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Abstract

We describe an application of resurgence to geometry: the classifica-
tion of singularities of holomorphic foliations.
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For the remainder of the course, we will turn our attention to some applica-
tions of resurgence and links with physics. In this lecture, we will focus on an
application of resurgence to geometry: the local classification of singular folia-
tions in two dimensions. To appreciate the significance, we begin with a brief
review of the classical theory.

1 Classical results on planar foliations

1.1 Planar foliations

The focus of this lecture is on the study of nonlinear ordinary differential equa-
tions (ODEs) of the form

P (x, y)dx−Q(x, y)dy = 0
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where P and Q are holomorphic functions. When we say that this equation
is an ODE, we are being a bit imprecise, because we have not specified the
independent variable. But if Q is nonvanishing in a neighbourhood of the origin
x = y = 0, we can rewrite the equation in the more familiar form

dy

dx
=
P (x, y)

Q(x, y)
.

Then solutions for y as a function of x will exist, at least for (x, y) sufficiently
close to the origin. Such a solution is uniquely determined by its initial condition
when x = 0. Likewise, if P 6= 0, we can write

dx

dy
=
Q(x, y)

P (x, y)
,

so we can solve for x as a function of y.
Our aim is to understand the qualitative behaviour of the solutions, rather

than the exact quantitative behaviour. We will therefore allow ourselves to make
coordinate changes that simplify the ODE. From this point of view, the case in
which P or Q is nonvanishing is somewhat boring; it is called the nonsingular
case. When the equation is nonsingular, we can always choose our coordinates
in order to make the equation trivial. To see this, let us assume without loss of
generality that Q is nonvanishing near the origin, so that solutions are defined
in a neighbourhood U ⊂ C2 of 0 ∈ C2, and each solution intersects the y-axis
in a unique point. We then define a map U→ C2 by sending the point (x, y) to
the point (x, u), where u is the y-intercept of the solution that passes through
(x, y); see Figure 1.

Now (x, u) is a new coordinate system in which the ODE becomes the trivial
equation

du

dx
= 0,

or in other words
du = 0.

x

y

x

u

Figure 1: Straightening out the solutions of a nonsingular ODE
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So, in these coordinates, the solutions have been “straightened out”; they are
simply horizontal lines.

The other thing to notice is that the ODE is unchanged if we multiply P
and Q by a nonzero function. In other words, two nonzero one-forms

α = P dx−Qdy α̃ = P̃ dx− Q̃ dy

define the same ODE if and only if α and α̃ are linearly independent on an open
dense set, i.e. if and only if

α ∧ α̃ = 0.

We formalize this observation in the following geometric definition:

Definition 1. A germ of a planar foliation is an equivalence class F = [α]
of germs at the origin of nonzero holomorphic one-forms α, where [α] = [α̃] if
and only if α ∧ α̃ = 0.

From this perspective the solutions of the ODE are simply immersed complex
curves i : Y ↪→ C2 such that i∗α = 0. The are called the leaves of the
foliation.

Our aim is to understand the possible local structures of planar foliations,
i.e. to classify the germs of planar foliations, up to coordinate transformations.
In other words, we would like to describe the structure of the orbit space

Fol(C2, 0)

Aut(C2, 0)

where Fol(C2, 0) denotes the set of all germs of planar foliations, and Aut(C2, 0)
is the set of germs of analytic diffeomorphisms of C2 that fix the origin. The
action of φ ∈ Aut(C2, 0) on F ∈ Fol(C2, 0) is defined simply by the pullback of
forms:

φ∗[α] = [φ∗α].

In light of our considerations above, the classification is trivial if the foliation
can be described by a one-form α that is not equal to zero at the origin (so the
foliation is nonsingular). When this is not possible, the foliation germ is said to
be singular . We now consider the simplest singularities: the linear ones.

1.2 The linear case

Suppose that the foliation germ F may be defined by a one-form α whose
coefficients are homogeneous linear functions:

α = (Ax+By)dx+ (Cx+Dy)dy

where A,B,C,D ∈ C are constants. It is useful to consider the matrix

M =

(
A B
C D

)
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defined by the coefficients. (Invariantly, this matrix should be thought of as the
bilinear form on the tangent space T0C2 that is obtained by differentiating α
at the origin.)

