The Modular Group SLy(Z) and its congruences subgroups
Topics covered : Bump’s section 1.2 (The Modular Group) and Exercises 1.2.7 to
1.2.11

1. Notation
Let H denote the upper half place, i.e. {z =z + iy € Cly > 0}. Let SLy(Z) be the
b ,ad —bc = 1,a,b,c,d € Z}. We use the notation R and

d
S R(2)+iS(z) =z +iy=2z€C

group of matrices {( (Z

2. The Modular Group

2.1. Motivation. Automorphic functions for a group I' are functions on I'\'H. We
want to study functions that transform a bit differently under the action of discrete
subgroups of SLy(R), called automorphic forms, such that the ratio of any two of them
(of same weight) will yield an automorphic function.

DEFINITION 2.1. A modular form of weight k for SL2(Z) is a holomorphic function
f :H — C such that :

f06) = e+ a0 = (& ) ) € ST,

plus the requirement of holomorphicity at oo (the Fourier coefficents a,, = 0 ¥n < 0).

2.2. SLy(Z)... The group G = SL»(R) acts on the upper half plane via fractional

linear transformations :
[ a b 25 A(2) = az+b
T=\ ¢ a ) e = cz+d

This action is not faithful since —I and I have the same effect; we thus need to mod
out by {£I} (i.e. consider I := I'/T' N {£1}) if we require faithfulness.

In a similar fashion, SLy(C) acts on P!(C), and the subgroup of SLy(C) fixing H is
SL, (R).

The action on H is transitive: the subgroup of upper triangular matrices act transitively:

T

( \(/):U \{y ) 1 T+ 0y
vy

The stabilizer G; of i is the special orthogonal group

S0,(R) := {( ° Z >|a2+b2 — 1.

By generalities on transitive group actions, G/G; = SL2(R)/S02 (R) = H.
DEFINITION 2.2. The group I'(N) is

{SL2(Z)9(‘C’ Z):(é (1)) mod N}.

For example, I'(1) := SLy(Z). Since I'(N) = Ker(['(1) - SL2(Z/NZ)), I'(N) is a
normal subgroup of finite index.

DEFINITION 2.3. A group I' C G acts discontinuously if for all compact Ky, Ks C H,
{y € TIK; Ny(Ky) # 0} < oo.

PROPOSITION 2.4. The group SLa2(Z) acts discontinously on H.

1



ProoF. Let K;, K2 be two compact subsets of H. There exists € > 0 such $(w) >
e Yw € K. Fix z = x + iy € K;. Since (c,d) — |cz +d|? is a positive definite quadratic
form, S(v(z)) = W < € outside a big enough square |c|,|d| < R(z). Because K
is compact, R = maz.ck, R(z) < oo and Ky N y(K1) = 0 unless |c|,|d| < R. This
proves there are only finitely many bottom rows (¢ d) of matrices v € SL2(Z) such
that Ko Ny(K1) # 0. Tt remains to show that given ¢, d, there are only finitely many
~ with bottom row (¢ d) such that Ko N y(K7) # 0. If 41 and ~ys, share a bottom

row, then v, o 7, is of the form for n € Z; this matrix correspond to a

1 n

01

translation z — z + n. For fixed 7, there can be only finitely such translations such
1

that ( 0 ? )71(1(1)01(2 #0.

O

DEFINITION 2.5. A fundamental domain for I is an connected domain F' such that
e Vz € H, there exists v € " such that v(z) € F;
o if 21,20 € F and 7y(21) = 25 for some v € T, then z; = 29 and v = £1.
PROPOSITION 2.6. The region {z € H||z| > 1,|R(z)| < 3} is a fundamental domain

for T(1).

PROOF. Pick z € H, since (c,d) — |cz +d|? is a positive definite quadratic form, it
has minimum value for integers ¢, d satisfying (¢, d) = 1; thence S(y(z)) has a maximum
value for some y € SLa(Z). We can find n € Z such that v(z) +n has real part smaller or

(1] 711 > v € SLy(Z) (with the same bottom row as -y is in SLo(Z)
and produces this effect, hence [R(z)| < 3.

equal to % In fact,
This implies |3(y(z))| > 1, otherwise
we contradict maximality by taking 11 = ( (1) _01 )’y, IS (2))] = %, thus
Property 1 is established.

