following Eisenstein Series in expressing the above value

Ek−ℓ(z) =
∑

(m,n)∈Z2

gcd(m,n)=1

1

(mz + n)k−ℓ
.

Theorem

D(f, g, k − 1) =
(4π)k−1

Γ(k − 1)
< Ek−ℓg, f >k .

Note Ek−ℓg is not an eigenform anymore; Hecke operators respect addition, but not multi-

plication.

Proof.

< Ek−ℓg, f >k =

∫
SL2(Z)�H

ykEk−ℓ(z)g(z)f̄(z)
dxdy

y2

=

∫
SL2(Z)�H

∑
(m,n)∈(Z2)′

yk

(mz + n)k−ℓ
g(z)f̄(z)

dxdy

y2
, (1)

where (Z2)′ = {(m,n) ∈ Z2|gcd(m,n) = 1}. To compute (1) we use the following lemma.

Define U := {
[
1 ∗
0 1

]
}, the subgroup of 2× 2 unipotent matrices, then we have;

Lemma

1. The map U�SL2(Z) → (Z2)′ defined by

[
a b

c d

]
7→ (c, d) is a bijection and we have,
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2. yk

(mz+n)k−ℓ g(z)f̄(z) = y(γz)kg(γz)f̄(γz) γ =

[
∗ ∗
m n

]
.

Proof. 1. given

[
a b

c d

]
∈ SL2(Z), clearly (c, d) ∈ (Z2)′, and is left unchanged by multi-

plying by any matrix of the form

[
1 ∗
0 1

]
. Injectivity and surjectivity are obvious.

2. Let γ =

[
a b

c d

]
,

y(γz)kg(γz)f̄(γz) =
y(z)k

(mz + n)k(mz + n)k
(mz + n)ℓg(z)(mz + n)kf̄(z)

=
yk

(mz + n)k−ℓ
g(z)f̄(z).

So we have,

(1) =

∫
SL2(Z)�H

∑
U�SL2(Z)

y(γz)kg(γz)f̄(γz)
dxdy

y2

=

∫
SL2(Z)�H

∑
U�SL2(Z)

y(γz)kg(γz)f̄(γz)
dx(γz)dy(γz)

y2(γz)

=

∫
U�H

ykg(z)f̄(z)
dxdy

y2
. (2)

This method is called (Rankin’s) unfolding.

Now as U�H = {x+ ıy|0 ≤ x ≤ 1, y > 0}, we have,

(2) =

∫ ∞

y=0

∫ 1

x=0

ykg(z)f̄(z)
dxdy

y2

=

∫ ∞

y=0

∫ 1

x=0

yk(
∞∑
n=1

bne
2πınz)(

∞∑
m=1

ame
−2πımz̄)

dxdy

y2

=

∫ ∞

y=0

∫ 1

x=0

yk
∞∑

n,m=1

bname
2πın(x+ıy)e−2πım(x−ıy)dxdy

y2
. (3)

But f is an eigenform for the Hecke operators and in the full level, these operators are

self-adjoint, so all the Fourier coefficients are real and we can replace am with am, to get,

(3) =

∫ ∞

0

yk
∞∑

n,m=1

bname
−2π(n+m)(

∫ 1

0

e2πı(n−m)xdx)
dy

y2
. (4)
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But the innermost parentheses is equal to the Kronecker delta function,

(4) =

∫ ∞

y=0

yk
∞∑
n=1

anbne
−4πny dy

y2

=
∞∑
n=1

anbn

∫ ∞

y=0

yk−1e−4πny dy

y

= (
∞∑
n=1

anbn
(4πn)k−1

)

∫ ∞

0

uk−1e−udu

u

=
Γ(k − 1)

(4π)k−1
D(f, g, k − 1),

where we have made the change of variable u = 4πny for each integral in the sum. Note

that one can check the convergence of the series Σ∞
n=1

anbn
nk−1 , using the estimates for |an| and

|bn| and the fact that k > ℓ+ 2.

Problem Can we get a similar formula for D(f, g, k − 1 + s)?

Idea Introduce the non-holomorphic Eisenstein series of weight k − ℓ,

Ek−ℓ(z.s) =
∑

(m,n)∈(Z2)′

1

(mz + n)k−ℓ

ys

|mz + n|2s

=
∑

γ=

 a b

m n

∈U�SL2(Z)

1

(mz + n)k−ℓ
y(γz)s.

Some Properties of Ek−ℓ

• Ek(z, s) converges for Re(s) >> 0 (for any k.)

• Ek(
az+b
cz+d

, s) = (cz + d)kEk(z, s), so Ek behaves like a modular form as a function of z,

but is not holomorphic in z.

• Ek(z, s) is holomorphic in s and converges for Re(s) >> 0.

Theorem For Re(s) >> 0,

< Ek−ℓ(z, s)g, f >k=
1

(4π)k+s−1
Γ(k + s− 1)D(f, g, k + s− 1).
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note

• The assumption Re(s) >> 0 ensures that the sum in Ek−ℓ and the integral in Peterson

product both converge.

• We recover the previous formula by setting s = 0.

Proof. The proof is exactly the same as the proof of the previous theorem; One can show

< Ek−ℓ(z, s)g, f >k=

∫ ∞

y=0

∫ 1

x=0

yk+sg(z)f̄(z)
dxdy

y2
,

using Ranking’s unfolding method, and by similar computations as the previous theorem

prove the assertion.

Goal Use the integral representation of D(f, g, s) to get an analytic continuation and func-

tional equation for it.

Key Ingredient Functional equation satisfied by Ek(z, s) as a function of s.
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