
Solutions of Assignment 8

Basic Algebra I

November 11, 2004

Solution of the problem 1. Recall that a field F has only two ideals: {0}, F.
Also recall that the kernel of any ring homomorphism is an ideal. Now back
to the problem, in order to show that f is injective, it is enough to show that
ker(f) = {0}. If not, then ker(f) = F . So 1 ∈ker(f), i.e., f(1) = 0, which is a
contradiction. Thus f is injective. The first isomorphism theorem now implies
the other part of the problem:

F ∼= F/{0} ∼= F/ker(f) ∼= f(F ).

Solution of the problem 2. Let f : Z −→ R be a ring homomorphism from Z
to an arbitrary ring R. If ker(f) = {0}, then the argument given in the previous
problem shows that Z is isomorphic to its image under f . And if ker(f) 6= {0},
then it is of the form dZ, for some d > 0. Once again, the first isomorphism
theorem implies that the image of Z under f is isomorphic to Z/dZ ∼= Zd, which
is a finite ring with d elements.

Solution of the problem 3. This is false. For example, Z is an integral
domain, however, its quotient by the ideal 6Z, namely Z6, is not an integral
domain.

Solution of the problem 4. This is true. Let J be an ideal of R/I. Recall
that the natural homomorphism π : R −→ R/I, π(a) = a + I, is a surjective
ring homomorphism. We now claim that the inverse image π−1(J) := {a ∈
R : π(a) ∈ J} is an ideal of R:

If a, b ∈ π−1(J), then π(a+ b) = π(a) + π(b) ∈ J , so a+ b ∈ π−1(J).
If a ∈ π−1(J), r ∈ R, then π(ra) = π(r)π(a) ∈ J , so ra ∈ π−1(J).

Every ideal of R is assumed to be principal, so π−1(J) = (a0) = a0R, for some
a0 ∈ R. Now since π is onto, we conclude that

J = π(π−1(J)) = π((a0R)) = {π(a0r) : r ∈ R} = {a0r + I : r ∈ R}

= {(a0 + I)(r + I) : r ∈ R} = (a0 + I).
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This means that J is generated by the element a0 + I. Done.

Solution of the problem 5. False. Let R = Z[x] and let I = (x), the ideal
generated by x. We first claim that R/I ∼= Z. To see this, define

φ : R −→ Z, φ(f(x)) = f(0).

It is apparent that φ is a ring homomorphism. φ is also surjective (every integer
can be regarded as a polynomial). Also note that

ker(φ) = {f(x) : φ(f(x)) = 0} = {f(x) : f(0) = 0} = {f(x) : x | f(x)} = I.

So, R/I ∼= Z, and the claim is proved.
Since every ideal of Z is principal, this in fact shows that every ideal of R/I

is so. We now show that the same is not true for R by showing that the ideal
J = {f(x) : 2 | f(0)} is not principal (it is left to you to check that J is in fact
an ideal). On the contrary, suppose that J is generated by some polynomial
g(x). Since 2, x ∈ J , we would have g(x) | 2, g(x) | x. So, g(x) = ±1, which is
a contradiction (why?).

Solution of the problem 6. Our first claim is that for any prime p,

Z[x]
(p, x2 + 1)

∼=
Zp[x]

(x2 + 1)
.

To see this, define φ : Z[x] −→ Zp[x]
(x2 + 1)

by the rule

φ(a0 + a1x+ · · ·+ anx
n) = ā0 + ā1x+ · · ·+ ānx

n + (x2 + 1),

where ā denotes the congruence class of a mod p. It is readily seen that φ is
a surjective ring homomorphism (check this!). To find the kernel, notice that
since any f(x) can be written as f(x) = a + bx + g(x)(x2 + 1) for some g(x)
(division algorithm), so f(x) is in the kernel ⇐⇒ ā + b̄x = 0 ⇐⇒ p | a, p |
b ⇐⇒ f(x) ∈ (p, x2 + 1). The first isomorphism theorem now concludes the
proof of our first claim.

