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Recall

X1(N) was our modular curve parameterizing elliptic curves with level N structure. We

constructed an algebraic generalization of the Hecke operators Tn as correspondences on

X1(N). We ended up considering them as endomorphisms defined over Q of the Jacobian

J1(N) of X1(N),

T1(E,α) =
∑

ϕ:E�E′

degϕ=n

(E ′, ϕ ◦ α).

Observe that for D | N,D 6= N , there are natural maps from X1(N) → X1(D), which

on points sends (E,α, ω) to (E, [N/D]α, ω). This induces a map in the opposite direction

on the Jacobians

J1(D)→ J1(N).

Let J1(N)old be the subgroup of J1(N) generated by the images of these maps, and J1(N)new

will be the quotient group. Then J1(N)new is defined over Q and

J1(N)new/Q ∼
⊕

f newform
mod GQ

Af .

So J1(N)new is isogenous to the product of the abelian varieties Af discussed in the previous

lecture, whose individual Tate modules gave us a compatible Kf -rational system of λ-adic

representations {Vf,λ} such that

L(Vf,λ, s) = L(f, s),

where Kf is the field of definition of the Fourier coefficients of f . We spend the first part of

this lecture discussing the above equality of L-functions.

Frobenius Morphism Φp

We ended last lecture defining Φp : C → C(p) for curves defined over a field of characteristic

p. It is a general fact that the modular curve X1(N) has good reduction at all primes p - N .

Fixing such a prime, we can consider

Φp : X1(N)/Fp → X1(N)/Fp .
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The spaces are projective so the graph is closed, hence can be considered as a correspondence

on X1(N)/Fp . Denoting the map on divisors also by Φp, we have

Φp((E,α)) = (E(p),Φ ◦ α).

We define the transpose of this map Φt
p as the correspondence in the opposite direction, ie.

the correspondence with respect to the transpose of the graph of Φp. On divisors we have

Φt
p((E,α)) =

∑
(E′)(p)=E
Φp:E′→E

(E ′,Φ−1
p α).

This is a degree p correspondence. We now come to the main result of the section.

Theorem 1. (Eichler-Shimura) Tp = Φp + Φt
p as correspondences on X1(N).

We make some remarks about the idea of the proof:

Let q = pn and E/Fq an ordinary elliptic curve.

Remark 1. Ordinary means that the map [p] : E → E is inseparable of degree p, compared

to the other possibility of a completely inseparable field extension of degree p2. This is

equivalent to the existence of exactly p points of order p in E(Fp), compared to none in the

completely inseparable case. If E is not ordinary, then the j-invariant j(E) belongs to Fp2 .
This is because the Frobenius morphism is a degree p isogeny, hence so is its dual Φ̂p and

Φ̂p ◦ Φp = [p].

If [p] is inseparable of degree p2, both Φp and its dual are inseparable of degree p. Now

purely inseparable extensions always factor through the Frobenius morphism of a curve,

and it follows that there is a degree 1 map between E(p2) and E, hence the two curves are

isomorphic. Hence the j-invariant of E is equal to its p2-power, ie. it lies in Fp2 .

Now let Ẽ be a lift of E to Zq. All the torsion points in Ẽ(Qp) have coordinates in Ẽ(Zp),

so we can consider their reduction mod p into E. In particular, among the p2 points of order

p, exactly p of them reduce to 0 mod p since E is ordinary. We call this set the canonical

subgroup of Ẽ.

Since the points of order p in Ẽ form a group isomorphic to (Z/pZ)2, there are exactly

p+ 1 subgroups of order p. Let S̃0 be the canonical subgroup, and S̃j for j = 1, . . . , p be the

other subgroups of order p in Ẽ. Let Sj be the reduction of the groups mod p. Since the Si
are finite groups, the quotient of E by these groups is also a 1 dimensional projective curve,

in fact an elliptic curve which we denote Ej (E0 = E). For j 6= 0 we have the commutative

diagram
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E E/Sj = Ej

E

Sep.

Insep = Φp
[p]

In particular E
(p)
j = E. In fact up to isomorphism, these are all the elliptic curves with this

property that are also separable with respect to E, in the sense that the dual isogeny from

E is separable. It follows that all these curves lie in the image of Tp(E). If E ′ also lies in

Tp but is not isomorphic to one of the Ej for j ≥ 1, then the isogeny from E to E ′ is purely

inseparable of degree p. It follows E ′ is necessarily isomorphic to E(p). For ease of notation

we consider the case when N = 1, then we have the formula

Tp(E) = E(p) + E1 + . . .+ Ep
= Φp(E) + Φt

p(E). �

Theorem 1 can be used to explain the equality of L functions discussed above. For

example, in the special case when f ∈ S2(Γ0(N)) is a newform with integral coefficients take

a prime p 6= l of good reduction. We have the following diagram of Tate modules:

Tl((Af )/Q) Tl((Af )/Fp)

GQ GFp

Red. mod p

action action

The top map is an isomorphism of Zl modules and hence studying the action on the left

is equivalent to studying the action on the right when we are interested in the action of

the Frobenius automorphism corresponding to p. In our special case, Af will always be an

elliptic curve, hence the p-factor in the Euler expansion of its L-function looks like

(det((1− p−sΦP ) 	 Tl((Af )/Fp)⊗Ql))
−1.

