Solutions of Assignment 8 Basic Algebra I

November 11, 2004

Solution of the problem 1. Recall that a field F has only two ideals: $\{0\}$, F. Also recall that the kernel of any ring homomorphism is an ideal. Now back to the problem, in order to show that f is injective, it is enough to show that $\ker(f) = \{0\}$. If not, then $\ker(f) = F$. So $1 \in \ker(f)$, i.e., f(1) = 0, which is a contradiction. Thus f is injective. The first isomorphism theorem now implies the other part of the problem:

$$F \cong F/\{0\} \cong F/\ker(f) \cong f(F).$$

Solution of the problem 2. Let $f : \mathbb{Z} \longrightarrow R$ be a ring homomorphism from \mathbb{Z} to an arbitrary ring R. If ker $(f) = \{0\}$, then the argument given in the previous problem shows that \mathbb{Z} is isomorphic to its image under f. And if ker $(f) \neq \{0\}$, then it is of the form $d\mathbb{Z}$, for some d > 0. Once again, the first isomorphism theorem implies that the image of \mathbb{Z} under f is isomorphic to $\mathbb{Z}/d\mathbb{Z} \cong \mathbb{Z}_d$, which is a finite ring with d elements.

Solution of the problem 3. This is false. For example, \mathbb{Z} is an integral domain, however, its quotient by the ideal $6\mathbb{Z}$, namely \mathbb{Z}_6 , is not an integral domain.

Solution of the problem 4. This is true. Let J be an ideal of R/I. Recall that the natural homomorphism $\pi : R \longrightarrow R/I$, $\pi(a) = a + I$, is a surjective ring homomorphism. We now claim that the inverse image $\pi^{-1}(J) := \{a \in R : \pi(a) \in J\}$ is an ideal of R:

If $a, b \in \pi^{-1}(J)$, then $\pi(a+b) = \pi(a) + \pi(b) \in J$, so $a+b \in \pi^{-1}(J)$.

If $a \in \pi^{-1}(J)$, $r \in R$, then $\pi(ra) = \pi(r)\pi(a) \in J$, so $ra \in \pi^{-1}(J)$.

Every ideal of R is assumed to be principal, so $\pi^{-1}(J) = (a_0) = a_0 R$, for some $a_0 \in R$. Now since π is onto, we conclude that

$$J = \pi(\pi^{-1}(J)) = \pi((a_0 R)) = \{\pi(a_0 r) : r \in R\} = \{a_0 r + I : r \in R\}$$
$$= \{(a_0 + I)(r + I) : r \in R\} = (a_0 + I).$$

This means that J is generated by the element $a_0 + I$. Done.

Solution of the problem 5. False. Let $R = \mathbb{Z}[x]$ and let I = (x), the ideal generated by x. We first claim that $R/I \cong \mathbb{Z}$. To see this, define

$$\phi: R \longrightarrow \mathbb{Z}, \ \phi(f(x)) = f(0).$$

It is apparent that ϕ is a ring homomorphism. ϕ is also surjective (every integer can be regarded as a polynomial). Also note that

$$\ker(\phi) = \{f(x): \ \phi(f(x)) = 0\} = \{f(x): \ f(0) = 0\} = \{f(x): \ x \mid f(x)\} = I.$$

So, $R/I \cong \mathbb{Z}$, and the claim is proved.

Since every ideal of \mathbb{Z} is principal, this in fact shows that every ideal of R/I is so. We now show that the same is not true for R by showing that the ideal $J = \{f(x) : 2 \mid f(0)\}$ is not principal (it is left to you to check that J is in fact an ideal). On the contrary, suppose that J is generated by some polynomial g(x). Since $2, x \in J$, we would have $g(x) \mid 2, g(x) \mid x$. So, $g(x) = \pm 1$, which is a contradiction (why?).

Solution of the problem 6. Our first claim is that for any prime p,

$$\frac{\mathbb{Z}[x]}{(p,x^2+1)} \cong \frac{\mathbb{Z}_p[x]}{(x^2+1)}$$

To see this, define $\phi: \mathbb{Z}[x] \longrightarrow \frac{\mathbb{Z}_p[x]}{(x^2+1)}$ by the rule

$$\phi(a_0 + a_1x + \dots + a_nx^n) = \bar{a}_0 + \bar{a}_1x + \dots + \bar{a}_nx^n + (x^2 + 1),$$

where \bar{a} denotes the congruence class of $a \mod p$. It is readily seen that ϕ is a surjective ring homomorphism (check this!). To find the kernel, notice that since any f(x) can be written as $f(x) = a + bx + g(x)(x^2 + 1)$ for some g(x)(division algorithm), so f(x) is in the kernel $\iff \bar{a} + \bar{b}x = 0 \iff p \mid a, p \mid$ $b \iff f(x) \in (p, x^2 + 1)$. The first isomorphism theorem now concludes the proof of our first claim.

Now we specialize to the case where p = 5 or p = 7.

