Math 726: L-functions and modular forms Fall 2011
Lecture 16 : Algebraic Modular forms cont’d

Instructor: Henri Darmon Notes written by: Maxime Turgeon

In the last lecture, we gave two important examples of marked elliptic curves over a ring:

1. The universal elliptic curve

(C/{1. o, = (4 = 42 — ga(r)z — go(r), j—%oﬁ;

2. The Tate elliptic curve

dx

((CX/@)’ %)O = (y* =2’ —alg)z + b(q), ?)ODX,

DX
where a(q) = 5 (1+2403"7 , 03(n)q") and b(q) = 2 (1 — 504> | o5(n)q").

Note that the Tate elliptic curve can be viewed as an elliptic curve over the ring Z[$]((q)).
But with more care (for example, by introducing new parameters), one can show that it can
also be viewed as an elliptic curve over Z((q)):
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We also defined a weakly holomorphic algebraic modular form of weight k£ and level 1 to
be a rule
(E7W>R — f(E7w)R € R7
subject to two conditions, namely, that it should be compatible with base change (see Lecture
15) and that it should satisfy the following homogeneity condition

f(E, ) = A"f(E,w), forall A € R*.
In particular, f(C/(1,7),dz),, € Oy is the classical view of (weakly holomorphic)

modular forms as holomorphic functions on H. Also, note that f (ETate, %)Z((q)) € Z((q)) is

the q-expansion of f.

DEFINITION 1. An algebraic modular form over Z is a weakly holomorphic modular form
over Z §u0h that f (Erate, %),y € Zllq]]. Moreover, if f (Erae, %)Z((q)) € qZ|[q]], we say
that f is cusp form.

For an arbitrary ring .S, f is a modular form if

F(Brany)  esTal.
S[lal]

((9))



Thus, we say a modular form over S has Fourier coeflicients in S (this is called the
q-expansion principle).

Recall that we were able to give a good description of the ring of modular forms of level 1
in the classical setting, namely, we proved that the Eisenstein series F, and Ej are generators.
In a more general setting, we can give a good description of the ring of algebraic modular
forms over Z[¢].

THEOREM 2. Let (E,w)y be a marked elliptic curve over a field k of characteristic different
from 2 and 3. Then, there exist uniquely defined elements x,y € Ho(E\{O}, Og) (that is,
functions regular outside the origin) satisfying

e The function x has a double pole at the origin, whereas the function y has a triple pole
at the origin;

e 1,y satisfy a cubic equation of the form y* = x3 + ax + b;

Sketch of proof. First, we define two families of k-vector spaces:

L, = {f € Hy(E\{O},O%) | ordo(f) < —r},
L = {we€ Hy(E,Q"Y | ordo(w) > r},

where r > 0 is an integer. The Riemann-Roch theorem gives the following relation between
the respective dimensions of these two vector spaces:

dimy, £, — dlmkE: =7r+ (1 - 9)7

where ¢ is the genus; in our case ¢ = 1. Using this relation, we can build the following table:

dimL, | dimL; basis for L,

,
0 1 1 {1}

1 1 0 {1}

> 2 0 (1)

3 3 0 {1,z,y}

4 4 0 {1,z,y, 2%}

5 5 0 {1, z,y, 2% xy}
6] 6 0 |{Lzya%ay "}

Table 1: Dimensions of the vector spaces



After eventualy rescaling x and y, we can assume z® — y? € L5, which gives us a depen-
dence relation:

y? = 23 + ary + b’ + cy + dx + e, where a,b,¢,d, e € k.

When choosing the vector x, we could have chosen any vector of the form x + p, with
i € k. Similarly for y, we could have chosen any vector of the form y + p'z + p’, where
W, p' € k. Hence, by replacing y by y + p/x + p’ (with appropriate 1/, p'), we can eliminate
the zy and y terms, which gives a relation of the form

V=34V +de+d.

Note that at this stage, we have to assume that char k # 2: in order to eliminate the zy
term, we need p' = 5, and to eliminate the y term, we need p’ = 5, which only makes sense if
2 is invertible. Furthermore, by replacing x by = + p (with appropriate ), we can eliminate
the 22 term, and this gives a relation of the form

y2 — 1’3 —i—a"m—i—b".

At this stage, we have to assume that char k # 3: to eliminate the 2% term, we need pu = _Tb/,

which can only be done if 3 is invertible. With these choices, z and y are completely
determined, up to the following change of variables:

(z,y) — (N, N%y),

for a nonzero A € k. The effect of this change of variables on the differential is df — idy—x
Thus, the condition w = %z specifies the pair (x,y) uniquely. O

The equation y? = 3 + ax + b is called the canonical equation associated to the pair
(E,w). We thus get the following bijection:

Marked elliptic | [ (a,b) € k? satisfying
curves (E,w)y A(a,b) #0

Note that we have two distinguished algebraic modular forms over Z[g]:

1. a(F,w) = a, where a is the coefficient of x in the canonical equation of (E,w). This a
is a suitable multiple of the Eisenstein series of weight 4.

2. b(E,w) = b, where b is the constant coefficient in the canonical equation of (F,w).
Note that b is a suitable multiple of the Eisenstein series of weight 6.

From the above discussion, we conclude that the ring of algebraic modular forms over Z[[¢]]
is generated by the modular forms a and b.



