
Pollard’s p-1 and Lenstra’s factoring
algorithms

Anne-Sophie Charest

October 2, 2005

Abstract

This paper presents the result of my summer research on Lenstra’s
algorithm for factoring with elliptic curves. It first describes Pollard’s
p-1 algorithm, which is in a way the basis for Lenstra’s algorithm. The
theory behind both algorithms will be discussed, as well as the their
detailed steps, their implementation and their efficiency. This paper
is intended for people with little previous knowledge in group theory.
Understanding of basic algebra, such as the ideas of gcd and modular
arithmetic, is assumed.

Contents

1 Pollard’s p-1 algorithm 3
1.1 General idea of the algorithm 3
1.2 The steps of the algorithm . 4
1.3 Conditions of success of the algorithm 5
1.4 Efficiency of the algorithm . 5
1.5 Possible improvements of the algorithm 10

2 Lenstra’s algorithm using elliptic curves 11
2.1 Elliptic curves . 11
2.2 General idea of the algorithm 14
2.3 The steps of the algorithm . 15
2.4 Conditions of success of the algorithm 15
2.5 Efficiency of the algorithm . 16
2.6 Possible improvements of the algorithm 19

1

Introduction

Number theory, although once renowned and loved for its lack of application
to the real world, is now used in many ways in our everyday life. It’s the
basis of the the RSA cryptography system [8], used by millions of people ev-
eryday to exchange secret information, such as credit card numbers, over the
Internet. This cryptosystem relies on the fact that it is much more easier to
test for primality than to factor integers, which means that we can find two
big primes and multiply them together without too much trouble, but we can
not compute the unique factorisation into primes of the resulting composite
in a reasonable amount of time. (For more detailed information on how the
RSA cryptographic system and general concepts of cryptography, see [12].)
However, the difficulty of factoring integers has not yet been proven, and
this entire system would collapse if it were false and an efficient factoring
algorithm were invented. This is what motivates in great part the search for
fast factoring.

The idea of factoring an integer into primes is a very simple one. It can
be performed properly by any elementary school student by dividing the in-
teger to factor succesively by all integers smaller than its squareroot. This
technique is straigthforward and always successful, but requires many oper-
ations. Inded, to find one factor of an integer n we might have to try up to√

n possible divisors. Thus, when the numbers to factorize get huge, such as
in the cryptographic setting, this technique becomes rapidly unsuable. To
this date, no computer is fast enough to factor large integers of about 300
digits in fewer than millions of years [3]. Hence, even if the speed of our com-
puters would increase drastically, we would still rapidly run into numbers we
couldn’t factor in less than thousands of years.

So, the search for faster factorisation is really the search for new algo-
rithms that factor integers in less operations. This report will present two
algorithms that I have studied over the summer : Pollard’s p-1 algorithm
and Lenstra’s algorithm using elliptic curves, the first one being the basis of
the other one. Although they are not the fastest current algorithms to factor
any integer, they can yield impressive results for factoring some particular
kind of integers.

2

1 Pollard’s p-1 algorithm

1.1 General idea of the algorithm

The p − 1 algorithm was developped by J.M.Pollard in the 1970’s [6] . The
basic idea of the algorithm is to use some information about the order of an
element of the group Zp to find a factor p of N . The algorithm is based on
the following theorem :

Theorem 1.1. Fermat’s Little Theorem
Let p be a prime and a ε Z such that p - a . Then, ap−1 ≡ 1 mod p.

Proof. Consider the following two sets of equivalence classes :

A = {[a], [2a], [3a], [4a], . . . , [(p− 1)a]}

B = {[1], [2], [3], [4], . . . , [p− 1]} = Zp − {[0]}

First, we want to show that A = B.
Clearly, A ⊆ B since p - a and p divides none of 1, 2, 3, . . . , p− 1.
Now, suppose that ∃ r, s εN such that 1 ≤ r ≤ s ≤ p− 1 and [ra] = [sa].
Then,

[ra]− [sa] = 0

r[a]− s[a] = 0

(r − s)[a] = 0

r − s = 0, since[a] 6= 0 mod p (since p - a)

But, since r ≤ p and s ≤ p, r − s ≡ 0 mod p ⇒ r = s.
So, [a], [2a], [3a], · · · , [(p− 1)a] are all different mod p, which means that the
cardinality of A is p− 1.
And, since]A = p− 1,]B = p− 1 and A ⊆ B, we can conclude that A = B,
that is the equivalence classes in A are congruent to the equivalence classes
of B under a certain rearrangement.
Hence,

a ∗ 2a ∗ 3a ∗ · · · ∗ (p− 1)a = 1 ∗ 2 ∗ 3 ∗ · · · ∗ p− 1 mod p

ap−1 ∗ (p− 1)! = (p− 1)!

ap−1 = 1, since(p− 1)! 6= 0 mod p.