By part (c) of theorem 2 from the previous lecture, the Hecke operator Tp acts on Af by

multiplication by ap(f), so the matrix representation of this operator is
( ap o

0 ap

)
. We also have

that Tp = Φp + Φt
p from theorem 1, where Φp is the Frobenius morphism correspondence.

Since Φt
p is the transpose correspondence, it will have matrix representation that is the

transpose of Φp.

Consider the polynomial with coefficients in the ring of operators on Tl((Af )Fp ⊗Ql),

(Id− ρl(Φp)x)(Id− ρl(Φt
p)x) = Id− ρl(Φp + Φt

p)x+ p · Idx2
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because Φp ◦ Φt
p = [p]. In matrix form, it is clear the RHS looks like(

1− apx+ px2 0

0 1− apx+ px2

)
.

Taking determinants and using the fact that Φp is the transpose of Φt
p, we have

det(1− Φpx)2 = (1− apx+ px2)2.

Taking square roots and confirming signs by setting x = 0, we get det(1−Φpx) = 1− apx+

px2), as claimed.

We have a deep result concerning the converse of the above special case.

Theorem 2. (Wiles, BCDT) If E is any elliptic curve over Q, then there exists a newform

f ∈ S2(Γ0(N)) with Z-valued Fourier coefficients such that

L(E, s) = L(f, s).

This concludes our discussion regarding the L-functions of modular forms of weight k = 2

arising from compatible systems of λ-adic representations {Vf,λ}. We remark that for the

case when k > 2, one can realize the Vf,λ as Kf,λ-vector spaces lying inside the Ql-vector

space Hk−1
et (εk−2,Ql). Here εk−2 corresponds to the k − 2 symmetric power of the universal

elliptic curve lying over X1(N), a so called “Kuga-Sato” variety.

k = 1 Case

We summarize the weight 1 case with the following theorem of Serre-Deligne.

Theorem 3. Let f ∈ S1(Γ0(N), χ) be a newform of weight 1 with χ odd. Then there exists

continuous representation

ρf : GQ → GL2(C)

such that

1) ρf is odd (ie. if σ denotes complex conjugation, ρf (σ) = A. ( 1 0
0 −1 ) .A−1).

2) ∀p - N, ρf (Frobp) has characteristic polynomial x2 − ap(f)x+ χ(p).

Corollary 1. If f is a newform of weight 1,

|ap(f)| ≤ 2.
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Proof. ap(f) is the trace of the Frobenius automorphism, hence the sum of its 2 eigenvalues.

On the other hand the image of ρ is finite (as it is continuous), hence every element has

finite order, so all eigenvalues are roots of unity. The result follows immediately. �

One of the key ingredients in the proof of Theorem 3 is an analytic estimate on the size of

Fourier coefficients of weight one cusp forms which is weaker than Corollary 1 above, but

ultimately sufficient to prove Theorem 3. The proof of this estimate rests on the Rankin-

Selberg method, one of the most powerful and versatile techniques in the analytic theory of

modular forms. The next few lectures will therefore be devoted to explaining the Rankin-

Selberg method in some simple settings.

Rankin-Selberg Method

All one dimensional representations of GQ arising “geometrically” in sense, have the form:

ρ : GQ → Q×l
ρ(Frobp) = χ(p)pj j fixed for all p

so L(ρ, s) = L(χ, s− j). The 2 dimensional representations of GQ, which are “geometric” are

all expected to arise from modular forms, ie. we expect that if ρ is an odd two-dimensional

compatible system of l-adic representations occurring in the etale cohomology of a variety

defined over Q, then there is a modular form f and integer j such that

L(ρ, s) = L(f, s+ j).

Question 4. What about higher dimensional representations of GQ?

We can consider representations of higher dimension built up from those arising from modular

forms. For example, given representations V1, V2, we have

L(V1 ⊕ V2, s) = L(V1, s) · L(V2, s).

This is not anything new, but what about the representation V1 ⊗ V2? Next week we will

discuss the Euler product expansion and Dirichlet series of L(V1⊗V2, s) and use the Rankin-

Selberg method to obtain its analytic continuation.
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