Let z =z +iy € F,y = (Ccl Z) such that w = y(z) € F. If ¢ = 0, then

v =+ ( é TIL ) for some n € Z, and z,v(z) € F implies that n = 0, so z = (z).
Assume ¢ # 0. Then a little geometric argument indicates that Srer(f) > @, also,
|ez + d| > cy. These two estimates imply that :

V3 y

2 <30 > 5 <

- ez +d]? = 2y~ 23’
hence ¢ < 3 and ¢ = £1 (0 being excluded).

Suppose ¢ = 1. Since 7 and —v have the same action on H, take without loss of
generality ¢ = 1. Then a little computation show that

(-GG

Let 21 = z +d, w1 = w — a. Since |R(z)| < %, we have |z1| > |2| > 1, and similarly

|lwy] > 1, yet wy = ( (1) _01 )zl. Since ( (1) _01 ) is the transformation z — —I

1 2
20

and maps the circle inside out, we get a contradiction.
O



2. THE MODULAR GROUP 3

REMARK 2.7. It can be shown that every discrete subgroup I' of SL2(R) has a
fundamental domain.

Let S = ( (1] _01 ) and T = ( i (1) ) Note that corresponding transformations

are z — —= and (resp.) z — z + L.
PROPOSITION 2.8. The group SLo(Z) is generated by S and T'.

ProoF. Clearly, < S,T >C SLy(Z). We thus need to show equality. Since S? =
—1I, it is enough to compute in the projectivized groups (modulo {+I}). Let v € T'(1):
we will decomposed v in a product of S,T,T~'. Note that we identify A and —A. Let
F be the fundamental domain of I'(1). Then

H = Uyermv(F),
such that the interior of the v(F') are disjoint. Hence there are ~1,...,7v, € (1) such
that v (F) = F and v,(F), and each ~;(F) is adjacent to yg+1(F). Note that the
adjacent domains to F are T'(F),T }(F) and S(F). Since vygt+1(F) and v (F) are
adjacent, it follows that 7} 'yx41(F) is adjacent to F, hence v; 'vg41 is 7,771 or S.
Since v = [[ v} "Yk+1, e are done. O

REMARK 2.9. The same trick to determine generators can be applied for any discrete
group, once the fundamental domain has been ezplicitly given.

2.3. ... and its congruence subgroups. We can view # C P!(C) = C U oo,
hence the topological boundary of # is P!(R) = R U co.

DEFINITION 2.10. Let I act discontinously on H. The quotient space T'\H is com-
posed of the orbits under the action of T'.

The quotient topology on I'\H is given by:

U C T'\H is open iff 77 (U) is open, for 7 : H — T\ H.

Fact 2.11. The space I'\H is Hausdorff (this is assured by the discontinuity of the
group action on H).

The cusps, intuitively speaking, are the points at which the fundamental domain of
the group I' touch the boundary of H.

Note that SLo(Z) acts transitively on P*(Q), hence a subgroup I' C SLy(Z) of finite
index can only have finitely many orbits. In particular, SL2(Z) has only one orbit (c0).

DEFINITION 2.12. An orbit of T in P1(Q) is called a cusp .

The cusps are used to compactify T'\H (not the fundamental domain!!) by adding
one point for every cusp, in order to obtain a compact Riemann surface at the end of
the day.

In particular, adding oo to SLa(Z)\#H will yield a compact Riemann surface of genus
0.

REMARK 2.13. When is I'\{* a compact Riemann surface 7 A Fuchsian group of
the 1st kind is a discrete subgroup I' C SLz(R) (or of SLy(R)/£1) such that T'\H* is
compact.

We have the following :

PRrOPOSITION 2.14. [1, Proposition 1.32] If T\H* is compact, then the number of
T'-inequivalent cusps is finite.

Two subgroups I' and I of a group G are said to be commensurable if ' NI is of
finite index in T' and in I.