3

Note that from a group theory point of view, considering all a ε Z such
that p - a as Zp, this theorem is equivalent to the theorem that any element
of a group elevated to the cardinality of the group must equal the identity
element.

How can we use this theorem to factor an integer n ? The idea is that
if p | n, and p is prime, then ap−1 = 1 mod p, or d = ap−1 − 1 = 0 mod p,
for any a relatively prime to p, so that gcd(d, n) = p, the factor of n we were
looking for. Obviously, we can not directly compute d because we do not
know p at first. We could just compute am with an exponent m = 1, 2, 3, . . .
until gcd(d, n) = p, that is until m = p − 1. However, that would not be
more efficient than doing trial division, since we would need to execute p− 1
operations, each involving exponentiaton to a relatively big power.
There is however a clever way to choose m. The idea is to notice that we
do not need to exponentiate a exactly to the power m = p− 1 since, if m is
such that p− 1 | m, i.e. m = c(p− 1), then

am − 1 = ac(p−1) − 1 = ap−1c − 1 = 1c ≡ 0 mod p

so that gcd(am, n) = p. So, we need to choose an integer m and we will get
a factor of n if p− 1 | m. By choosing m as a product of many small prime
factors, the chances that this condition holds will increase.

1.2 The steps of the algorithm

1- Choose a bound B for the algorithm, usually about 105 − 106

2- Compute

m =
∏

p prime
1≤p≤B

pblogB/logpc

3- Choose a random positive integer a between 1 and n.

4- Compute d = gcd(a, n).
If d = 1,go to 5.
If d 6= 1, return d. (It is a non-trivial factor of n.)

5- Compute am mod n

6- Compute e = gcd(am − 1, n)
If e = 1, go to 1 and increase B.
If e = n, go to 3 and change a.
If e 6= 1 & e 6= n, return d. (It is a non-trivial factor of n.)

4

Note that the bound B defines indirectly the size of the exponent m. It
hence constitutes a measure of the time the algorithm will take to factor
n. A bigger B increases the probability of finding a factor of n, but it also
increases the time needed to perform the algorithm.

I should also point out that some implementations of the algorithm will
use m = lcm(B). Then, m will still be a product of small primes, but its
factorisation will not include any power of small primes, so it might fail if
the factorization of p− 1 contains a prime to a higher power.

1.3 Conditions of success of the algorithm

Pollard’s algorithm will succeed to find a factor p of n if p is such that
p − 1 | m. Using the following definition of an x-smooth integer, we can
restate this condition as follow : Pollard’s p− 1 algorithm with bound b will
succeed to find a factor of n if n has a factor p such that p− 1 is b-smooth,
except in the rare cases where p− 1 has a small prime factor to an exponent
so large that it is not in the factorisation of m.

Definition 1.1. An integer n is said to be x-smooth if and only if all its
prime factors are smaller or equal to x.

For example, 153 = 32 ∗ 17 is 17-smooth (and so n-smooth ∀nεN ≥ 17).

Obviously, since n, the number to factorize, is finite, p is finite too, so
there surely exists a B such that p− 1 is b-smooth. However, if this B is too
big, then Pollard’s p − 1 algorithm will not be faster than trial division. If
we use Pollard’s p-1 algoithm with a bound B to try to factor n, and n has
a prime factor p, then the probability that we will find p is the probability
that p is B − smooth. This probability is approximated by the probability
that a number near p is B − smooth,which is given by p((log(p))
(log(B)) (Theorem 4.9 of [12]).

1.4 Efficiency of the algorithm

There are three possibly time-consumming steps in the Pollard’s p− 1 algo-
rithm:

1- Compute m = lcm(b)

2- Compute am mod n

3- Compute d = gcd(am − 1, n)

In this section, I will present some simple algorithms to do each of these
operations efficiently.

5

Compute m = lcm(b) : Sieve of Eratosthenes

To compute m, we first need to generate a list of all the primes leqB.
One technique to find all those primes would be to go through all the in-
tegers smaller than B and check if they are primes. Using trial divison to
check primality, this technique would require O(

√
(i)) steps for each integer

2 ≤ i ≤ B, for a total of O(B
√

(B)) steps. This is way too much work for
only a preliminary computation.

Finding those primes can be achieved in a faster way by the Sieve of Er-
atosthenes. First, we write all the integers between 2 and our bound B.
Then, for each number up to

√
(B) which is not crossed out yet, we cross

out all its multiples. The numbers remaining will be the integers smaller
than B which have no factor smaller than

√
(B), that is the primes smaller

than B. See annex 1 for a sample code of the Sieve of Eratosthenes in Pari
language.

