
An Survey of Cryptographic schemes

Ilya Hekimi

September 4, 2005

Abstract

This text is a survey of various methods to send secure, private mes-

sages. The origins are these methods are their applications will be dis-

cussed. They involve many different subjects in number theory and are

quite interesting to study.

1 What is Cryptography?

Cryptography is the science of sending messages structured in such a way

that only intended recipients are able to understand their content. Some sim-

ple methods have been used throughout history to send these kinds of messages.

Interest in the subject has dramatically increased with the developement of com-

puter technology and the internet. Massive amounts of sensitive information, such

as financial transactions or personal information, are being transmitted through

phone lines and optical cable, and keeping them confidential is very important.

Throughout the text, I will present various systems that have been devel-

oped to send these disguised message. These systems are usually called cryptosys-

tems. I will also assume that the reader has knowledge of modular arithmetic,

finite fields and some basic notions of elliptic curves.

1



2 The Two-way System

2.1 Basic notions

Suppose that two people want to communicate with each other by send-

ing disguised messages. The actual message sent is called the plaintext and when

it is disguised, it is called the ciphertext. Both the plaintext and ciphertext are

written is some pre-chosen alphabet that consists of N letters, or characters. For

example, if these two people wish to send written messages, the common English

alphabet could be used. Each message is split up into message units, which are

made from blocks of letters. The set of all possible plaintext and ciphertext mes-

sages (which can be the same) is called the message space, and is usually denoted

P and C, respectively. Transforming a plaintext message unit into a ciphertext

one can be seen as a function f from P to C and is called the encryption. The

inverse function f−1 is called the decryption, and retrieves the plaintext from

the ciphertext. This function is always assumed to have a 1-to-1 correspondence

between the 2 message spaces.

When one wants to design a cryptosystem, the most important consid-

eration is to be able to put a label on the elements of plaintext and ciphertext

message spaces, such that invertible functions can be easily constructed. The

labels most commonly in use are integers in some range. Other ones are also

used, such as vectors or points on some curve. For example, if one uses single-

letter message units, and an alphabet consisting of all characters that can be

represented on a computer, the unicode values of these characters could be used

as labels. Of course, the label must be unique for each element of the message

space.

2



2.2 Some Simple Systems

For simplicity in the following example, I will assume that there is single

letter message unit using the same N-letter alphabet for both the plaintext and

ciphertext. They will be labeled by 0, 1, 2, ..., N−1. Any function based on these

assumptions is a permutation of the set. The easiest way to visualize this is to

think of the set as the additive group Z/nZ, and f as some isomorphism on it.

The letters m and c will denote the plaintext and ciphertext letters, respectively.

If an alphabet consisting of letters A − Z is used, they can be labeled with the

elements of Z/26Z in the obvious way. Consider the following function:

f(p) =


p + 5 if x < 21

p− 5 if x ≥ 23

f is simply adding 5 modulo 26 (f(m) ≡ m + 5 mod 26). For example, the word

‘DOG’ is encrypted into ‘ITL’, by adding 5 to the numerical equivalent of each

letter.

This example is easily generalizable into an N-letter alphabet, by fixing

an integer b and defining the encryption c = f(m) ≡ m + b mod N. The system

shown above was the case N = 26 and b = 3.

Now suppose an outsider, who does not know the encryption and de-

cryption, but wants to be able to read the coded messages. He will need a way to

extract plaintext messages from the ciphertext. This is called breaking the code,

and the study of code-breaking is called cryptanalysis. Of course, given only a

string of numbers, it is impossible to know any information about the message.

Two different types of information must be obtained. One information that is

vital for breaking a system is understanding its structure, or nature. Information

such as which message spaces and which general function are used is part of the

nature of the system. Another thing is a spefific parameter, or key, which will

3



usually be used to set a particular function. In the previous example, a code-

breaker had to know that the group Z/26Z was being used for representing the

letters A− Z, and that a letter-shift was being used. The key of the system was

the number b. It must be assumed that the structure of system is always known,

as people do not usually change systems, and this information could be leaked

out. Therefore, only the key protects a system from eavesdroppers.

One way to break many systems is to use frequency analysis. This works

by analyzing long strings of ciphertext, and looking for recurring message units.

For example, if someone is using the system explained above, and one knows

that ‘E’ is the most common letter in English, then by looking at the ciphertext

and finding the most frequently re-occurring letter, one can identify it as ‘E’ and

extract the secret key. For example, one intercepts the message ‘IFMMPUIFSF’.