There are two possibilities: either M is diagonalizable, or it is equivalent
to a Jordan block. In the diagonalizable case, we can make a linear coordinate
change φ that brings α into the normal form

αλ = x dy − λy dx

where λ ∈ C is the ratio of the eigenvalues of M . If one of the eigenvalues
is zero, we set λ = 0. Notice that, if λ 6= 0, then the forms αλ and α1/λ are
equivalent by a coordinate change that swaps the roles of x and y. But if λ1 and
λ2 are nonzero numbers with λ1 6= λ±1

2 , then the foliations defined by αλ1
and

αλ2
cannot be related by any coordinate change; they lie in genuinely different

Aut(C2, 0)-orbits in Fol(C2, 0).

Exercise 1. Verify these assertions.

The leaves of the foliation defined by αλ are easily determined. Rearranging
the equation αλ = 0, we obtain the equation

dy

y
= λ

dx

x

which means that the solutions are given by y = Cxλ where C is a constant.
The only other leaf is given by the y-axis. The case λ = 2 is illustrated in
Figure 2.

Similarly, in the case of a Jordan block, α is equivalent to the normal form

x dy − (x+ y) dx,

and the leaves are given by the y-axis, and the curves y = x(log x + C) with
C ∈ C. This case is also illustrated in Figure 2.

x

y

x

y

Figure 2: The structure of linear foliations. The left image shows the leaves of
the foliation defined by the form α = ydx − 2x dy, while the right image shows
the leaves of x dy − (x+ y) dx.
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1.3 Linearization

Now suppose that we are given a germ of a foliation F = [α], and we want to
find a nice representative for its Aut(C2, 0)-orbit. Considering the discussion
in the previous section, we can assume that the linear part of α has been put
in standard form, corresponding to a diagonal matrix or a Jordan block. For
simplicity, let us assume that we are in the diagonal case, so that the Taylor
expansion reads

α = y dx− λx dy + α2 + α2 + · · ·

where αk for k > 0 are one-forms whose coefficients are homogeneous polyno-
mials of degree k.

Let us try to determine when α lies in the same orbit as its linear part. Thus
we seek a transformation φ ∈ Aut(C2, 0) such that

φ∗α = y dx− λx dy

We will try to find φ by induction, constructing a sequence

φ3, φ4, . . . ∈ Aut(C2, 0)

such that
φ∗kα = y dx− λx dy + (terms of order ≥ k)

for all k ≥ 3. Then, by taking the limit

φ = lim
k→∞

φk,

we obtain the desired transformation.
There are two issues that we need to address. First, we need to determine

whether it is actually possible to find the transformations φk for k ≥ 2. And
second, supposing that these transformation do exist, we need to determine
whether the limit limk→∞ φk converges.

To deal with the first point, let us assume by induction that the transforma-
tion φk−1 has been found, so that

φ∗kα = y dx− λx dy +Adx+B dy + (terms of order > k),

where A and B are homogeneous polynomials of degree k. We must find a
transformation η ∈ Aut(C2, 0) such that

η∗(y dx− λx dy +Adx+B dy) = y dx− λx dy + (terms of order > k). (1)

It therefore seems reasonable to attempt a coordinate change of the form

η(x, y) = (x+ u(x, y), y + v(x, y)),
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where u and v are homogeneous polynomials of degree k. Then the pullbacks
of the elementary coordinate functions and their differentials are given by

η∗x = x+ u

η∗y = y + v

η∗dx = dx+
∂u

∂x
dx+

∂u

∂y
dy

η∗dy = dy +
∂v

∂x
dx+

∂v

∂y
dy.

From these formulae, it is easy to compute that the property (1) will be satisfied
if and only if u and v satisfy the equations

v + y
∂u

∂x
− λx∂v

∂x
= −A

y
∂u

∂y
− λu− λx∂v

∂y
= −B.

We can write this equation abstractly as

Dλ,k

(
u
v

)
= −

(
A
B

)
where Dλ,k is a linear differential operator of order one. This operator acts
on the finite-dimensional vector space of pairs of homogeneous polynomials of
degree k. We observe that this operator is independent of the one-form α; it
depends only on the constant λ that determines the linear part. It is possible
to show that, if λ ∈ C is not a rational number (i.e. λ /∈ Q ⊂ R ⊂ C), then
Dλ,k will be invertible for all k. Thus, for any k, it will be possible to find
the desired polynomials u and v, which means that the sequence φ2, φ3, . . . of
transformations will exist.