The Sieve of Eratosthenes is very more efficient than the trivial method.
The outer loop will go through all numbers smaller than

√
(B) not yet crossed

out. The exact number that is is not really important, we will just bound it
above by

√
(B). For each of these integers, we will cross out at most n

p terms. So, the total needed operations will be :

Σ

√
(B)

p=2 dB
p
e ≈

∫ √
(B)

2

B

p
dp = B · ln(

√
(B)) = O(B · log(B))

Moreover, it is faster to add integers and croos-out numbers than to prodeed
to divisions, so the advantage of the Sieve of Erasthostenes over the trial
division method is even greater than shown by this complexity analysis. As
an indication of how long it takes to compute the primes, the implementation
found in annex returns all the primes smaller than 500 000 in less than one
second on an average computer.

Compute am mod n : Fast modular multiplication

We will compute am mod n by expending m as a sum of powers of 2, repet-
edly squaring a, and then multiplying the relevent powers of a.

Let m = k02
0 + k12

1 + ·+ kr2
r, where the ki′s are either 0 or 1.

6

Then,

am = ak020+k122+k222+···+kr2r

am = ak020 ∗ ak122 ∗ ak222 ∗ · · · ∗ akr2r

am = k0a
20 ∗ k1a

22 ∗ k2a
22 ∗ · · · ∗ kra

2r

am = A0 ∗ A1 ∗ A2 ∗ · · · ∗ Ar

And the Ai′s are computed in the following way :

A0 = a

A1 = A2
0 = a2

A2 = A2
1 = a4

...

Ar = A2
r−1 = a2r

Computing am as a · a · a · · · · · a︸ ︷︷ ︸
m times

, we would need m operations, each opera-

tion consisting of one multiplication and one reduction mod n. The method
just described is much more efficient. We only need r operations to computes
the Ai′s and than at most r operations to add them together and get am.
And, since m = k02

0 + k12
1 + ·+ kr2

r ≥ 2r, we get that r ≤ log2k. So, with
this method, we can compute am in at most 2log2k operations, where each
operation consists of one multiplication and one reduction mod n.

Compute d = gcd(am − 1, n) : Euclid’s GCD algorithm

Let

p = pe1
1 · pe2

2 · · · · · per
r

q = pf1

1 · pf2

2 · · · · · pfr
r

where p1, p2, . . . , pr are distinct primes & e1, e2, . . . , er, f1, f2, . . . , fr ε N

Then, we can compute gcd(p, q) as

gcd(p, q) = p
min(e1,f1)
1 · pmin(e2,f2)

2 · · · · · pmin(er,fr)
r

However, this formula requires that, to compute gcd(am − 1, n), we first find
the prime factorisation of am−1 and n. But if we had the prime factorisation
of n, we would not be computing gcd(am − 1, n) to try to factor n !

7

The problem of computing the gcd of two integers whose factorisation
into primes we do not know has fortunately been successfully studied long
ago. Indeed, Euclid published a method to find gcd(p, q) as Proposition II in
the second book of The Elements more than 2000 years ago. It is based on
the following theorem :

Theorem 1.2. GCD and remainder
Let a, b ε N+ and q, r εZ such that a = bq + r. Then, gcd(a, b) = gcd(r, b).

Proof. Let d = gcd(a, b) and e = gcd(r, b).
We will show that d ≤ e and e ≤ d, so that d = e.

d | a & d | b ⇒ d | a− bq = r

So, d is a common divisor of b and r. And, since e = gcd(b, r), d ≤ e.
Also,

e | r & e | b ⇒ e | bq − r = a

So, e is a common divisor of a and b. And, since d = gcd(a, b), e ≤ d.
Hence, d = e, i.e gcd(a, b) = gcd(b, r).

Euclid’s algorithm consists of reducing the problem of computing gcd(a, b)
of size a to the problem of computing gcd(b, r = a−qb) of size b by the division
algorithm and then applying the same technique until we get the gcd(a, b) :

a = bq1 + r1 0 ≤ r1 < b

b = r1q2 + r2 0 ≤ r2 < r1

...

rn−1 = rnqn+1 + rn+1 0 ≤ rn+1 < rn

rn = rn+1qn+2

Since the sequence of remainders is strictly decreasing and the remainders
are all strictly positive, there will necessarily eventually be one remainder
equal to 0. In our example, it was rn+2, and so

gcd(a, b) = gcd(b, r1) = . . . = gcd(rn, rn+1) = rn+1

Euclid’s algorithm is really simple to implement recursively. Here is my code
of the Euclidean algorithm in Pari :

8

Input : two integers a and b

Output : gcd(a,b)

Note : In pari, the notation is if(condition, then, else)

Gcd(a,b) =

{

if(b==0, return(a), return(Gcd(b, a%b)));

}

Let’s now analyse how many steps will be required to compute gcd(a, b)
with Euclid’s algorithm.

