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Examples of L-functions

Roughly speaking, a L-function is a generating series for arithmetic data. Far from

being a rigorous mathematical definition, that is nevertheless the guiding principle underlying

the construction of every L-function, as the following examples show.

Example 1. The most elementary L-function is the Riemann zeta function. This is

defined by the infinite series:

ζ(s) :=

∞∑

n=1

1

ns

where s ∈ C must have <[s] > 1 to ensure convergence. This series has a product expansion,

discovered by Euler:
∞∑

n=1

1

ns
=

∏

p

1

1− p−s

which highlights its arithmetic properties. Such product expansion is a common feature of

L-functions in general.

Example 2. The construction of Example 1 can be readily generalized to number fields.

Let K/Q be a number field, and denote by OK its ring of integers. The Dedekind zeta

function of the number field K is defined by the infinite series:

ζK(s) :=
∑

a⊂OK

1

NK/Q(a)s
(<[s] > 1)

where the sum runs through all the non-zero integral ideals a of K and NK/Q is the ideal norm.

Note that for K = Q we recover the Riemann zeta function, so this is a true generalization

of Example 1. However, for a general number field K it no longer makes sense to form an

infinite series by adding up all the integers, but rather just the integral ideals. A simple

reason for this procedure is that convergence is no longer guaranteed whenever there are

infinitely many units in OK. Moreover, unique factorization of ideals in a number field gives

the product expansion:
∑

a⊂OK

1

NK/Q(a)s
=

∏

p⊂OK

1

1−NK/Q(p)−s
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which would not be available if we included every integer in the series defining ζK.

From the product expansion, we deduce that Dedekind’s ζK function is constructed en-

tirely from local data, namely the size of the residue field of each prime ideal p of K. The

class number formula

lim
s→1+

(s− 1)ζK(s) =
hK ·RK

wK ·
√
|DK|

· 2r1 · (2π)r2 (1)

then asserts that this local data can be patched together to compute global invariants of

K, namely:

hK = Class number of K, DK = Discriminant of K,

RK = Regulator of K, wK = number of roots of unity in K,

[K : Q] = n = r1 + 2r2 where r1 (resp. 2r2) is the number of real (resp. complex)

embeddings of K.

From this point of view, L-functions can be seen as an attempt to patch local information

together to yield global information about an arithmetic object.

Example 3. Emil Artin’s very influential idea was to associate an L-function L(ρ, s) to

any continuous representation:

ρ : GQ −→ GLd(C) (2)

of the absolute Galois group GQ := Gal(Q/Q). In many ways, number theory as a whole is

the study of GQ, and the study of such complex Galois representations ρ is a natural starting

point.

How can we attach a L-function to a complex Galois representation such as (2)? The key

idea is to consider Frobenius elements attached to rational primes p. For each prime p,

consider the p-adic completion Qp of Q, and pick an algebraic closure Qp. The Galois group

GQp
has a much simpler structure than GQ, and it provides the local data that we would

like to patch together, in the following manner. The fields Qp, Qp have rings of integers Zp

and Zp respectively, on which GQp
acts. Reduction modulo p then relates GQp

to GFp
:

Q

GQ

�

�

// Qp ⊇ Zp

GQp

redp
// Fp

GFp

Q
�

�

// Qp ⊇ Zp
redp

// Fp
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Now GQp
sits inside GQ as the decomposition group Dp of p (this is only defined up to

conjugation in GQ). Inside Dp we have the inertia group

Ip := {σ ∈ Dp : σ = id}

where by σ we mean the element of GFp
obtained by considering the action of σ on Fp/Fp.

We then have an isomorphism:

Dp/Ip ' GFp

and

GFp
' lim
←−

(Z/nZ) = Ẑ

is a profinite group generated by a single element σp : x 7→ xp called the Frobenius element

at p.