Now we specialize to the case where p = 5 or p = 7.

(I) For p = 5, we have the factorization x2 + 1 = (x− 3)(x− 2). Let us now
define

ψ : Z5[x] −→ Z5 × Z5, ψ(f(x)) = (f(3), f(2)).

ψ is clearly a ring homomorphism with the kernel

ker(ψ) = {f(x) : f(3) = f(2) = 0}
= {f(x) : x− 3 | f(x), x− 2 | f(x)}
= {f(x) : x2 + 1 | f(x)}
= (x2 + 1).
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It remains to show that ψ is surjective. Given any (α, β) ∈ Z5 × Z5, take
f(x) = (3β − 2α) + (α− β)x. We then have

ψ(f(x)) = (f(3), f(2))
= (3β − 2α+ 3α− 3β, 3β − 2α+ 2α− 2β)
= (α, β).

Hence, by the first isomorphism theorem, we deduce that

Z[x]
(5, x2 + 1)

∼=
Z5[x]

(x2 + 1)
∼= Z5 × Z5.

(II) Now suppose that p = 7. In contrast to 5, x2 + 1 does not factor in

Z7[x], i.e., it is irreducible. Now we claim that
Z7[x]

(x2 + 1)
is a field. To prove

this, we have to show that every nonzero class has an inverse. So, suppose
that f(x) /∈ (x2 + 1). Thus gcd(f(x), x2 + 1) = 1, and since Z7 is a field,
we can find g(x), h(x) ∈ Z7[x] so that f(x)g(x) + h(x)(x2 + 1) = 1. Therefore
(f(x) + (x2 + 1))(g(x) + (x2 + 1)) = 1 + (x2 + 1). In other words, the class
g(x) + (x2 + 1) is the inverse of f(x) + (x2 + 1). And finally we count the

number of classes in
Z7[x]

(x2 + 1)
. Since every class has a unique representative

of the form a + bx + (x2 + 1) with 0 ≤ a, b ≤ 6 (could you explain why?), we
conclude that the total number of classes is 7× 7 = 49. Done!

Extra Credit

Solution of the problem 7. As usual, we define the right map and will exploit
it to conclude the desired result. So, consider the

φ : F [[x]] −→ F, φ(
∞∑

n=0

anx
n) = a0.

Now we check in details that φ is a surjective ring homomorphism.
(i) φ respects addition:

φ

( ∞∑
n=0

anx
n +

∞∑
n=0

bnx
n

)
= φ

( ∞∑
n=0

(an + bn)xn

)
= a0 + b0

= φ

( ∞∑
n=0

anx
n

)
+ φ

( ∞∑
n=0

bnx
n

)
.

(ii) φ respects multiplication:

φ

( ∞∑
n=0

anx
n ·

∞∑
n=0

bnx
n

)
= φ

( ∞∑
n=0

(a0bn + a1bn−1 + · · ·+ anb0)xn

)
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= a0 · b0

= φ

( ∞∑
n=0

anx
n

)
· φ

( ∞∑
n=0

bnx
n

)
.

(iii) The identity element of the ring F [[x]] is the formal power series

1 = 1 + 0x+ 0x2 + 0x3 + · · · ,

and we have φ(1) = 1.

(iv) φ is surjective: for any a ∈ F , we have

φ(a+ 0x+ 0x2 + 0x3 + · · ·) = a.

(v) The kernel of φ is the ideal generated by x:

f(x) =
∞∑

n=0

anx
n ∈ ker(φ) ⇐⇒ a0 = 0 ⇐⇒ f(x) = xg(x) ⇐⇒ f(x) ∈ (x).

Therefore, the first isomorphism theorem implies that

R =
F [[x]]
(x)

∼= F.

To prove the second part, just note that by the isomorphism established above,
every element of R and off the ideal (x) corresponds to a nonzero element of a
field, hence it is invertible. And now the last part is immediate: if an ideal of
R is not contained in I = (x), it has to have an invertible element, hence it is
the whole ring F [[x]]. Done!
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