Lemma 1.1. Every two steps of Euclid’s algorithm, the remainder is at least
halved i.e. rn+1 ≤ 1

2
rn−1

Proof. We know that rn−1 = rnqn+1 + rn+1, so that rn+1 = rn−1 − rnqn+1.
Also, rn+1 < rn. So, if rn ≤ 1

2
rn−1, we are done.

Hence, we can suppose that rn > 1
2
rn−1

Then,

rn+1 = rn−1 − rnqn+1 < rn−1 −
1

2
rn−1qn+1 = rn−1(1−

1

2
qn+1)

.
Now, qn+1 6= 0, since otherwise we would have rn+1 = rn−1, butrn+1 < rn <
rn−1. Since qn+1 is a non-zero integer, qn+1 ≥ 1, so that

rn+1 < rn−1(1−
1

2
qn+1) <

1

2
rn−1

Theorem 1.3. Euclidean algorithm complexity
The Euclidean algorithm returns gcd(a, b) in at most 2log2(2b)steps.

Proof. From lemma 1.1, we have rn+1 ≤ 1
2
rn−1. Since r1 < b,

r3 <
1

2
b, r5 <

1

2
r3 <

1

4
b, · · · , r2n−1 <

1

2n−1

So, the algorithm terminates as soon as 2n−1 ≥ b, since then r2n−1 ≤ 1, so
r2n−1 = 0 since it’s a non-negative integer.
Hence, when the gcd is found, we have

n− 1 ≥ log2b i.e. n ≥ 1 + log2b = log2(2b)

So, the Euclidean algorithm takes at most 2log2(2b) to find gcd(a, b).

9

1.5 Possible improvements of the algorithm

When the bound B becomes so big that it is too expensive to continue doing
Pollard’s algorithm as describe earlier, there is still a possibility to go on and
factor n, which is a second-stage to the algorithm. At this point, we change
the notation of B to B1, and introduce a new bound B2, usually 100B1 or
10000B1. (This actually depends of our implementation, but to increase our
chances of finding a factor, it is suggested in [7] to choose B2 such that our
algorithm will spend as much time in the second phase as it spend in the
first one.)

So, in the second stage, we keep the value aQ, where Q = lcm(primes ≤ B1)
and we then compute aQq1 , aQq2 , · · · , aQqr , where q1, q2, · · · , qr are all the
primes between B1 and B2, and check each time gcd(aQqi − 1, n) just as in
the last step of the first stage. To compute aQqs from aQqr , compute aQ(qs−qr).
Since the difference between two primes is usually not too big, this is done
efficiently by precomputing a2Q, a4Q, · · · , aQ2n with n being a few hundreds
before starting stage 2.

The second stage of Pollard’s algorithm will find a factor p if its p− 1 prime
factors are all ≤ B1 except for one which is between B1 and B2. Notice that
it will not find a factor p if p−1 as more than one factor between B1 and B2
because the prime factors are included only one at a time in the exponent,
except in a few particuliar cases.

Some other technical improvement can also make the algorithm run faster.
For example, we could compute the gcd’s only once a few hundred times,
and then go backwards if more than one factor has been found. Some details
on other speeding improvements can be found in [5]. However, even with all
these improvements, Pollard’s algorithm will not factor n if p−1 only has big
primes in its factorization. At this point, it is better to switch to an other
algorithm, for example Lenstra’s factoring method which extends the idea of
the p− 1 algorithm to the group of points on an elliptic curve.

10

2 Lenstra’s algorithm using elliptic curves

Before we study Lenstra’s algorithm for factoring integers with elliptic curves,
we need to take a look at a few properties of elliptic curves.

2.1 Elliptic curves

Definition

An elliptic curve is defined by a polynomial of degree threee of two variables,
f(x, y) = 0, where x and y are taken from an arbitrary field. By an appro-
priate change of variables, any elliptic curve can be reduced to the following
Weierstrass form : y2 = x3 +ax+ b, provided the field over which the elliptic
curve is defined does not have characteristic 2 or 3. We have to exclude these
cases because transforming a general elliptic curve into the Weierstrass form
involves division by 2 and by 3, which then would not be allowed. Since the
algorithm does not require any elliptic curve over a field of characteristic 2 or
3, we will not consider them, and concentratre only on elliptic curves in the
Weierstrass form, as this simplifies considerably our work. So, our definition
of an elliptic curve is as follow :

Definition 2.1. An elliptic curve is defined by a non-singular equation of the
form y2 = x3 +ax+b where a, b, x, y ε K, and K is a field with characteristic
6= 2, 3.