Then, ‘F’, labeled ‘5’, is the most common letter so it is associated with ‘E’,

labeled ‘4’. So b = 1, and we can know figure out the whole message: ‘HEL-

LOTHERE’. In a more complicated system (this one is quickly broken), it could

take days to analyze the ciphertext and find the key, so exchanging keys regularly

prevents anyone from breaking the code.

It’s easy to see how these systems can become extremely complicated

and very hard to break. For more examples, consult [1]. Unfortunately, systems

like these have many drawbacks. A few problems arise, and will be discussed in

the next section.

4



3 Public Key

3.1 Problems of the two-way system

A cryptosystem is made up of 2 sets, or message spaces, and an invertible

function. The sets and the function are usually defined by a choice of parameters,

called the key. The function f , used to encrypt messages, will be denoted E, and

the function f−1, will be denoted D (It is useful to use a different notation then

just f and f−1, as both functions, are kept separate in a public key system. This

will be explained later in the section). A few problems arise:

• The key must be sent through physical means. It must be exchanged in

person or by a trusted courier. This takes a lot of time compared to the

actual encryption and decryption of messages, and it unfeasible if one has

to communicate with thousands of people.

• Once the encryption is knows, it is very easy to figure out the decryption

and vice-versa. Therefore, if you are corresponding with more then one

individual, even if you only give them the encryption function they can

figure out how to decrypt and read the messages you send to others. The

only way to solve this problem is to use different keys for each individual,

which is very time-consuming, as noted above.

• If someone sends you an encrypted message, it is not possible to know if

anyone else has gotten his hand on the encryption and it sending you false

information. There is no way to prove one’s identity.

These problems were always present until 1976, when Diffie and Hellman de-

veloped the public key cryptosystem. The idea of such a system is to design a

function f which is very hard to invert without knowing some extra information

5



(i.e. the key). Such a function is called trapdoor. The attribute of ’trapdoorness’

is not clearly defined from a mathematical standpoint, as advances in computer

technology and algorithm design could make such a function easier to invert,

making it lose its trapdoor status. It may be possible to prove that such a func-

tion is hard to invert, by showing that some lower bound exists on the number

of operations to invert it, but no one has ever proved such a theorem on any of

the trapdoor functions which are in use. An added difficulty to prove anything

is to take into account that someone could compute an arbitrary number of pairs

(m, f(m)), and get some information on the function somehow. The security of

the functions currently known to work well is based on empirical results.

I will now describe how such a system would work. Assume 2 people,

Heloise and Abelard, are trying to send each other messages, and that they can

each generate a trapdoor function E and its inverse D. We also have the same

message space M for the plaintext and ciphertext (for simplicity), and ∀ m ∈ M ,

we have D(E(m)) = p and E(D(m)) = m. A public key system works in the

following way:

1. Both Heloise and Abelard put the encryption function, EH and EA, respec-

tively, into a public file accessible to all. They also keep their respective

decryption functions, DH and DA, private.

2. If Abelard want to send a message m to Heloise, he computes c = EH(m)

and sends it. She in turn computes m = DH(c) and retrieves the original

message.

Suppose someone named Fulbert wants to eavesdrop on Abelard’s message. The

only things he has access to are EH , and c. Because EH is very hard to invert,

she is not able to figure out the decryption and therefore cannot read the original

message. Another important part of any message is its signature. Various meth-

6



ods have been used to authenticate the sender of any message or letter. Methods

such as seals or the traditional signature have been in use for a very long time.

In electronic communication, where one cannot have a physical signature, other

ways have been developed, such as divulging personal information that an impos-

tor would not be likely to know. In a public key cryptosystem, there is a simple

way to authenticate a message. As before, Abelard wants to send a message to

Heloise, and therefore sends an encrypted message c, where c = EH(m). Let l

be Abelard’s signature, and he can include additional information, such as when

the message was sent, etc.. He cannot just send EA(l) as anyone can send that.

So Abelard then transmits (DA(l)) and adds it to the beginning or the end of

c. When Heloise receives the message, she first computes DH(c + DA(l)) and

finds out what the message is, except for a small section of gibberish. Since the

message it supposed to come from Abelard, she applies EA (which is public infor-

mation) to that section and uncovers the signature l. One problem with public

key cryptography is that it is often slower to implement then a two-way system,

and it may cause time-related problems if one needs to send vast quantities of

data. One way to solve this is to use public key to exchange an encryption and

decryption function, which can then be used to in the faster, two-way system (a

system to do this is explained later in the section).

