
189-235A: Basic Algebra I
Assignment 6

Due: Wednesday, November 9, 2005

1. For which odd primes p ≤ 23 is the polynomial x2 +1 irreducible in Zp[x]?
Can you detect a pattern?

2. Find a polynomial of degree 2 in Z6[x] that has four roots in Z6. Why
does this not contradict the theorem shown in class that a polynomial in F [x]
of degree d has at most d roots?

3. Find the inverse of [x2 + x + 1] in the ring Z2[x]/(x3 + x + 1).

4. Write down all the powers of [x] in the finite ring Z2[x]/(x3 +x+1). What
is the smallest j > 1 such that [x]j = 1?

5. If p is an odd prime of the form 3 + 4m, show that the polynomial x2 + 1
is irreducible in Zp[x], so that Zp[x]/(x2 + 1) is a field.

6. Which of the following subsets I of a commutative ring R are ideals of R?
Justify your answer.

6a. R = F [X], where F is a field, and I = F is the set of constant polyno-
mials.

6b. R = Z× Z, and I = {(m, 0) where m ∈ Z}.

6c. The set of nilpotent elements of a ring R, i.e., those a ∈ R such that
an = 0 for some n.

6d. R is the ring of functions from Z to the real numbers R, and I the subset
of those functions f satisfying f(0) = f(1).

6e. R is the ring of functions from Z to R, and I the subset of those functions
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f satisfying f(0) = f(1) = 0.

7. Let R be the polynomial ring F [x] with coefficients in a field. Adapt the
argument given in class for R = Z to show that every ideal of R is principal.

Extra credit problems

Let Q(
√
−5) = {a + b

√
−5, a, b ∈ Q}, and Z[

√
−5] = {a + b

√
−5, a, b ∈ Z}.

8. Show that Q(
√
−5) is a field, and that Z[

√
−5] is a subring. It is called

the ring of integers of Q(
√
−5) and plays the role of the usual integers in the

arithmetic of Q(
√
−5).

9. Show that the invertible elements in Z[
√
−5] are exactly 1 and −1.

10. Show that the elements 2, 3, 1+
√
−5 and 1−

√
−5 are irreducible. (I.e.,

they cannot be written in the form ab where a, b 6= ±1.)

11. Using 9, show that the ring Z[
√
−5] is not a unique factorization ring.

(I.e., the “integers” in Z[
√
−5] cannot be written uniquely as a product of

irreducible elements.)

12. Show that the ideals (2, 1+
√
−5), (3, 1+

√
−5), and (3, 1−

√
−5) are not

principal, and that they are irreducible, i.e.,they cannot be factored further
into products of non-trivial ideals.

13. If I and J are ideals, define the product IJ to be the ideal generated by
the elements of the form ij with i ∈ I and j ∈ J . Show that (2, 1 +

√
5)2 =

(2), (3, 1+
√
−5)(3, 1−

√
−5) = (3), and conclude that the ideal (6) factorizes

as a product of 4 (non-principal) ideals: (6) = (2, 1+
√
−5)2(3, 1+

√
−5)(3, 1−√

−5).

Remark: It can be shown that this factorization of the principal ideal (6) into
a product of irreducible ideals is unique, up to the order of the factors. This
is a general phenomenon: although the ring Z[

√
−5] fails to satisfy unique

factorization, its ideals can be expressed uniquely as products of irreducible
ideals. The introduction of ideals in the late 19-th century by Dedekind was
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an attempt to salvage unique factorization in such rings, by showing it was
true on the level of ideals which were viewed as a kind of “ideal number”.
This is where the terminology comes from...
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