Non-singularity of the curve only means that it does not have any repeated
roots, that is its graph does not have any cusps or self-intersections. Just
as the discriminant b2 − 4ac of a quadratic equation ax2 + bx + c vanishes
if the equation has a repeated root, the discriminant ∆ = −16(4a3 + 27b2)
of an elliptic curve will vanish if the curve is non-singular. So, we check for
non-singularity by adding the condition that 4a3 + 27b 6= 0.

One interesting geometric property of a curve as defined in 2.1 is that any
line crossing the curve at two points on the plane will necessarily meet it at
a third point. To see that, suppose that the line is given by y = mx + b and
look at its intersections with the curve y2 = x3 + ax + b. The points which
are both on the line and the curve will satisfy the equation

y2 = (mx + b)2 = mx2 + 2bm + b2 = x3 + ax + b

And,this is a cubic equation in x, so it has either 3 real roots or only 1.

11

Group law on elliptic curves

We are now interested in defining an operation on the set of points on an
elliptic curve that will transform it into a group. The operation on the group
of points on the elliptic curve should take as input two points on the curve,
and then return a third point on the curve. An obvious way to do that
would be to use the property just mentionned and draw a line between the
two known points and then take the third inteserction point of this line with
the curve. Let’s denote the result of this operation with the points P and
Q by P ∗ Q. Clearly the * operation does not transform the set of points
on the elliptic curve into a group ; there is for example no identity element.
However, we will use this * to define the group operation. But first, let’s
define the set of points on the elliptic curve :

Definition 2.2. Let E be an elliptic curve defined over a field K.
Then, the set of points E(K) on the elliptic curve is defined as

E(K) = {(x, y)s.t.x, yεK and y2 = x3 + ax + b} U OE

where OE denotes a point at infinity.

Note that the point OE does not appear on the graph of E(K), but has
to be imagined to be at infinity. It is the third point that any vertical line on
the curve will meet. We include it in our set of points on the elliptic curve
because we will use it as our identity element.

Definition 2.3. Let P and Q be points on the elliptic curve E.
Then, P + Q = OE ∗ (P ∗Q).

Theorem 2.1. Group operation on the curve
The addition defined in 2.2 transforms E(K) into a group.

Proof. 1- OE is the identity element
This states that P + OE = OE ∗ (P ∗OE) = P
We can see that graphically. P ∗ OE gives us the third point on the
curve and the line between P and OE, which is just a vertical line going
trough P . Then, when we star this point with OE, we get the third
point on the line between OE and P ∗OE, that is P .

2- Let P ε E(K). Then, ∃ a P ′ ε E(K) st. P +P ′ = P ′+P = OE. Define
P ′ as the reflexion about the x-axis of the point P . Then P ′ is on the
curve, since (x, y) ε E(K) ⇒ (x,−y) ε E(K). Now, P +P ′ is the third
point on a vertical line going through P and P ′, that is OE.

12

3- Let P, Q,R ε E(K). Then, (P + Q) + R = P + (Q + R). Associativity
is not as easy to prove graphically (although [10] gives an idea of how
to do so), but it can be proven easily using the algebric formulas for
adding points developped in the next section. An interested reader can
work out this long and tedious proof by himself or look at [9] for a more
conceptual proof.

Formulas of the group addition

In order to work efficiently with points on elliptic curves, we have to be
able to add them together without relying on a graph of an elliptic curve an
drawing lines. We need to describe algebraicly the operation of addition on
the group of points on an elliptic curve.

Let P1 = (x1, y1), P2 = (x2, y2), P1 ∗ P2 = (x3, y3).
Then, P1 + P2 = (x3,−y3) since the third intersection point with the curve
of a line passing through a point P and the point at infinity is the reflexion
of the point P on the x− axis.
So, now we need to find the value of x3 and y3. The line between P1 and P2

is given by the equation

y = mx + c, where m =
y2 − y1

x2 − x2

and c = y1 −mx1 = y2 −mx2

So, when this line intersects the cubic, we have

y2 = (mx + c)2 = x3 + ax + b

Which can be rewritten as

0 = x3 −m2x2 + (a− 2bx)x + (b− c2)

We know that this equation has the three roots x1, x2 and x3, so that

x3 −m2x2 + (a− 2bx)x + (b− c2) = (x− x1)(x− x2)(x− x3)

= x3 − (x1 + x2 + x3)x
2

+(x1x2 + x1x3 + x2x3)x− x1x2x3

Hence,
m2 = x1 + x2 + x3, so x3 = m2 − x1 − x2

And, y3 = mx3 + c.