Going back to our representation ρ : GQ −→ GL(V ), V a complex vector space of

dimension d, we see that we have a canonical conjugacy class ρ(σp) of linear maps acting on

V Ip, the subspace of V on which ρ(Ip) acts as the identity. The Artin L-function of (V, ρ)

is the L-function defined by the product:

L(ρ, s) :=
∏

p

1

det(1− ρ(σp)|V Ip · p−s)
.

Note that the characteristic polynomial of ρ(σp) only depends on its conjugacy class, and

therefore the product is well-defined.

Whenever ρ(Ip) = id we say that ρ is unramified at p. In this case, we can take ρ(σp)

to act on all of V . By topological considerations, we can moreover deduce that ρ(σp) must

be of finite order in GL(V ) = GLd(C). The eigenvalues of ρ(σp) are then roots of unity

ζ
(p)
1 , . . . , ζ

(p)
d and we obtain the following factorization:

L(ρ, s) :=
∏

p unramified

1

1− ζ
(p)
1 p−s

· . . . ·
1

1− ζ
(p)
d p−s

×
∏

p ramified

(‘Euler factors’) .

Note that the Euler factors come from lower-dimensional representations. For example, if

V Ip = 0 then the Euler factor at p is just 1.

Artin L-functions generalize the two previous L-functions of Examples 1 and 2. We just

have to pick the right representation ρ:

• ζ(s) = L(ρtriv, s), where ρtriv : GQ → Aut(C) is the trivial representation ρ(σ) = 1.

• ζK(s) = L(ind
GQ

GK
ρtriv, s) where ρtriv : GK → Aut(C) is the trivial representation of

GK ⊂ GQ (this will be given as an exercise in Homework 1).
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Note in particular that if K/Q is Galois, then ζK is the Artin L-function corresponding

to the regular representation of Gal(K/Q).

Example 4. In the same spirit as the the Artin L-functions, where we attach a L-function

to a Galois representation with complex coefficients, we can define L-functions attached to

Galois representations with `-adic coefficients. These are continuous maps:

ρ : GQ −→ GLd(Q`) = Aut(V ) (3)

where V is a d-dimensional Q`-vector space. Following the example of Artin L-functions, we

are led to define:

L(ρ, s) :=
∏

p

1

det(1− ρ(σp)|V Ip · p−s)
. (4)

There is an immediate problem with this definition: we are trying to evaluate the character-

istic polynomial of ρ(σp)|V Ip , which has coefficients in Q`, at a complex number p−s. This is

not possible in general, hence we need to restrict our attention to specific classes of `-adic

representations, such as those where the characteristic polynomial of ρ(σp)|V Ip has rational

coefficients.

Now it turns out that all interesting `-adic representations arise from geometry via `-adic

cohomology, and for those we can always defined a L-function as (4). In particular, let X

be a smooth projective algebraic variety over Q. The `-adic cohomology groups:

V
(`)
X,i := H i

ét(XQ, Q`)

are Q`-vector spaces with a canonical action of GQ arising from the action of GQ on XQ. We

will not delve into the construction of these representations, but we will use the following

properties that they enjoy:

• V
(`)
X,i is unramified (i.e. ρ(Ip) = id) at all p 6= ` at which X has good reduction (this

means that if we take an integral model for X over Z, its fiber over Fp is smooth).

• (Rationality property). For each p 6= ` of good reduction, ρ(σp) has characteristic

polynomial Pp(t) in Z[t] which does not depend on `.

• (Weight property). For p 6= ` of good reduction, factor Pp(t) over C as:

Pp(t) = (t− α
(p)
1 ) · . . . · (t− α

(p)
d ).

Then

|α
(p)
j | = pi/2
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Note in particular that by the weight property we deduce that ρ(σp) has infinite order as

soon as i 6= 0, otherwise the eigenvalues α
(p)
j would have absolute value equal to 1. This is

in marked contrast with the complex setting, where ρ(σp) is always of finite order.

Example 5. The Hasse-Weil L-function of an elliptic curve E/Q is a special case of

Example 4, and can be described explicitly. Suppose E is defined by:

E : y2 = x3 + ax + b, a, b ∈ Z, ∆E = −16(4a3 + 27b2) 6= 0.