3.2 The Discrete Logarithm

The discrete logarithm is defined as follows:

Definition: If G is a finite group and g ∈ G, and ga = y is given by applying

the group operation a times on g, then the discrete logarithm of y is a.

It it easy to compute ga by using the repeated squaring method (computing

g, g2, g4, ... and adding them up), but given y that we know to be of the form ga,

7



it is computationally hard to compute a. This is called the discrete logarithm

problem and gives rise to a very useful trapdoor function.

One method of finding discrete logarithms is trial multiplication, which

is a very simple brute force method. It is obvious why such a method is not

feasible when the group G becomes very large. I will describe an algorithm that

has exponential running time called Baby Step, Giant Step and was developed

by Shanks. It is one of the fastest methods that can be used in arbitrary groups.

Baby Step, Giant Step

Input:A cyclic group G of order n, with a generator g and an element y. The

idea of this algorithm is that if we know that gx = y, we want to rewrite x as

im + j, keeping m constant and changing i, j. So we get y ∗ gmi = gj. We write

down a table with gj’s and cycle the i’s until we find a match.

Output:A value x such that y = gx.

1. Choose m >
√

n

2. For all j such that 0 ≤ j ≤ m, compute gj and store the pair (gj, j) in a

table.

3. Compute a−m

4. Set y = g

5. For i = 0 to i = m− 1

(a) Check to see if y = gj for some j in the table.

(b) If so, return im + j

(c) If not set y = y ∗ a−m

8



It is possible to search through the table in constant time, making the

algorithm have a running time of O(elog n).

There are other algorithms for finding discrete logarithms, the most no-

table one being the Index-Calculus algorithm. It is important because it has sub-

exponential running time O(elog n log log n), but only works on finite fields. Most of

the original cryptosystem based on discrete logarithms used finite fields, making

them use larger keys (i.e. increase the size of the group) to get the same security,

making the actual encryption and decryption process slower. This is why elliptic

curve variants of these algorithms were introduced, as the Index-Calculus algo-

rithm cannot be applied to them. I will not describe the algorithm, but for more

information consult [1], or any other book on cryptography.

3.3 RSA

This first public key cryptosystem to be introduced was invented by

Rivest, Shamir and Adleman, and is called the ‘RSA’ cryptosystem. This system

is based on the difficulty of factoring. I will describe the procedure for a single

person to generate a set of functions E and D, and then receive message from

others.

First of all, one must choose two very large primes p and q, and then set

n = pq. How does one generate random prime numbers? One possibility is to

first generate a random number q. If q is even, replace it by q + 1. Then apply

primality tests to see if the number is a suitable prime (since most primality tests

are probabilistic). If not, replace q by q+2 and repeat until you find a prime. By

the Prime Number Theorem, one will find a prime after testing O(log m) numbers.

There is a lot of literature on random number generation and primality testing.

With this information, one can now compute φ(n) = (p−1)(q−1), where

9



/phi is the Euler totient function. Now, a number e must be selected such that

1 ≤ e ≤ (φ(n)) and gcd(e, φ(n)). Then, one computes the multiplicative inverse

d = e−1 mod φ(n), using the Extended Euclidean Algorithm. The encryption

key is the pair (n, e) and the decryption key is the pair (n, d).

Encryption: Given a plaintext message m ∈ M , compute c = me mod n.

Decryption: Given c, compute cd mod n, giving us med ≡ mlφ(n)m1, l ∈ Z,

which is equal to m mod n by Euler’s Theorem and therefore recovers the original

message.

The security of the system is based on the difficulty of factoring. Obvi-

ously, if one can factor n, one can break RSA. Conversely, breaking RSA gives rise

to a probabilistic algorithm to factor n (described in [3]). Therefore, inverting

the encryption is computationally hard. Unfortunately, there is no way to predict

what information someone can get by analyzing any intercepted ciphertext. As I

mentioned before, none of the public key systems are provably secure, but most

are conjectured to be and experimental evidence also suggests so.