13

But, in the case where P1 = P2, we can not use these equations since
computing m will involve a division by zero. In this case, we find the slope
m by computing the tangent of the curve at the point P1 = P2:

y2 = f(x) = x3 + ax + b

So, m =
dy

dx
=

f ′(x)

2y
=

3x2 + a

2y

Hence, we can add two points P1 = (x1, y1) and P2 = (x2, y2) on the
elliptic curve y2 = x3 + ax + b in the following way :

P1 + P2 =

{
OE if P1 = −P2

(m2 − x1 − x2, m(x1 − x3)− y1) otherwise

where

m =

{
3x2

1+a

2y1
if P1 = P2

y2−y1

x2−x1
otherwise

2.2 General idea of the algorithm

Recall that in Pollard’s p-1 algorithm, we can not factor n if it doesn’t have
a prime factor p with p − 1 smooth. H.W. Lenstra developped in 1985 [4]
a new factorisation algorithm which avoid this problem b use the group of
random elliptic curve over the field Zp instead than the multiplicative group
of Zp. The idea is that the later always has order p− 1, but the order of the
group on an elliptic curve varies with the curve, so that if the order is not
smooth enough, we can just change curve.

Since we do not know p at first, we can not define an elliptic curve over
the field Zp. So, we define the elliptic curve over the ring Zn. Technically an
elliptic curve modulo n is not really an elliptic curve. But, by the Chinese
remainder theorem, what goes on modn can be imagined seperatly modp and
modq for factors p and q of n. By adding the condition that for the elliptic
curve gcd(4a3 + 27b2, n) = 1, we ensure that it is actually an elliptic curve
mod p and modq.

Now, we want to find a number k which is congruent to 0 mod p or
mod q, but only for one at a time, so that gcd(k, n) is a non-trivial factor
of n. To find this number,we add a point with himself a certain number of
times using the formulas derived earlier. We can do that even if we do not

14

work over a ring because most residues mod n have inverses, so that we
can correctly compute the sum of two points on this curve. The addition
formulas will only break if we find a non-invertible element in Zn, but then
we will have factored n since non-invertible elements correspond to elements
whose gcd with n is not 1.

2.3 The steps of the algorithm

Here are the steps of the algorithm, given an integer n to factor :

1- Choose a bound B for the algorithm, usually about 105 − 106

2- Compute

k =
∏

p prime
1≤p≤B

pblogB/logpc

3- Choose random integers a, x, yεZn. Then, b = y2 − x3 − ax. Start over
the step 3 until gcd(4a3 + 27b2, n) 6= 1, E : y2 = x3 + ax + b is an
elliptic curve. Then, you have a random elliptic curve E and a point
P = (x, y) on it.

4- Compute kP = P + P + · · ·+ P︸ ︷︷ ︸
k times

.

For each computation, we will either get a new point on the curve, or
a factor of n.

5- If a factor of n was not found in 4, go back to 3 and make a new choice
for for the point and
or the curve, or go to one and increase B.

Note that in step 3, we choose x, y and a and then compute b instead
of choosing first an elliptic curve and then finding a point on it because
that would require taking the square root of an element of Zn, a problem
equivalent to that of factoring n.

2.4 Conditions of success of the algorithm

The success of the algorithm now depends of the order of the random elliptic
curve chosen. If the order of an elliptic curve divides k, than kP will this
identity element. Since k is again a product of small primes, the probability
that this holds is the probability that given a bound B, a random elliptic
curve is B − smooth. First, we have to know approximately what the order
of the elliptic curve will be mod p :

15

Theorem 2.2. Hasse’s Theorem
Let E be an elliptic curve mod p. Then,

p + 1− 2
√

(p) < #E < p + 1 + 2
√

(p)

Proof. The proof of this theorem is not in the scope of this text. You can
find it in [9]. Note that it was also shown by Deuring [2] that every integer
in this interval will actually be the order of an elliptic curve mod p, and by
Lenstra [4] that if the curves are chosen at random, then their orders are well
distributed in this interval.

Unfortunately, we can not conclude that any p+1−2
√

(p) < #E(Zp) <

p + 1 + 2
√

(p) is B − smooth. But, if we make the assumption that N can
be chosen from a longer interval (say p/2 < N < 3p/2), then, according to
[12], it would follow from a theorem of Canfield et al. [1] that the probability
that N is smooth is u−u where u = lnp

lnB
.