Then the Hasse-Weil L-function is defined as:

L(E, s) := L(H1
ét(EQ, Q`), s).

The representation H1
ét(EQ, Q`) is 2-dimensional over Q` and the characteristic polynomial

of the Frobenius elements has integral coefficients and does not depend on the choice of

` (rationality property). Therefore the Hasse-Weil L-function is well-defined and it only

depends on the elliptic curve E (and not on the choice of `). Explicitly, we have:

L(E, s) =
∏

p-∆E

1

1− ap(E)p−s + p1−2s
×

∏

p|∆E

(Euler factors)

where

ap(E) = p + 1−#E(Fp)

can be readily computed by computing the number of points on the reduction of E modulo

p (note that the fact that p is unramified implies that E has good reduction there, by the

criterion of Neron-Ogg-Shafarevich).

Example 6. Let E1, E2 be elliptic curves over Q. Consider the 4-dimensional representation

V := H1
ét(E1/Q, Q`)⊗Q`

H1
ét(E2/Q, Q`).

This representation also has an L-function, since ‘it comes from geometry’. To see it, note

that by the Künneth Formula for étale cohomology:

H2
ét(E1 × E2/Q, Q`) = ⊕i=2

i=0H
i(E1)⊗H2−i(E2)

the representation V shows up as the piece i = 1 of the above decomposition, hence it has

a well-defined L-function. These types of L-functions arise when one wishes to consider

correspondences between elliptic curves. The étale cycle class map in fact maps divisors on

E1 × E2 (i.e. correspondences) into H2(E1 × E2).

All the examples of L-functions described so far lead to the notion of motivic L-

functions, i.e. L-functions attached to pieces of motivic cohomology of a variety defined

over Q. These motivic L-functions satisfy an amazing collection of conjectural properties:
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Analytic continuation and functional equation: The functions L(V, s) converge for

<[s] > i/2 + 1 by the weight property. In fact, we have:

Conjecture. L(V,s) has a meromorphic continuation to all of C.

This conjecture is known to be true only in handful of cases:

• Riemann ζ function (due to Riemann himself).

• 1-dimensional representations of GQ (e.g. Dirichlet L-functions, class field theory).

• Some 2-dimensional representations (e.g. Hecke L-functions attached to modular

forms, Hasse-Weil L functions via Wiles’ Theorem).

• L(H1(E1) ⊗ H1(E2), s) is also known to have analytic continuation, via Rankin’s

method.

Special values of L-functions: Evaluating L-functions at ‘special values’ often yields

global information about the arithmetic object to which they are attached. The prototypical

example of this phenomenon is the class number formula (1). Similarly, Euler proved that

for the Riemann ζ function:

ζ(2k) ∈ Q · π2k, k ∈ Z≥1

ζ(1− 2k) ∈ Q

and these values have been related to important arithmetic invariants. More generally,

Deligne’s conjecture on ‘critical points’ gives precise expectations on which algebraic

numbers we are supposed to obtain when we evaluate L-functions at prescribed special

values.

p-adic interpolation: Once the special values of an L-function are known and are alge-

braic, we can interpolate them p-adically. The prototypical example of this construction is

the Kubota-Leopoldt p-adic L-function. Let

ζp(1− 2k) := (1− p2k−1)ζ(1− 2k), (k ≥ 1).

Then by the Kummer-Clausen-von Staudt congruences we know that ζp : Z→ Q extends to

a continuous function:

Z/(p− 1)× Zp −→ Qp.

Other examples of p-adic L-functions which interpolate special values of L-functions are:

• Mazur-Swinnerton-Dyer p-adic L-function attached to an elliptic curve.
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• p-adic Rankin L-functions attached to H1(E1)⊗H1(E2).

Once such p-adic L-functions are available, one can talk about special values of p-

adic L-functions, and a whole new host of conjectures concerning them (p-adic Birch and

Swinnerton-Dyer conjecture, p-adic Bloch-Beilinson conjecture,...).

7


