
Solutions of Assignment 6

Basic Algebra I

October 29, 2004

Solution of the problem 1. Let us first make the following simple remark:
Remark Let f(x) ∈ F [x], where F can be any field. If 2 ≤ degf ≤ 3, then
f(x) is reducible in F [x] iff f(x) has a root in F .

Back to the problem, suppose that f(x) = x3 − 2 was reducible in Q[x]. So,
f would have a root r = a

b (written in the lowest terms) in Q. Thus we would
have (a

b

)3

= 2 or equivalently a3 = 2b3.

This implies that 2 | a3, hence 2 | a. Writing a = 2a1, we have 8a3
1 = 2b3, or

4a3
1 = b3. This in turn implies that 2 | b, which is a contradiction, because a

and b have been chosen to be relatively prime.
Remark Another (easy) way to prove the irreducibility of f(x) would be uti-
lizing the Eisenstein’s Criterion with prime number 2:

2 | −2, 2 | 0, 2 | 0, and 22 - −2.

Therefore, f(x) = x3 + 0x2 + 0x− 2 is irreducible in Q[x].

Solution of the problem 2. Any polynomial of degree 3 in Z2[x] is of the form
f(x) = x3 + ax2 + bx + c, where a, b, c ∈ Z2. So, there are 8 such polynomials:

f1(x) = x3, f2(x) = x3 +1, f3(x) = x3 +x, f4(x) = x3 +x+1, f5(x) = x3 +x2,

f6(x) = x3 + x2 + 1, f7(x) = x3 + x2 + x, f8(x) = x3 + x2 + x + 1.

f1(x), f3(x), f5(x) and f7(x) are clearly reducible. Also, a moment considera-
tion will reveal that

f2(x) = (x + 1)(x2 + x + 1) and f8(x) = (x2 + 1)(x + 1).

Now we check that the rest, namely f4(x) and f6(x), are actually irreducible.
Because our polynomials are of degree 3, it is enough to show that they have
no roots in Z2 (see the first remark in the solution of problem 1). To check that
for example f4(x) has no roots, just note that f4(0) = f4(1) = 1. And the same
thing for f6(x). Done!
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Solution of the problem 3. Starting with prime number 3 and looking for
a root, we see that f(x) = x2 + 1 has no zero in Z3, hence it is irreducible in
Z3[x]. Next consider 5. This case is actually different. In fact in Z5[x] we have
the factorization f(x) = (x + 2)(x + 3). Continuing this way, we find that f(x)
is irreducible in Zp[x] for p = 3, 7, 11, 19, 23 and is reducible for p = 5, 13, 17.

Looking for a general pattern, first note that each of the primes 5, 13 and
17 is of the form 4k + 1, and on the contrary, none of the primes 3, 7, 11, 19
and 23 is in that form. Secondly, observe that

5 = 22 + 12, 13 = 32 + 22, 17 = 42 + 12,

while the primes 3, 7, 11, 19 and 23 don’t enjoy such property, namely they
cannot be represented as a sum of two squares. In fact one has the following
beautiful theorem of Fermat:

An odd prime number p is a sum of two square, i.e., p = a2 + b2, if and only
if it is of form 4k + 1.

For further information look at the solutions of the problems 9, 10 and 11.

Solution of the problem 4. Here is one example: f(x) = 2x2 + 4. Note that
f(1) = f(2) = f(4) = f(5) = 0. This does not contradict the theorem shown in
class that a polynomial in F [x] of degree d has at most d roots and the reason
is simple: Z6 is not a field!

Solution of the problem 5. First of all, we show that f(x) = x3 + 2x + 1
is irreducible in Z3[x]. To see this, just observe that f(0), f(1), f(2) 6= 0. So,
Z3[x]/(f(x)) is a field. To count its cardinality, let us first recall that the set
consisting of the zero polynomial and all the polynomials of degree less than 3
is the full set of congruence classes modulo f(x), i.e.,

Z3[x]/(f(x)) = {[ax2 + bx + c] : a, b, c ∈ Z3}.

Now since we have 3 choices for each coefficient a, b and c, we conclude that
there are exactly 3× 3× 3 = 27 such congruence classes. Done!

Solution of the problem 6. Both f(x) and g(x) belong to the same congru-
ence class in R[x]/(x2) iff x2 | f(x) − g(x) iff f(x) − g(x) = x2h(x) for some
polynomial h(x) with real coefficients. If this is the case, it is plain that both
f(x)− g(x) and its derivative f ′(x)− g′(x) = 2xh(x) + x2h′(x) vanish at x = 0,
i.e., f(0) = g(0), f ′(0) = g′(0). Conversely, assume that

f(0) = g(0), f ′(0) = g′(0).

