
Math 726: L-functions and modular forms Fall 2011

Lecture 15 : Algebraic Modular Forms

Instructor: Henri Darmon Notes written by: Maxime Turgeon

Recall the following theorem:

Theorem 1. For all normalised Hecke newforms f ∈ Sk(Γ0(N), χ), with Fourier coefficients

in a number field K, there exists a compatible system {Vf,λ}λ∈Spec(OK) of λ-adic K-rational

representations of GQ such that

L({Vf,λ}λ∈Spec(OK), s) = L(f, s).

More precisely,

• For all primes p - N` (where ` = NormK
Q (λ)), Vf,λ is unramified at p, and

det((1− xFrobp)|Vf,λ
) = 1− ap(f)x + χ(p)pk−1x2;

• For all primes p | N , Vf,λ is ramified at p (even when λ - p), and

det((1− xFrobp)|V Ip

f,λ

) = 1− ap(f)x.

The main goal of the next few lectures is now to give some idea of how {Vf,λ} is

constructed from f .

1. (Weight of f is 2 ) The representations {Vf,λ} are obtained from étale cohomology.

Consider the congruence subgroup Γ1(N). If we take the quotient Y1(N) := Γ1(N)\H

of the upper half-plane by the action of this group, we get a Riemann surface, whose

compactification is usually denoted X1(N) (geometrically, X1(N) is obtained from

Y1(N) by adding the cusps). A priori, X1(N) is a curve defined over C, but one can

show that it actually admits a natural model over the field Q of rational numbers, that

is, X1(N) can actually be defined over Q. The representations we are looking for are

then realised as the action of GQ on the cohomology groups H1
ét(X1(N)Q, Q`). Luckily,

in this case, these groups have a nice interpretation, namely H1
ét(X1(N)Q, Q`) is the

dual of V`(J1(N)Q) := Q` ⊗Z`
lim
←−

J1(N)[`n](Q), where J1(N) is the Jacobian of the

modular curve X1(N), J1(N)[`n] is the group of `n-torsion points of J1(N), and where

the inverse limit is taken with respect to the usual `-power maps. This construction

was first done by Eichler and Shimura (in the case of primes with good reduction), and

then Igusa completed it by identifying and analysing the behaviour at the primes of

bad reduction.
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2. (Weight of f is strictly greater than 2 ) Recall that Y1(N) is a moduli space of isomor-

phism classes of complex elliptic curves and N -torsion data. In this case, we have a

universal elliptic curve E over Y1(N)

E

��

Y1(N)

which is also called a Kuga-Sato surface. Generalizing this situation, Deligne considered

the fibered product (over Y1(N)) of k − 2 copies of E :

Ek−2

��

Y1(N)

which is called the open Kuga-Sato variety of dimension k − 1. Let Wk−2(N) denote

the compactification of Ek−2. Then, the representations{Vf,λ} occur in the cohomology

groups Hk−1
ét (Wk−2(N)Q, Q`).

Note that from the Weil conjectures (more specifically, the Riemann hypothesis for

varieties over finite fields), we can deduce that {Vf,λ} is of weight k − 1, that is, the

eigenvalues of Frobp are of complex absolute value p
k−1

2 .

Example 2. Consider the cusp form ∆ = q
∏∞

n=1(1 − qn)24 ∈ S12(SL2(Z)), whose

q-expansion is given by ∆ =
∑∞

n=1 τ(n)qn, where τ(n) is the Ramanujan τ -function.

In this case, τ(p) is the trace of Frobp acting on V∆,λ, which gives the estimate |τ(p)| <

2p
11

2 , the so-called Ramanujan conjecture (compare this estimate with the “elementary”

estimate |τ(p)| < Cp6).

3. (Weight of f is 1 ) For modular forms of weight one, there is no direct cohomological

construction of {Vf,λ}. In this case, Serre and Deligne related Hecke eigenforms f ∈

S1(Γ0(N), χ) to (complex) Artin representations, reducing this case to the result for

higher weight. This reduction, which does not require any algebraic geometry but

rather some useful analytic estimates on Fourier coefficients of cusp forms, will be

explained in detail in this class.