PROPOSITION 2.15. [1, Proposition 1.31] If I',T" are commensurable, then T\H* is
compact iff T'\H*

If T is a discrete subgroup of SLy(R) commensurable with SLy(Z), then I'\H* is
compact.

A possible source of confusion is that adding cusps gives a compact Riemann surface
only if I'\H is of finite volume under the SLy(R)-invariant measure |y—12|da:dy, and it is
clearly possible to take I small enough so the volume of T'\H is infinite.

Thus we topologize H* := H U P1(Q).

If a € H, just pick a usual neighborhood (in the Euclidean topology). If a = oo,
take for a neighborhood basis co U {2|S(2) > ¢} for 0 < c € R. If a € Q, take for a
neighborhood basis aU the interior of a tangent circle to the real line at a. Note that
a fractional linear transformation mapping a to oo will map the circle to a horizontal
line, and vice-versa.

We give I'\{* the quotient topology, and we obtain a manifold.

FAcT 2.16. The manifold I'\H* is Hausdorff and locally compact.

We proceed to define a complex structure on it (we shall use the nomenclature of
elliptic, hyperbolic and parabolic elements and elliptic fixed point: look up Exercises
1.2.7 and 1.2.8 for more information) by giving charts around each point.

e If a € H is not elliptic, the usual chart on the upper half place will do.

e If a is elliptic, then we use the transform ¢ = =% to map H to the unit disc
D.

Fact 2.17. The group I'(N), for N > 1, does not contain elliptic elements.
By Schwarz’s Lemma, the stabilizer of a is mapped to the cyclic group gener-
ated by a rotation of angle %” by conjugating with ¢. Let w be the coordinate
function on D, then the map z — w™ maps a neighborhood of a € T\H*
homeomorphically to a neighborhood of 0 in C.
e If a is a cusp, we can pick p € SLa(Z) to send a to co. Let T, be the stabilizer
of a € T. Then pLp~! is a subgroup of finite index in T'(1); and the stabilizer
of oo is pI'yp~1. Hence this is a subgroup of finite index in the stabilizer of
infinity in SLy(Z), which is generated by z — z+ 1, hence pI',p~! is generated
by z — z 4+ n. The map z — €2>7(2)/" maps a neighborhood of a € I'\H*
homeomorphically onto a neighborhood of 0 in C.

This completes the description of the complex structure. The manifold T\H* is
thus a compact Riemann surface.

3. Exercises

Exercise 1.2.7
Solution : Put v in Jordan canonical form: the possible matrices are

(55) o (G0 )

In the first case, if 2 = 1, then v = £1, and the trace is +2. In the second case,
yp = 1. If £1 # v € R, then v + % > 2 by the arithmetic-geometric inequality. If
v € C\R, then p =7 (both being roots of the same quadratic equation) and |y + 7| =
2Re(v) < 2.

Note that any 7 has two fixed points (with multiplicity). We will cover all cases in
two strokes :
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e For every z € H, take 7 € SLo(R) such that 7(i) = z. Then
7-S02(R) 7! = {a € SLy(R)|a(z) = z}.

b

a

All elements in S0>(R) = {( —ab |a® + b? = 1} have eigenvalues of

norm 1, hence an element with one fixed point in H must of trace £2 or of
trace small than 2.
e For r € RU 0o, look at :

F(r) ={a € SLy(R)|a(r) =1},
P(r) = {a € F(r)|a parabolic or +1}.
Since SL2(R) acts transitively on R U 0o, there exists o € SLz(R) so that
o(00) =r. But

F(oo):{(g a >|aeRx,beR},

1
Peo)={x (o} JInemy
thence if o # £1 has a fixed point in R, its trace is greater or equal than
2.

Note that the only v € SLy(R) of trace 2 fixing a point in H are +I, so the
trichotomy is established.
Exercise 1.2.8 a) Note that

v 0N\"_ [y 0
( 0 p ) - ( 0 ) '

If there is a n € N such that 4™ = p™ = 1, then |y + p| < 2, hence the element
v € SLy(R) is elliptic. If v is elliptic, then 4™ is elliptic or +1; but {y € T'|yz = 2} is
finite : take g € SLo(R) such that g-i = 2. Then g~ 'vg-i =i hence {y € T : yz = 2} =
9S02(R)g 1 NT. Since S05(R) is compact and T is discrete (I' acting discontinuously),
the intersection is finite.

