Math 726: L-functions and modular forms Fall 2011

Lecture 20: The Rankin-Selberg Method

Instructor: Henri Darmon Notes written by: Bahare Mirza

Setting Let

f=> anq" € Si(SLy(2)),

n=1

and

9= bug" € S(SLy(Z))

n=1

be eigenforms (hence newforms, as we are working in level 1.) Recall that

L(f,5) = L(Vy, s)

is the Hecke L-function corresponding to the compatible system of /-adic representations

attached to f. Here (v — a,)(z — ) = x® — apz +pFl

And similarly for g
L(g,s) = L(Vy, s)

(1 . bpp—s +pé—l—25)—1
(L= Bp™*) (L= Bp ™),
with (z — 8,)(z — ) = 2® — byx + p~".

I
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Next we define the Rankin L-series and investigate its analytic properties;

Definition The Rankin L-series, or Rankin convolution L-series, attached to (f,g) is
L(f®g,s) = L(Vy ® Vg, )
=[] =) (1 = apBp~*) (1= Bp ™) (1= apBp~") Y (1)



where V; ® V,, the tensor product of the two representation, is 4 dimensional, so that
L(f ® g,s) is defined by an Euler product with factors of degree 4.

As we saw before, Hecke Theory implies that L(f, s) has analytic continuation and satis-
fies a functional equation. We would like to show something similar for the Rankin L-series.

To begin, we want to know if there is a formula describing A,,, where L(f ® g,s) =
> A,n~—°. The formula for general n looks complicated a priori, so let us start by calculating
A,, for p a prime number. We have

(1) = H(l + apﬁpp_s Lo @31)—25 4. )(1 +apﬁ];p—s + a26/2 —2s 4o )
(1 +Oz;5pp‘s + 0/:[2) zp— + . )(1 + Oé;ﬁ];p_s +a ﬂ/;p_zs . ')’
S0,
Ap =y + pf, + ol fy + a3,
- (ap+a;o)<ﬁp+ﬁ ) = ayb,

Yet, in general, A, need not equal a,;b,. These two facts motivate us to ask how does
the Rankin L-series differ from the ‘modified Rankin L-series’, as a first approximation of
the Rankin L-series;

Definition The Modified Rankin L-series attached to f and g is the function

D(f,q,s Zanb n*.

Remark The function a,b, is weakly multiplicative, and therefore

D10.5) = 101~ o™ + sty ™ ...

p

In what follows, our analysis will be local, that is, prime by prime.

Lemma Let (B,i);=12,. be a sequence of complex numbers satisfying an r-term linear
recurrence of the form

Byo =1

p

and
Bpj+r = )\1Bpj+r—1 —+ )\QBpj+r—2 + -4 /\TBpj,
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for all j > 0. Then

1+ By + Bpa® + ... = 1_A1x_§£f>_____ATxT
for some Q(z) € Clz], of degree strictly less than r.
Proof. Consider
(1+ By + Bpea® + ... )(1 — Mz — g — -+ — \a'),
and observe that it has no terms of degree > r, using the recurrence formula. O

Application Take B, = a,b,;. This sequence satisfies a recurrence of order 4, as we see
below.

Lemma The sequence B, satisfies a recurrence of the form
Bpj+4 = )\pr]‘+3 + )\QBijrz + AngjJrl + )\4Bpj,
where
(1= Mz — dga® — Mgz’ — Mazt) = (1 — apB2) (1 — pBox) (1 — b Bpa) (1 — o Bl).

Proof. a,; satisfies a two term recurrence

k—1
Apit+2 = QpQpi+1 — P Apj.

Let W be the vector space of all sequences satisfying this linear recurrence
Tpit2 = ApTpi+1 — pk_lxpj.
Then we have dim(WW) = 2 and a basis for this vector space is given by

1J

(Oéi)jzm,... and (Oép)jzl,z,...~

This can be seen by considering the linear transformation on W which shifts each sequence
one term down (so that (z1,x9,...) gets mapped to (x9,...).) This is an invertible map, as
the first term of any sequence in W is determined by its second and third term, using the
recurrence formula. The eigenvalues of this transformation are geometric progressions, and
for a gemetric progression to be in W, i.e. to satisfy the recurrence formula, its ratio should
satisfy 2% — a,r + p*~!, and so is equal to a,, or . '

Hence, (a); is a linear combination of (ad); and (a));. Likewise, (b,;); is a linear combi-
nation of (47); and (57);.

Hence (B,); = (a,ibyi); is a linear combination of the four geometric progressions

(app)? and (ozpﬂé,)j and (oz;ﬁp)j and (aﬁ,ﬁ;)j.

And these easily can be seen to satisfy a recurrence of the desired form.



Corollary

Q(p~)
(1 = apBpp™)(1 — af, Bpp~*) (1 — apByp~5)(1 — g, Brp~*)

1+ apbyp° + apszgp_25 + =

for Q(z) € C[z], with deg(Q) < 3.
O

So to understand the relation between L(f ® g,s) and D(f ® g, s) it remains to compute
Q.

Computation By grouping pairwise terms of the following product we can write

(1= apBpp ™) (1 — &/ Bpp ") (1 - O‘pﬁlppis)(l - O‘,pﬁlppﬁw
—S —1l—2s —s 2 —1—2s
= (1= apBp™ + Bop" %) (1 = a8 p~° + B0 72), (2)
which is the product of values of the characteristic polynomial of «,, at 8,p~* and Bp~*
Now we have
s 102 _ 17 —92s
(2) = 1= apbpp™* + [P '8, + app ™' + B, p
o [apﬁzljpfflpkfl + apﬁppéflpkfl]pf&e +p2(k+572)p74s
which, using (7 + 5';2) =02 —2p"!, is equal to

(1= apbyp™®) + 20" + a2p™™" — 222 — [a, b, p"H2]p 4 p? 2,

a polynomial in p~* with coefficients in Z[a,, b,|.

Computation 2 Another tedious but rewarding computation shows that

Q™®) = (1 + apbyp * + apebpep ™ +...)
% (1 . apbpp_s + [bzpk—1 + aipf—l . ka+e—2]p—2s . [apbpp“e_z}p_?’s +p2(k+é—2)p—4s)

=1 — phtt-2p=2s

Hence we have proved the following theorem;

Theorem
D(f,g9,8) = L(f ®g,5)C(2s +2 —k — £)~*.

It now remains to understand

[e.9]

D(f,g,s) = Zanbnn_s.

n=1