2.5 Efficiency of the algorithm

Implementation optimisation

The implementing difficulties of this algorithm are similar to the ones of
Pollard’s algorithm, and so are the solutions. To get the list of all primes
smaller or equal to B, we will use the the Sieve of Eratosthenes, as presented
in section 1.4.1. Also, the fast exponentiation algorithm, with multiplication
replaced by addition of points on the elliptic curve, will allow us to compute
efficiently kp.
The only difference is that is Lenstra’s algorithm requires that we proceed to
divisions mod n for the addition operation. Hence, we need to find inverses
of elements in Zn. But not every element in Zn is invertible. So, we need an
algorithm that will tell us if the element is invertible or not and, in the latter
case, give us its inverse. We could use the Euclidean algorithm since it would
give us gcd(elt, n) and, be going through the equations of the algaorithm
backwards we could find r, and s such that r ∗ elt+ s∗n = gcd(elt, n). So, if
gcd(elt, n) is one, then r is the inverse of elt. An algorithm which do exactly
that is called the Extended Euclidean Algorithm. Here is this algorithm in
Pari language :

Input : a,b two integers

Output : a vector [g,x,y]

where g=gcd(a,b) and x & y are s.t ax+by=gcd(a,b)

16

Egcd(a,b) =

{

local(x,y,g,r,s,t,u,v,w,q,ans);

x=1; y=0; g=a;

r=0; s=1; t=b;

ans=vector(3);

while(t > 0,

q=floor(g\t);

u=x-q*r; v=y-q*s; w=g-q*t;

x=r; y=s; g=t;

r=u; s=v; t=w;

);

ans[1]=g; ans[2]=x; ans[3]=y;

return(ans);

}

We can see why this algorithm works by concentrating on what happens
to the variables g, t, and w. During the algorithm, w gets the value of g
mod t, g becomes t and w becomes g. These changes correspond to the ones
of the variables a, b, and r in the simple Euclidean algorithm. Thus, since
g and t are initialized to the values a and b, g is equal to gcd(a, b) at the
end of the algorithm. We can also see that x and y are the correct values
since during the entire algorithm both equations ax+ by = g and ar + bs = t
stay true. This is because the assignments in the second line correspond to
substracting q times the second equation from the first.

Complexity analysis

To analyse the complexity of the elliptic curve algorithm, we need a few more
theoretical results. First, here is a theorem which gives some indication on
the distribution of prime numbers :

Theorem 2.3. Prime Number Theorem Let x be a positive integer. Let π(x)
be the number of prime numbers less than or equal to x.
Then, limn→∞

π(x)
x

lnx
= 1.

Proof. This theorem was conjectured more than 200 years ago by Gauss, but
wasn’t proved until 1896. There exits different proofs of the Prime Number
Theorem, but they either require some high-level mathematics or are too
complicated to be included here.

17

Now, we are ready to prove the following theorem from [12] which gives
an expected value for the number of group operations needed to factor n
with the elliptic curve method.

Theorem 2.4. Complexity of the elliptic curve method
Let nεZ+, p be a prime factor of n and B be the optimal bound for finding p
with the elliptic curve method.

Then, B = L(p)
√

(2)

2 , the expected number of group operations to find p is

L(p)
√

(2), and the expected number of group operations to find one prime

factor of n is L(n), where L(x) = e
√

(lnxlnlnx).

Proof. The bound B is optimal if it minimizes the number of group oper-
ations to find p. By the Prime Number Theorem, we know that there is
approximately B

lnB
primes ≤ B. Now, since for almost all of the primes q less

than or equal to B, qe ≤ B has e = 1, the algorithm used to compute (qe)P
will take about logB group additions. Hence, the total of group additions
done per curve is about (B/lnB)lnB = B, given that we work with bound
B.
From section 2.4, we know that we will need to try 1

u−u = uu curves to factor

n, where u = lnp
lnB

. So, with bound B, the expected total number of opera-
tions to factor n is f(B) = Buu. Now, we need to find the value of B that
will minimize f(B).

Let a = lnb
lnL(p)

so that B = (L(p))a. Then,

lnB = aln(L(p)) = a
√

lnplnlnp

So,

u =
lnp

lnB
=

lnp

a
√

lnplnlnp
=

1

a

√
lnp

lnlnp

and

lnu =
1

2
lnlnp− 1

2
lnlnlnp− lna ≈ 1

2
lnlnp

Hence,

ulnu =
1

a

√
lnp

lnlnp

1

2
lnlnp =

1

2a
lnL(p)

This leads to
uu = eulnu ≈ L(p)

1
2a

18

Now, the function f(B) that we wanted to minimize can be expressed as

f(B) = Buu ≈ L(p)aL(p)
1
2a = L(p)1+ 1

2a

Now, since L(p) is a positive constant for p ≥ ee, the minimum of f(B)
occurs when a + 1

2a
is minimal. From calculus, we find that this happens

when a =
√

2
2

and that the value of a + 1
2a

is then
√

(2).

