
Math 726: L-functions and modular forms Fall 2011

Lecture 11 : Hecke Operators and Hecke theory

Instructor: Henri Darmon Notes written by: Celine Maistret

We begin with an aside on Question 1 of assignment 1 :

If ρ = IndQ
K1K then we have the following facts :

• ρ can be identified with the permutation representation of GQ acting on Hom(K, Q̄)

which is a finite set of cardinality d = [K : Q].

It can therefore be viewed as the permutation representation of GQ acting on the roots of

the polynomial Fα(x), where Fα(x) is the monic characteristic polynomial of any primitive

element α ∈ K.

• If p is prime, we can choose α ∈ K such that Fα(x) ∈ Q[x] ∩ Zp[x] has p-integral

coefficients and Zp[x]/Fα(x) = OK ⊗ Zp

Now, in the ring of integers, factor Fα(x) mod p :

Fα = F e1
1 ....F er

r with deg(Fj) = fj, (p) = ℘e1
1 ....℘er

r and N(℘j) = pfj . This determines

the factorisation of p in OK

Using this, we can see how the inertia group at p permutes among themselves the roots of

Fα that reduce to a common root mod p. Hence V Ip can be identified with the permutation

representation of GFp acting on the roots of F1....Fr mod p.

Therefore, det(1 − xFrobp) = (1 − xf1)(1 − xf2)...(1 − xfr) so that the Euler factor at p

of L(s, ρ) is

(1 − p−sf1)(1 − p−sf2)...(1 − p−sfr)

but N(℘i) = pfi hence

L(s, ρ) = Π℘|p(1 − N−s
℘ )−1

Q.E.D.
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Back to Hecke Operators in case of Modular Forms of Level 1.

A Modular Form of weight k can be viewed as a homogeneous function on Π , the space of

lattices in C, in the following way :

f 7→ Ff (Λ) = ω−k
2 f(ω1/ω2)

where ω1, ω2 are a set of integral generators of the lattice Λ, and were chosen such that their

ratio belongs to the upper half plane.

Note that we want such functions Ff to be Modular/Cuspidal homogeneous functions

on Π, ie we want to control the growth conditions such that when we consider the other

direction we have :

F 7→ fF (τ) = F (Z + τZ)

with fF holomorphic at τ and has the right behavior at ∞.

Once these conditions hold, we get a bijection between the two sets.

We can now define the Hecke Operator more naturally in terms of homogeneous functions

on Π :

Definition 1. For all n ≥ 1, the Hecke Operator Tn acting on the space of homogeneous

functions of weight k on Π is defined by :

(TnF )(Λ) = nk−1
∑

Λ′⊂Λ
[Λ/Λ′]=n

F (Λ′)

It is clear from this definition that the image of a homogeneous function of weight k on

lattices is still a homogeneous function of weight k on lattices.

But we want to check that TnF preserves the image of the space of modular forms and hence

that TnF induces an action on modular forms.

In order to do this, we make a previsional definition of Tn acting on Mk(SL2(Z)) and

Sk(SL2(Z)) :

Definition 2. FTnf = TnFf

Using Definition 2 we derive a precise formula :

Tnf(z) = nk−1
∑

γ∈SL2(Z)\Mn

f(γz)(cz + d)−k

Where Mn is the set of matrices in M2(Z) of determinant n, on which SL2(Z) acts by left

multiplication.
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This is motivated by the fact that, in order to produce all the sublattices of (1,z) of index

n, we apply to z various möbius tranformations corresponding to matrices of determinant n.

It is now clear that Tn preserves holomorphicity, it remains to show that it also preserves

the growth properties.

Theorem 3. 1) If f =
∑∞

m=0 a(m)qm belongs to Mk(SL2(Z)), then

Tn(f)(q) =
∞
∑

m=0

∑

d|(m,n)

dk−1a(
nm

d2
)qm (1)

In particular if n = p prime, then

Tp(f)(q) =

∞
∑

m=0

a(mp)qm + pk−1

∞
∑

m=0

a(m)qmp

2)

TnTm =
∑

d|(m,n)

dk−1Tmn
d2

In particular, 1) shows that Tn preserves Modular and Cusp forms, and 2) implies :

TnTm = Tnm if (m, n) = 1

TpTpt = Tpt+1 + pk−1Tpt−1

In order to prove Theorem 3 we need the following lemma :

Lemma 1. Every orbit SL2(Z)

(

a′ b′

c′ d′

)

∈ SL2(Z) \ Mn has a unique representative of the

form

(

a b

0 d

)

with ad = n ; a, d > 0 ; 0 ≤ b < d.

Proof : Let gcd(a′, c′) = g, and let α =

(

∗ ∗

− c′

g
a′

g

)

∈ SL2(Z)

Then

α

(

a′ b′

c′ d′

)

=

(

∗ ∗

0 ∗

)

with determinant = n

=

(

a ∗

0 d

)

with ad = n; ad > 0
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Here we can assume by eventually multipying by

(

−1 0

0 −1

)

that a, d > 0

Also since

(

1 t

0 1

)(

a b

0 d

)

=

(

a b + td

0 d

)

there exists a unique t ∈ Z such that b + td ∈ [0, d)

Hence SL2(Z)

(

a′ b′

c′ d′

)

= SL2(Z)

(

a b

0 d

)

with ad = n ; a, d > 0 ; 0 ≤ b < d. �

Proof of theorem 3 :

1) We can rewrite (1) as

Tn(f)(z) = nk−1
∑

γ=

0

@

a b

c d

1

A∈SL2Z\Mn

(cz + d)−kf(
az + b

cz + d
)

which, using the lemma :

= nk−1
∑

a,d>0
ad=n

d−1
∑

b=0

d−kf(
az + b

d
)

By bringing in the Fourier expansion

= nk−1
∑

a,d>0
ad=n

d−1
∑

b=0

∞
∑

m=0

d−ka(m)e2πim( az+b
d

)

= nk−1
∑

a,d>0
ad=n

d−1
∑

b=0

∞
∑

m=0

d−ka(m)qma/d(e2πim/d)b

if we rearrange

= nk−1
∑

a,d>0
ad=n

d−k

∞
∑

m=0

a(m)qma/d(

d−1
∑

b=0

(e2πim/d)b)

Here we note that
d−1
∑

b=0

((e2πim/d)b) = d if d|m and 0 otherwise
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hence

= nk−1
∑

a,d>0
ad=n

d1−k
∞
∑

d|m=0

qam/d

by changing variables m → md

=
∑

a,d>0
ad=n

ak−1
∞
∑

m=0

a(dm)qam

finally we group terms

=

∞
∑

m=0

∑

a|(m,n)

ak−1a(
mn

a2
)qm

=
∞
∑

m=0

(

∑

d|(m,n)

dk−1a(
mn

d2
)
)

qm

2) Exercise

�
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