Then, because each transformation φk+1 only differs from the previous trans-
formation φk by the addition of some polynomials of degree at least k, the limit

φ = lim
k→∞

φk

is a well-defined power series. However, it is not guaranteed to converge. Check-
ing convergence involves bounding the norm of the inverse operator D−1

λ,k, to
ensure that the terms u and v that are added at each stage are not too large.
When this is done, it turns out that the resulting series will converge for most
values of λ. More precisely, we have the Poincaré linearization theorem:

Theorem 1 (Poincaré). It λ is not real, or if λ is a positive irrational real
number, then the procedure above gives an analytic automorphism φ ∈ Aut(C2, 0)
such that

φ∗α = x dy − λy dx.
Thus the Aut(C2, 0)-orbit of the foliation defined by α is completely determined
by the linear part of α.
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A complete proof of this result can be found in many places; see, for example,
[4, Sections 4 and 5], where the problem is treated using vector fields instead of
one-forms.

2 Resurgence in the non-linearizable case

When the conditions of Poincaré’s linearization theorem do not hold, the classifi-
cation problem becomes much more complicated. At the beginning of the 1900s,
Dulac obtained several results in this direction. We will focus now on one of
the most degenerate cases: the case in which the linearization is diagonalizable,
but has zero as an eigenvalue. Thus

α = −y dx+ (terms of order ≥ 2).

Dulac showed that either the form α is linearizable, or we can find an analytic
transformation φ such that

φ∗α = xp+1 dy −A(x, y) dx,

where p is some positive integer, and A is a holomorphic function such that
A(0, y) = y. This is an example of a saddle node singularity. This normal
form is not optimal, since it is is possible to change A to another function of
the same type using an analytic transformation. However, there is always a
transformation

Φ : (x, y) 7→ (x, φ(x, y)),

defined by a possibly divergent formal power series φ such that

Φ∗α = xp+1 dy − y(1 + µxp) dx

for some µ ∈ C.
The question of when two such foliations are analytically equivalent, rather

than formally equivalent, was not solved until the early 1980s, about 80 years
after Dulac’s work. The solution, found independently by Écalle and Martinet–
Ramis [5], is based on Borel summation, and our aim is to illustrate how the
classification works in the simplest case, when p = 0 and µ = 0. (The other
cases yield very similar results, although the exact formulae and notations are
slightly more cumbersome.)

We therefore let F0 be the foliation germ defined by the form

α0 = x2 dy − y dx,

and we consider the subset

Fol0(C2, 0) ⊂ Fol(C2, 0)

consisting of foliations that differ from α0 by a (possibly divergent) formal power

series automorphism φ ∈ Âut(C2, 0). We wish to describe the orbit space

Fol0(C2, 0)

Aut(C2, 0)
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determined by actual analytic equivalence, rather than just formal equivalence.
In light of Dulac’s results, the orbit space can be presented in the following

way:

Fol0(C2, 0)

Aut(C2, 0)
∼=
{germs α = x2 dy −Adx, formally equivalent to α0}
{holomorphic transformations Φ(x, y) = (x, φ(x, y))}

.

In other words, we reduce the problem to the case in which all of the trans-
formations preserve the fibration (x, y) 7→ x. From this point of view, we are
trying to classify certain singular Ehresmann connections on the fibration, up
to an appropriate group of gauge transformations.

The solution then proceeds according to the following steps.

1. Find the fibre-preserving transformation that transforms the foliation to
the normal form

2. Construct analytic transformation in sectors in x-space by Borel summing
the formal transformation

3. Understand how the Borel sums jump across singular rays (the Stokes
phenomenon)

4. Use the resulting “Stokes data” to determine the analytic equivalence class

We will only sketch the argument here; we refer the reader to [1, Pro II], [2],
[5], [6] and [7] for further details and perspectives.

2.1 The formal transformation

Suppose that we are given a one-form in Dulac’s form

α = x2 − (y +A) dx,

and that α is equivalent to the normal form

α0 = x2 dy − y dx

via a formal transformation Φ(x, y) = (x, φ(x, y)). Let us determine this trans-
formation by expanding

φ(x, y) = φ0(x) + φ1(x)y + φ2(x)y2 + · · ·

and
A = a0(x) + a1(x)y + a2(x)y2 + · · · .
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Then the condition Φ∗α = α0 yields an infinite collection of ODEs

x2 dφ0

dx
− φ0 = A(x, φ0)

x2 dφ1

dx
= βφ1 + terms involving φ0

x2 dφ2

dx
+ φ2 = βφ2 + terms involving φ0, φ1

...

x2 dφk
dx

+ (k − 1)φk = βφk + terms involving φ0, . . . , φk−1

...