b) Pick o elliptic in SLy(Z), tr(o) < 2 hence tr(c) € {0,£1}. so the characteristic
polynomial is either 2 + 1 or 22 £z + 1,50 0* = 1 or ¢® = 1 (i.e. 0 = £1, but if
(0)® = 1if 0 = —1) hence we need only look at 0* =1 or 6% = 1. In F, only i and
the non-real third root of unity fit either one of these. The orbits are clearly disjoint (F'
is a fundamental domain).

Exercise 1.2.9

If T has no parabolic element, then H = H* and T'\H is compact .

Suppose I'\H is compact. Let m : H — I'\H. Suppose oo is a cusp. Take an
infinite sequence of points {z,} C H such that $(z,) — oo.

We find the proofs of the following lemmas in [1].

LEMMA 3.1. For every cusp of T, there is a neighborhood U of s in H* such that
Ty,={cel|lc(U)NU # 0}.

LEMMA 3.2. For every cusp s of I', for every compact K of H, there is a neighbor-
hood U of s such that U Ny(K) = 0Vy e T.



Then the first lemma tells us that there is a neighborhood U = {2 € H8|S(z) > ¢} of
oo such that oo = {y € T|¥(U)NU # §}. Then z, € U for n >> 0. Since no elements
of T'w, modifies $(2), if two points have distinct and sufficiently large imaginary parts,
then they are not I'-equivalent. Therefore {m(z,)} contains a sequence of infinitely many
distinct points of I'\H. If '\ is compact, there is a w € H such that w(w) is a limit
point of {m(z,)}. Let K be a compact neighborhood of w. By the second lemma, there
is a neighborhood V' of co such that KNT'V = . Since 7(z,) € 7#(K)N7(V) for n >> 0,
we get a contradiction.

Exercise 1.2.10

If y(a) = a,v € SL2(R), then a is the unique solution of a quadratic equation with
rational coefficients, hence a € Q. The other direction follows from the definition.

Exercise 1.2.11

PROPOSITION 3.3. An ideal class in K = Q(¢) uniquely determines a conjugacy
class in GLa(Z) of matrices with eigenvalue v (and determinant 1).

PRroOOF.

LEMMA 3.4. Let I be an ideal, (a1,a2) a Z-basis of I. Let v be a unit of norm 1.
Then there exists A € SLy(Z) such that

Ao (ar,a2)’ = vy(a1,a2)t.

PROOF. If « is a unit, then (yai,vyaz2) is a Z-basis of I, hence there is a matrix
A € GL»(Z) taking (a1,a2)t to (yai,va2)t. But v satisfies a quadratic equation, hence
7 is also an eigenvalue, so vy = 1 = det(A). O

LeEmMMA 3.5. Take another base (wy,ws) of I. Then there is a matriz B € SLa(Z)
conjugate by g € GL2(Z) to A.

PROOF. If a1, as and wy,wy are bases, then there is a matrix C' € GL2(Z) such that
C o (wi,w2)! = (a1,a2)t. Put B = C71AC; thus B o (wi,w2)! = C7rAC (w1, ws2)t =
CtAo (a1,a2)" = C7' o y(ar,a2)" = vC~ (a1, a)" = (w1, w2)" . U

If wy,ws is a basis of I, and J is in the same class as I, there is a constant k& such
that kwy, kws is a basis of J, hence by the first lemma, (kw;, kws) is an eigenvector of A.
We may just take wy,ws to represent the whole ideal class, and all is left to prove is the
converse of the second lemma : if B = D7'AD, D € GLy(Z), then B and A correspond
to the same ideal class. But B = C~! AC with eigenvalue 7 is exactly C~!(a;,az2)? and
C~1(a1,az)! also has entries which are a basis of 1.

O

REMARK 3.6. If we take SLa(Z)-conjugacy classes instead of GL2(Z)-conjugacy
classes, we obtain the narrow class number.
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