3.4 Other public key cryptosystems

Diffie-Hellman key exchange

The idea of this cryptosystem is to use use a random element in the field Fq as a

key for a two-way cryptosystem. Again, we have Heloise and Abelard that want

to communicate the secret key to each other. The method is as follows:

1. Heloise and Abelard both agree on a generator g ∈ Fq
∗.

2. Heloise chooses a secret integer a between 1 and q − 1, and computes ga

and sends it to Abelard.

10



3. Abelard chooses a secret integer b between 1 and q − 1, and computres gb

and sends it to Heloise.

4. Both Heloise and Abelard can now compute gab, and they use that as their

secret key

An outsider wanting to break the code needs to be able to determine the key

gab, but has only g, ga, gb. The security of this system is assumed by the Diffie-

Hellman assumption, which states that it is computationally infeasable to com-

puter gab knowing only ga, gb. Obviously, if one can compute discrete logarithms,

then the assumptions fail. Conversely, it is conjectured that there is no possible

way compute gab from ga, gb without first computing discrete logarithms, but not

proven.

ElGamal Cryptosystem

For this cryptosystem, a large field Fq, must first be selected, and an

element g ∈ Fq
∗. If we keep to our usual set-up, Heloise chooses an element a

between 0 and q − 1. She publishes ga as her encryption key. Abelard wants to

send her a message m which we assume is an element of Fq. The system is as

follows:

Encryption: Abelard chooses an integer k at random and computes (gk, mgak).

Abelard can compute gak by raising ga to the k-th power.

Decryption: Heloise receives the pair of numbers and computes gak, and can

now retrieve m by dividing the second element by it.

Again, if one can solve discrete logarithms, one can break the system.

The converse also holds by the Diffie-Hellman assumption, as one needs to com-

pute gak knowing only gk, ga to break the code.

11



3.5 Elliptic Curve Cryptography

It is assumed that the reader knows the group law on the points of an

elliptic curve over a field. For simplicity, the elliptic curves will always be in

Weierstrass form (y2 = x3 + ax + b) over Fq, and we will not be in fields of

characteristic 2.

The first important thing is to be able to represent messages as points

on the elliptic curve. We need to be able to generate points that are related to

the message m in some way. One possible probabilistic way of doing this is the

following:

1. It is assumed that m ≤ M and that q > Mκ.

2. Choose a fairly large integer κ, such that we want the probability of failure

to be 1/2κ.

3. Write down the integers from 1 to Mκ in the form mκ+ j where q ≤ j ≤ κ

and set up a 1-to-1 correspondence between these integers and elements

of Fq. One way to do this is to write these integers as r-digit numbers

to the base p, and then take the r digits (as elements of Z/pZ) to be the

coefficients of an r-1 degree polynomial corresponding to an element of Fq

(by considering the polynomial in the ring Z/pz[X] mod an irreducible

polynomial or r-degree).

4. Given m, for each 1 ≤ j ≤ κ,we obtain an element x ∈ Fq corresponding to

mκ+j. We then compute the right-side of the equation y2 = x3+ax+b and

try to find a square root in Fq (there are probabilistic algorithms for finding

square roots, one can be found in [1]). Once a root is found for a particular

j, we use the point Pm = (x, y) as a representative for our message m.

12



5. To retrive m from Pm, we just have to compute bx− 1/κc. Since an element

x3 +ax+b will be a square root 1/2 of the time, there is only a 1/2κ chance

that this method will fail.

Now that we have a method for representing messages as points, I will

describe another public key cryptosystem. One must note that the previous public

key systems based on discrete logarithms in Fp can be generalized to arbitrary

groups, and one can use the points on an elliptic curve to represent such groups.

Here, the notation aP will represent adding P to itself a times (applying the

group law a times).

Analog of Massey-Omura using Elliptic Curves

Assume there is an elliptic curve E over Fq, and that the number N of points on

the curve has been computed and is publicly known. Again, Abelard wants to

send a message m, represented as a point Pm, to Heloise.

1. Each user (Heloise and Abelard) secretly choose a random integer e be-

tween 1 and N such that gcd(e,N) = 1 and using the Extended Euclidean

Algorithm, compute its inverse d ≡ e−1 mod N.

2. Abelard sends the message eaPm.

3. This means nothing to Heloise, who does not know e, so she computes

eheaPm.

4. Abelard receives this and uncovers part of the message by computing daeheaPm =

ehPm, and sends it back to Heloise.