(2)

where
β = a1 + 2a2φ0 + 3a3φ

2
0 + · · · .

One can show that the first ODE uniquely determines φ0. Meanwhile, the
second equation determines φ1 once we impose the initial condition φ1(0) = 1.
This condition amounts to requiring that

φ(0, y) = y + higher order terms

Then the remaining equations uniquely determine the other series φk, and yield
the following

Lemma 1. There exists a unique formal transformation Φ(x, y) = (x, φ(x, y))
such that

Φ∗α = α0

and
φ(0, y) = y.

Thus Φ restricts to the identity map on the fibre x = 0.

Exercise 2. Verify this lemma.

2.2 Borel summability of the transformation

In order to examine the Borel summability of the series φ0, φ1, φ2, . . . ∈ C[[x]]
we set

ωk = B̂(φk)

and consider the Borel transforms of the equations (2). For example, the first
equation yields

(t− 1)ω0 = B̂(a0) + B̂(a1) ∗ ω0 + B̂(a2) ∗ ω0 ∗ ω0 + · · · , (3)

where we have used the fact that the Borel transform takes the derivative x2∂x
to multiplication by t, and products to convolutions.
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Since the coefficient function A is holomorphic, the individual series ak in
its expansion are convergent, and hence their Borel transforms B̂(ak) ∈ Ω1(T)
are entire forms of exponential type. So they do not introduce any singularities.
However, if we divide (3) by t − 1, we get an equation that suggests that ω0

may have a singularity at the point t = 1 in T. But then, we expect the
iterated convolution ω∗k0 to have singularities at t = 1, 2, . . . , k. Feeding these
singularities back into (3), we expect that ω0 has singularities when t takes on
positive integer values.

Meanwhile, the equations for ωk with k > 1 have the form

(t+ (k − 1))ωk = B̂(β) ∗ ωk + terms involving ω0, . . . , ωk−1

The singularities of ωk therefore either come from the singularities of ω0, . . . , ωk−1,
or from inverting the factor t+ (k− 1). In this way, our heuristic suggests that
the only singularities of ωk−1 will be at the points t = −k + 1,−k + 2, . . ..

The heuristic argument above can be made rigorous by using a series of
approximations to determine the forms ωk:

Proposition 1 (Écalle, Martinet–Ramis). Let Γ = t−1(Z) ⊂ T. Then the
forms ωk are Γ-continuable for all k ≥ 0, and have at most exponential growth
at infinity. Hence they are Borel summable along any ray in T that avoids Γ.

It is now apparent that there are exactly two singular directions in the
problem, namely the rays corresponding the positive and negative real axes in
the coordinate t. We therefore have two sectorial neighbourhoods U± of the
origin in x-space over which the series may be summed, as shown in Figure 3.

[Cx : 0] T

U+

U−

× × × × × × × × × × ×

× × × × × × × × × × ×

Figure 3: The regions in x-space over which the formal transformation φ is Borel
summable, and the corresponding rays and singularities in the tangent space T.
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We can then construct open neighbourhoods Ũ± of U± × {0} in the real-
oriented blowup [Cx : 0]× Cy, over which there exist isomorphisms

Φ±(x, y) = (x, φ±(x, y)) : F|Ũ±
→ F0|Ũ±

between our given foliation and the formal normal form. These isomorphisms
are Gevrey functions that have the formal transformation (x, φ(x, y)) as their
asymptotic expansion with respect to x. In particular, Φ±(0, y) = y.

2.3 The Stokes phenomenon

The Stokes phenomenon for these Borel sums can be understood as follows.
Shrinking the open sets U± if necessary, we may assume that the intersection
U+ ∩ U− has two connected components L and R, corresponding to the singu-
lar rays on the left and right side of zero in T, as shown in Figure 4. These
regions are covered by overlapping regions L̃, R̃ ⊂ [C2 : 0] × C on which the
transformations Φ± constructed in the previous section are both defined.

