Solutions of Assignment 8
Basic Algebra I

November 11, 2004

Solution of the problem 1. Recall that a field F' has only two ideals: {0}, F.
Also recall that the kernel of any ring homomorphism is an ideal. Now back
to the problem, in order to show that f is injective, it is enough to show that
ker(f) = {0}. If not, then ker(f) = F. So 1 €ker(f), i.e., f(1) = 0, which is a
contradiction. Thus f is injective. The first isomorphism theorem now implies
the other part of the problem:

F = F/{0} = F/ker(f) = f(F).

Solution of the problem 2. Let f : Z — R be a ring homomorphism from Z
to an arbitrary ring R. If ker(f) = {0}, then the argument given in the previous
problem shows that Z is isomorphic to its image under f. And if ker(f) # {0},
then it is of the form dZ, for some d > 0. Once again, the first isomorphism
theorem implies that the image of Z under f is isomorphic to Z/dZ = Z4, which
is a finite ring with d elements.

Solution of the problem 3. This is false. For example, Z is an integral
domain, however, its quotient by the ideal 6Z, namely Zg, is not an integral
domain.

Solution of the problem 4. This is true. Let J be an ideal of R/I. Recall
that the natural homomorphism 7 : R — R/I, w(a) = a + I, is a surjective
ring homomorphism. We now claim that the inverse image 7=(J) := {a €
R: w(a) € J} is an ideal of R:

If a,b € 7= 1(J), then w(a +b) = 7(a) + 7(b) € J,s0 a+b e 7w 1(J).

If a € 7= 1(J), r € R, then 7(ra) = 7(r)n(a) € J, so ra € 7~ 1(J).

Every ideal of R is assumed to be principal, so 7~1(J) = (ag) = agR, for some
ag € R. Now since 7 is onto, we conclude that

J=n(n"*(J)) =n((aoR)) = {m(aor) : v € R} ={aor +1: r € R}

={(ao+D)(r+1): re R} =(ap+1I).



This means that J is generated by the element ag + I. Done.

Solution of the problem 5. False. Let R = Z[z] and let I = (z), the ideal
generated by x. We first claim that R/I = Z. To see this, define

¢: R— 7, ¢(f(x)) = f(0).

Tt is apparent that ¢ is a ring homomorphism. ¢ is also surjective (every integer
can be regarded as a polynomial). Also note that

ker(¢) = {f(z) : ¢(f(2)) =0} = {f(z): f(0) =0} ={f(2): z| f(2)} =

So, R/I = Z, and the claim is proved.

Since every ideal of Z is principal, this in fact shows that every ideal of R/I
is so. We now show that the same is not true for R by showing that the ideal
J={f(x): 2| f(0)} is not principal (it is left to you to check that J is in fact
an ideal). On the contrary, suppose that J is generated by some polynomial
g(x). Since 2,z € J, we would have g(z) | 2, g(x) | . So, g(x) = £1, which is
a contradiction (why?).

Solution of the problem 6. Our first claim is that for any prime p,

Zbl . Zld
(p,z2+1)  (2241)

Z
To see this, define ¢ : Z[z] — (x;)—[f]l) by the rule

Plag + a1z 4 - + a,x"™) = Gg + @12 + - - + apz” + (22 + 1),

where a denotes the congruence class of @ mod p. It is readily seen that ¢ is
a surjective ring homomorphism (check this!). To find the kernel, notice that
since any f(x) can be written as f(x) = a + bz + g(x)(2? + 1) for some g(x)
(division algorithm), so f(x) is in the kernel <= a+bx =0 <= p|a,p |
b < f(z) € (p,x?+1). The first isomorphism theorem now concludes the
proof of our first claim.

Now we specialize to the case where p=5or p=7.

(I) For p = 5, we have the factorization 2 +1 = (z — 3)(z — 2). Let us now
define

¥ Lslx] — Zs x Ls, Y(f(x)) = (f(3), f(2))-

1) is clearly a ring homomorphism with the kernel

ker(p) = {f(z): f(3) = f(2) = 0}
= {f(2): x—3|f($)79€ 2| f(x)}
= {f(@): 2* +1] f()}
= (22 +1).



It remains to show that 1 is surjective. Given any (o, () € Zs X Zs, take
f(z) = (36 — 2a) + (o — B)x. We then have

O(f(x) = (FB3), f(2)
(36 — 2a+ 3 — 30, 38— 2a+ 2« — 2)
(a, B).
Hence, by the first isomorphism theorem, we deduce that
Zlz] . Zsz]

(5,224+1)  (22+41)

1%

Zs X L.

(IT1) Now suppose that p = 7. In contrast to 5, #2 + 1 does not factor in
Zx]
(z2+1)

this, we have to show that every nonzero class has an inverse. So, suppose
that f(x) ¢ (2% 4+ 1). Thus ged(f(x), 2% + 1) = 1, and since Z; is a field,
we can find g(x), h(x) € Z7[z] so that f(x)g(z) + h(z)(2® + 1) = 1. Therefore
(f(z) + (2 + 1)) (g9(x) + (22 + 1)) = 1 + (22 + 1). In other words, the class
g(z) + (2% + 1) is the inverse of f(x) + (22 + 1). And finally we count the
Z7 €T
(z241)
of the form a + bx + (2% + 1) with 0 < a,b < 6 (could you explain why?), we
conclude that the total number of classes is 7 x 7 = 49. Done!

Zr[z], i.e., it is irreducible. Now we claim that is a field. To prove

number of classes in . Since every class has a unique representative

Extra Credit

Solution of the problem 7. As usual, we define the right map and will exploit
it to conclude the desired result. So, consider the

¢: Flz]] — F, ¢ _ anz™) = ao.
n=0

Now we check in details that ¢ is a surjective ring homomorphism.

(i) ¢ respects addition:

0] <Z apx”™ + Z b,ﬁc”) = ¢ (Z(an + bn)x">
n=0 n=0

n=0

ao + bo

0] <Z anx"> + ¢ (Z bnx"> }
n=0 n=0

(ii) ¢ respects multiplication:

10 <Z anpx™ - Z b,ﬂ:”) = ¢ (Z (aobp, + a1bp—1 + - + anbo) x")
n=0 n=0

n=0



= ao-bo

o(Ser) ()

(iii) The identity element of the ring F[[z]] is the formal power series

1=1+0z+ 022 +02%+ -,

and we have ¢(1) = 1.

(iv) ¢ is surjective: for any a € F', we have
d(a+0x + 0z +02° + ) = a.

(v) The kernel of ¢ is the ideal generated by x:
flz) = Zan:c” cker(¢p) <= ap=0 < f(v) =z9(z) <= f(z) € ().
n=0

Therefore, the first isomorphism theorem implies that

To prove the second part, just note that by the isomorphism established above,
every element of R and off the ideal (z) corresponds to a nonzero element of a
field, hence it is invertible. And now the last part is immediate: if an ideal of
R is not contained in I = (), it has to have an invertible element, hence it is
the whole ring F[[z]]. Done!