Hence, the optimal value of B for this algorithm is L(p)a = L(p)
√

(2)

2 .

Then, the expected total group operations to factor n is f(B) = L(p)
√

(2).
But, since we do not know p when we start the algorithm, we would rather
have an estimate for the number of group operations needed with respect to
n. Well, considering p as the smallest factor of n, we know that p ≤

√
(n) so

that lnp ≤ 1
2
lnn and lnlnp < lnlnn, so the expected total number of group

additions to factor n is

L(p)
√

(2) = e
√

(2lnplnlnp) < e
√

(lnnlnlnn) = L(n)

Note that in our complexity analysis, we assumed that the optimal value
of B was used, but this optimal value can not be computed at first because
it depends on p, which is not known. However, if we slowly increase B when
using the algorithm, then it will act as if we were using the optimal value of
B. For some details on how exactly to increase the value of B see [11].

2.6 Possible improvements of the algorithm

Lenstra’s algrithm also admits a second stage just like Pollard’s one that will
factor n if it has a prime factor p such that p − 1 has all its prime factors
smaller than B1 except possibly one between B1 and B2. Again, some other
technical improvement can also make the algorithm run faster. For example,
using projective coordinates diminishes the work needed to compute the sums
of points on E(K). Some details on other speeding improvements can be
found in [5].

19

APPENDIX I - Sieve of Eratosthenes

Input : B, a positive integer

Output : pri, a list of all primes smaller or equal than B

Note : The following functions already implemented in Pari are used :

vector(n) creates an empty vector of length n

sqrt(n) returns the square root of n

length(a) returns the length of the vector a

PrimesEratos(B) =

{

local(int,p,i,j,pri,count);

int = vector(B);

int[1] = 1; \\since 1 isn’t prime

p = 2; i = 1;

while(p <= sqrt(B),

i = 2*p;

while(i <= length(int),

int[i] = 1;

i = i + p;

);

p = p + 1;

while(int[p] == 1, p = p + 1);

);

i = 1; j = 1;

count = 0;

while(i < = length(int),

if(int[i] == 0, count = count + 1);

i = i + 1;

);

pri = vector(count);

i = 1;

while(i < = length(int),

if(int[i] == 0, pri[j] = i ; j = j + 1);

i = i + 1;

);

return(pri);

}

20

References

[1] E. Canfield, P. Erdos, C. Pomerance, On a problem of Oppenheim con-
cerning ”factorisatio numerorum.” J. Number Theory, 17 (1983), 1-28.

[2] M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktio-
nenkorper Abh. Math. Sem. Hansischen Univ., 14 (1941), 197-272.

[3] D. Harel, Algorithmics - The Spirit of Computing 3rd edition, Addison
Wesley : Pearson Education, New-York, 2004.

[4] H. W. Lenstra Jr, Factoring Integers with Elliptic Curves Annals of
Mathematics, 126 (1987), 649-673.

[5] P. L. Montgomery, Speeding the Pollard and elliptc curve methods of
factorization, Math. Comp. 48 (1987), 243-264.

[6] J. M. Pollard, Theorems on factorization and primality testing Proc.
Cambridge Philos. Soc., 76 (1974), 521-528.

[7] H. Risel, Prime Numbers and Computer Method Factorization
Birkhauser, Boston, Massachusetts, Second editon, 1994.

[8] R. L. Rivest, A. Shamir and L. Adleman, A Method for Obtaining Digital
Signatures and Public Key Cryptosystems Communications of the ACM,
21, 2(1978), 120-126.

[9] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in
Mathematics 106, Springer-Verlag, 1994.

[10] J. H. Silverman and J. Tate, Rational Points on Elliptic Curves, Grad-
uate Texts in Math. 106, Springer-Verlag, New-York 1986.

[11] R. D. Silverman and S.S Wagstaff Jr A practical analysis of the elliptic
curve factoring algorithm Math. Comp., 61 (1993), 445-462.

[12] S. S. Wagstaff Jr, Cyptanalysis of Number Theoretic Ciphers Computa-
tional Mathematics Series, Chapman & Hall/CRC, Boca Raton, 2003.

[13] Y.Y Song, Number Theory for Computing 2nd edition, Springer-Verlag,
Berlin, New-York, 2002.

21