Since a polynomial vanishes at x = 0 iff it is divisible by x, we deduce from the
first equation that f(x)−g(x) = xu(x) for some u(x). Now let us take a look at
the derivative: f ′(x)− g′(x) = u(x) + xu′(x). The second equation now implies
that u(0) = 0, so by repeating the same argument, we infer that u(x) = xh(x)
for some h(x), hence f(x)− g(x) = xu(x) = x2h(x) and we are done.
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Solution of the problem 7. This can be done with a trial and error search
and here is the answer:

[x2 + x + 1]−1 = [x2].

To verify our answer, notice that since [x3 + x + 1] = [0], we have

[x2 + x + 1][x2] = [x4 + x3 + x2] = [x(−x− 1) + (−x− 1) + x2] = [1]

(N.B. 2 = 0 and −1 = 1, because we are working in Z2.) For another way to
look at this problem, go to the solution of the next problem.

Solution of the problem 8. Here you are:

[x]1 = [x], [x]2 = [x2], [x]3 = [x + 1], [x]4 = [x2 + x],

[x]5 = [x2 + x + 1], [x]6 = [x2 + 1], [x]7 = [1].

So, the smallest j > 0 for which [x]j = [1] is 7, and therefore [x] is a generator for
the multiplicative group of nonzero elements of the finite field Z2[x]/(x3+x+1).

Back to the solution of the previous problem, note that

[x2 + x + 1][x2] = [x]5[x]2 = [x]7 = [1] !

Bonus Questions

Solution of the problem 9. Proof by contradiction. Suppose that x2 + 1
factors in Zp[x]. So, it has a root, a say, in Zp, i.e., a2 + 1 = 0 in Zp. This in
turn implies that p | a2 + 1 or equivalently a2 ≡ −1 (mod p). Now since p is

odd, we can raise both sides of a2 ≡ −1 (mod p) to the power
p− 1

2
to get

ap−1 ≡ (−1)
p−1
2 (mod p).

Comparing with little Fermat, we infer that

1 ≡ (−1)
p−1
2 (mod p).

Since p > 2, this is impossible unless the last congruence relation becomes
equality, i.e., p−1

2 = 2k, hence p = 4k + 1, which is a contradiction.

Solution of the problem 10. Let p = 1 + 4m be a prime. Using Wilson’s
theorem and also using the relation j ≡ −(p−j) (mod p) for 2m+1 ≤ j ≤ p−1,
we have

0 ≡ (p− 1)! + 1
≡ 1× · · · × (2m)× (2m + 1) · · · × (4m) + 1
≡ 1× · · · × (2m)× (−2m)× · · · × (−1) + 1

≡ (−1)2m (1× · · · × (2m))2 + 1

≡ ((2m)!)2 + 1 (mod p).
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Thus, a = (2m)! is a root in Zp of the polynomial x2 + 1 ∈ Zp[x].

Solution of the problem 11. Keeping the notation as the previous problem,
let us define the following map

φ : Zp[x]/(x2 + 1) −→ Zp × Zp, φ([f(x)]) = (f(a), f(−a)).

Obviously, φ is a ring homomorphism (check this!).
We now show that φ is one-to-one. So, assume that φ([f(x)]) = φ([g(x)]).

Therefore f(a) = g(a), f(−a) = g(−a) in Zp. This means that the polynomial
h(x) = f(x)−g(x) ∈ Zp[x] has two roots in Zp, namely ±a. On the other hand,
since both f(x) and g(x) have degree < 2, then h(x) is a polynomial of degree
at most 1 with two roots in the field Zp. This is impossible unless either a = −a
or h(x) is the zero polynomial. The former, however, implies that 2a = 0 in Zp,
or equivalently p | 2a which is absurd, because p = 1+4m > 2m and a = (2m)!.
So, the latter holds, i.e., f(x) = g(x), hence φ is injective.

It remains to show that φ is surjective. Take an arbitrary element (r, s)
in Zp × Zp. We are looking for a congruence class [αx + β] ∈ Zp[x] such that
φ([αx + β]) = (r, s), or equivalently, looking for a solution in α and β of the
following system of equations:

aα + β = r, − aα + β = s.

By subtracting, we arrive at 2aα = r−s. This equation has always the solution
α = (2a)−1(r−s) (in Zp) for α, since 2a is nonzero in the field Zp. Substituting
in either of the equations yields the solution β = r − 2−1(r − s) = 2−1(r + s)
for β. Thus, φ is also onto and we are done.
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