(I) For p = 5, we have the factorization $x^2 + 1 = (x - 3)(x - 2)$. Let us now define

$$\psi: \mathbb{Z}_5[x] \longrightarrow \mathbb{Z}_5 \times \mathbb{Z}_5, \ \psi(f(x)) = (f(3), f(2)).$$

 ψ is clearly a ring homomorphism with the kernel

$$\begin{aligned} \ker(\psi) &= \{f(x): f(3) = f(2) = 0\} \\ &= \{f(x): x - 3 \mid f(x), x - 2 \mid f(x)\} \\ &= \{f(x): x^2 + 1 \mid f(x)\} \\ &= (x^2 + 1). \end{aligned}$$

It remains to show that ψ is surjective. Given any $(\alpha, \beta) \in \mathbb{Z}_5 \times \mathbb{Z}_5$, take $f(x) = (3\beta - 2\alpha) + (\alpha - \beta)x$. We then have

$$\psi(f(x)) = (f(3), f(2)) = (3\beta - 2\alpha + 3\alpha - 3\beta, 3\beta - 2\alpha + 2\alpha - 2\beta) = (\alpha, \beta).$$

Hence, by the first isomorphism theorem, we deduce that

$$\frac{\mathbb{Z}[x]}{(5,x^2+1)} \cong \frac{\mathbb{Z}_5[x]}{(x^2+1)} \cong \mathbb{Z}_5 \times \mathbb{Z}_5.$$

(II) Now suppose that p = 7. In contrast to 5, $x^2 + 1$ does not factor in $\mathbb{Z}_7[x]$, i.e., it is irreducible. Now we claim that $\frac{\mathbb{Z}_7[x]}{(x^2+1)}$ is a field. To prove this, we have to show that every nonzero class has an inverse. So, suppose that $f(x) \notin (x^2+1)$. Thus $\gcd(f(x), x^2+1) = 1$, and since \mathbb{Z}_7 is a field, we can find $g(x), h(x) \in \mathbb{Z}_7[x]$ so that $f(x)g(x) + h(x)(x^2+1) = 1$. Therefore $(f(x) + (x^2+1))(g(x) + (x^2+1)) = 1 + (x^2+1)$. In other words, the class $g(x) + (x^2+1)$ is the inverse of $f(x) + (x^2+1)$. And finally we count the number of classes in $\frac{\mathbb{Z}_7[x]}{(x^2+1)}$. Since every class has a unique representative of the form $a + bx + (x^2+1)$ with $0 \le a, b \le 6$ (could you explain why?), we conclude that the total number of classes is $7 \times 7 = 49$. Done!

Extra Credit

Solution of the problem 7. As usual, we define the right map and will exploit it to conclude the desired result. So, consider the

$$\phi: F[[x]] \longrightarrow F, \ \phi(\sum_{n=0}^{\infty} a_n x^n) = a_0.$$

Now we check in details that ϕ is a surjective ring homomorphism.

(i) ϕ respects addition:

$$\phi\left(\sum_{n=0}^{\infty}a_nx^n + \sum_{n=0}^{\infty}b_nx^n\right) = \phi\left(\sum_{n=0}^{\infty}(a_n + b_n)x^n\right)$$
$$= a_0 + b_0$$
$$= \phi\left(\sum_{n=0}^{\infty}a_nx^n\right) + \phi\left(\sum_{n=0}^{\infty}b_nx^n\right).$$

(ii) ϕ respects multiplication:

$$\phi\left(\sum_{n=0}^{\infty}a_nx^n\cdot\sum_{n=0}^{\infty}b_nx^n\right) = \phi\left(\sum_{n=0}^{\infty}\left(a_0b_n+a_1b_{n-1}+\dots+a_nb_0\right)x^n\right)$$

$$= a_0 \cdot b_0$$

= $\phi\left(\sum_{n=0}^{\infty} a_n x^n\right) \cdot \phi\left(\sum_{n=0}^{\infty} b_n x^n\right).$

(iii) The identity element of the ring F[[x]] is the formal power series

$$1 = 1 + 0x + 0x^2 + 0x^3 + \cdots,$$

and we have $\phi(1) = 1$.

(iv) ϕ is surjective: for any $a \in F$, we have

$$\phi(a + 0x + 0x^2 + 0x^3 + \cdots) = a.$$

(v) The kernel of ϕ is the ideal generated by x:

$$f(x) = \sum_{n=0}^{\infty} a_n x^n \in \ker(\phi) \iff a_0 = 0 \iff f(x) = xg(x) \iff f(x) \in (x).$$

Therefore, the first isomorphism theorem implies that

$$R = \frac{F[[x]]}{(x)} \cong F.$$

To prove the second part, just note that by the isomorphism established above, every element of R and off the ideal (x) corresponds to a nonzero element of a field, hence it is invertible. And now the last part is immediate: if an ideal of R is not contained in I = (x), it has to have an invertible element, hence it is the whole ring F[[x]]. Done!