5. Heloise can now compute dhehPm = Pm and recover the original message.

Someone wanting to break the code only has access to ehPm, eaehPm, eaPm, and

is not able to extract information, again by the Diffie-Hellman assumption.

13



4 Probabilistic Public Key

As mentioned above, many of the public key cryptosystems are not prov-

ably secure. For example, in the Diffie-Hellman Key exchange, we know that

breaking the system is not harder then solving discrete logarithms, but we have

no idea if a lower bound exists. Also, it is hard to prove security, as information

could be retrieved from the ciphertext, by frequency analysis or any other method.

The usefullness of these systems are based on conjectures and experimental data

(no one has been able to break them).

4.1 The first cryptosystem

Probabilistic public key cryptosystems were developed because of the restriction

of regular public key systems on proving security. These systems propose a cryp-

tosystem with the following scheme:

Whatever is efficiently computable about the plaintext given the ciphertext, is

also efficiently computable without the ciphertext.

The first such system was developed by S.Goldwasser and S.Micali, and is based

on the difficulty of extracting quadratic residues modulo some composite n. This

cryptosystem relies on the notion of Unapproximable Trapdoor Predicates. The

idea is that one develops a function Q that is hard to compute without knowing

some additional information, but given y, it is easy to find an element x such that

Q(x) = y. I will not define exactly what Unapproximable Trapdoor predicate

are, nor will I show the proof of the security of the system as it is a rather lengthy

proof, but I direct the reader to [5] for more information.

A probabilistic public key cryptosystem based on quadratic residues

14



We first choose 2 primes p and q and set n = pq. When they choose a y, such

that y is a non-residue modulo n and
(

y
n

)
= 1, where

()
is the Jacobi symbol.

The pair (n, y) is made public and (p, q) kept secret. We also have a function Q

such that

Q(x) =


1 if x is a quadratic residue mod n

0 if x is a quadratic non− residue mod n

Encryption: Suppose Abelard wants to send a message m to Heloise. We first

represent m = m1m2m3...ml as a binary string.

1. For i = 1 to i = l

(a) Pick x ∈ (Z/nZ)∗ at random

(b) If mi = 1, set ei = yx2 mod n

(c) else set ei = x2 mod n

2. Send the l-tuple (e1, e2, ..., el)

Decryption: We receive an l-tuple of numbers (e1, e2, ..., el).

1. For i = 1 to i = l

(a) Set mi = Q(ei)

2. Set m = m1m2...ml

4.2 Other Systems

There are other types of probabilistic cryptosystems that do not do a bit-by-bit

encryption, but rather are able to encrypt whole messages. One such system

is one developed by Paillier (see[6]) and based on composite residuosity classes.

This system is quite famous, but unfortunately not implementable in practice,

15



as it posseses very long encryption times. They have been some modifications by

various people, notably using elliptic curves (see [7]).

5 Conclusion

Cryptography is a very interesting field of study as it invovles many dif-

ferent notions from number theory and has many useful applications. Both code-

breaking and devising new systems are intresting from a mathematical stand-

point. The subject will no doubt become even more interesting if some tech-

nological breakthroughs happen, such as quantum computers (who are able to

factor in polynomial time). I hope to have increased the reader’s interest in the

subject with this text.

16



6 References

1. Koblitz, Neal. A course in number theory and cryptography. Second edi-

tion. Graduate Texts in Mathematics, 114. Springer-Verlag, New York,

1994

2. Cohen, H. A Course in Computational Algebraic Number Theory, volume

138 of Graduate Texts in Mathematics. Springer-Verlag, 1993.

3. L. M. Aldeman, R. L. Rivest and A. Shamir, “A method for obtaining

digital signatures and public key cryptosystems,” Communications of the

ACM, 21, (1978), 120-126

4. T. ElGamal “A public key cryptosystem and a signature scheme based

on discrete logarithms,”IEEE Transactions on Information Theory IT-31,

(1985), 469-472

5. S.Goldwasser and S.Micali, Probabilistic Encryption, JCSS Vol.28 No 2,

(1984), 270-299.

6. P. Paillier. Public-Key Cryptosystems Based on Composite Degree Resid-

uosity Classes. EUROCRYPT99, LNCS 1592,(1999), 223238.

7. S.Galbraith, Elliptic curve Paillier schemes, Journal of Cryptology, Vol. 15,

No. 2 (2002) 129–138.

17