We would now like to give an algebro-geometric interpretation of modular forms

and modular curves; the starting point will be the lattices in C. The main tool we will

use is Weierstrass theory of complex elliptic curves, which gives a bijection
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{

Lattices

Λ in C

}

−→







Pairs (E, ω)

E is a complex elliptic curve

ω is a generator of Ω1(E/C)







,

where, to a lattice Λ ⊂ C, we attach the pair (C/Λ, dz), and to a pair (E, ω), we attach the

lattice

ΛE,ω :=

{
∫

γ

ω | γ ∈ H1(E(C), Z)

}

.

Using this bijection, we can now view classical modular form as functions on the set of

pairs (E, ω) defined over C. We are thus led to the following definition.

Definition 3. A marked elliptic curve over a field k is a pair (E, ω) consisting of an elliptic

curve E over k, together with a k-vector space generator ω of Ω1(E/k).

Actually, one can even define marked elliptic curves over any ring R. For our purposes,

this will simply be a Weierstrass equation with coefficients in R, like

E : y2 = x3 + ax + b, a, b ∈ R,

where we require that the discriminant ∆(E) be a unit in R.

Definition 4. A weakly homolomorphic algebraic modular form f of weight k and level 1

over a ring S is a rule, which to every pair (E, ω)R consisting of a marked elliptic curve over

an S-algebra R assigns an element f(E, ω)R ∈ R, subject to the following conditions:

• (Compatibility with base change) For all homomorphisms φ : R→ R′ of S-algebras

φ(f(E, ω)R) = f((E, ω)⊗φ R′);

• For all λ ∈ R×, f(E, λω)R = λ−kf(E, ω)R.

We now give some important examples of elliptic curves over rings.

Example 5.

1. The “universal” elliptic curve over C

For this example, we let

• R= ring of holomorphic functions on H = {τ ∈ C | Im(τ) > 0};

• E = C/〈1, τ〉;

• ω = dz.
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Weierstrass theory constructs from this data two doubly periodic functions with poles

at z = 0, namely

x = ℘〈1,τ〉(z) =
1

z2
+
∑′

λ∈Λ

(

1

(z − λ)2
−

1

λ2

)

;

y = ℘′
〈1,τ〉(z) =

−2

z3
+
∑′

λ∈Λ

−2

(z − λ)3
.

Moreover, these two functions satisfy the following equation

y2 = x3 − g4(τ)− g6(τ),

where

g4(τ) = 60
∑′

(m,n)∈Z2

(mτ + n)−4 =
4π3

3

[

1 + 240
∞
∑

n=1

σ3(n)qn

]

g6(τ) = 140
∑′

(m,n)∈Z2

(mτ + n)−6 =
8π6

27

[

1− 504

∞
∑

n=1

σ5(n)qn

]

.

Furthermore, we have ω = dx
y

. The data (C/〈1, τ〉, dz) is thus a marked elliptic curve

over the ring R.

2. The Tate curve over C

In the above construction, we got a torus by identifying opposite sides of the (possibly

tilted) rectangle given by the basis {1, τ}. By making some change of variables, namely

t = e2πiz , q = e2πiτ , we can give a similar construction by identifying the inner ring and

the outer ring of an annulus. More concretely, we define:

• R= ring of holomorphic functions on the punctured open disk D× = {q ∈ C× |

|q| < 1};

• E = C×/〈q〉;

• ω = dt
t

= 2πidz.

Now, after choosing our new coordinate functions X, Y to be

y = 2π3iY, x = π2X,

we get the following equation for the Tate curve:

Y 2 = X3 −
1

3

(

1 + 240
∞
∑

n=1

σ3(n)qn

)

X +
3

27

(

1− 504
∞
∑

n=1

σ5(n)qn

)

.
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Also, we get ω = dx
y

. In this case, the discriminant is equal to

∆(E) = q
∞
∏

n=1

(1− qn)24 ∈ R×.

Remark 1. These computations reveal that the Tate curve, which was a priori defined over

the ring R, can also be viewed as an elliptic curve over the ring Z[ 1
6
]((q)).
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