On the overlaps, we can form the compositions

ΨL = Φ+|L̃ ◦ Φ−1
− |L̃ ∈ Aut(F0|L̃)

ΨR = Φ+|R̃ ◦ Φ−1
− |R̃ ∈ Aut(F0|R̃).

These maps are automorphisms of the normal form F0 that exactly measure
the jumps in the Borel sums across the singular rays, and we wish to under-
stand what they look like. Écalle takes a direct computational approach to this
problem, using the ODE to produce a “bridge equation” that constrains the
action of the alien derivative (see, e.g., [1, Pro II], [2] or [3, Section 6]). We shall
instead follow Martinet and Ramis’ approach, which is more geometric.

By construction, the automorphisms have the form

ΨL(x, y) = (x, ψL(x, y))

and
ΨR(x, y) = (x, ψR(x, y)),

RL

Figure 4: The overlap region U+ ∩ U− = L
∐

R.
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with ψL(0, y) = ψR(0, y) = y. So to understand the possible jumps in the Borel
sums, we are left with the problem of determining the automorphisms of the
normal form over the L and R that preserve the fibration (x, y) 7→ x.

To this end, we observe that the leaves of the normal form F0 are easily
found. This foliation is defined by the one-form

x2 dy − y dx,

and so the solution curves
y = Ce−1/x

for C ∈ C define most of the leaves; the only other leaf is the y-axis. The
foliation is illustrated in Figure 5.

Evidently, there is a major qualitative difference between the leaves over the
sets L and R; the function e−1/x is decaying in R but blowing up in L. We will
use this information to constrain the behaviour of our automorphisms.

x

y

Figure 5: The leaves of the normal form foliation in the real plane R2 ⊂ C2.

First, we notice that any automorphism of F0 must send leaves to leaves.
Since our automorphisms fix x, we must therefore have

ψL(x,Ce−1/x) = gL(C)e−1/x

and
ψR(x,Ce−1/x) = gR(C)e−1/x

for some holomorphic functions gL and gR. Using the equation

C = ye1/x,
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we arrive at the formulae

ψL(x, y) = gL(ye1/x)e−1/x ψR(x, y) = gR(ye1/x)e−1/x.

We now analyze the left and right cases separately. Expanding gL in power
series, we find

ψL(x, y) = (g0 + g1 ye
1/x + g2 y

2e2/x + · · · )e−1/x

= g0e
−1/x + g1 y + g2 y

2e1/x + · · ·

where gk is the kth Taylor coefficient of gL. In the region L, the exponential
e1/x decays as x → 0, while e−1/x blows up. Thus, in order for ψL to have the
desired property ψL(0, y) = y, we must have

g0 = 0

and
g1 = 1,

but the rest of the coefficients are unconstrained. We conclude that

gL(C) = C + g2C
2 + g3C

3 + · · ·

defines an automorphism of the germ (C, 0) that is tangent to the identity map
at the special point C = 0.

On the other hand, a similar argument in the region R evidently gives the
opposite result, since the role of the two exponentials is revered. Therefore the
only nonzero Taylor coefficients of gR are the coefficient of C, which is equal to
one, and the constant term, which is arbitrary. We conclude that gR defines a
translation

gR(C) = C + τ

for some τ ∈ C.
Thus, starting from the one-form α, we have constructed two pieces of data

from the formal series Φ via the Stokes phenomenon: the number τ ∈ C and the
automorphism gL of (C, 0) that is tangent to the identity. We call these data
the Stokes data , and we will use them to complete the classification.

2.4 The classification theorem

Let Aut0(C, 0) ⊂ Aut(C, 0) denote the group of automorphisms of the germ
(C, 0) that are tangent to the identity. From our considerations in the previous
section, we see that there is a canonical classifying map

{germs α = x2 dy −Adx, formally equivalent to α0} → C× Aut0(C, 0),

defined by extracting the Stokes data (τ, gL) of the one-form α. We may now
state the analytic classification theorem:
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Theorem 2 (Écalle, Martinet–Ramis). If α1 and α2 are holomorphically equiv-
alent, then their images under the classifying map are equal. The resulting map
on the quotient

Fol0(C2, 0)

Aut(C2, 0)
→ C× Aut0(C, 0)

is a bijection.

Sketch of proof. We refer to [5] for the full proof, which requires that some
analytic details be checked. We describe here only the main geometric ideas.

If two foliations F1 and F2 in Fol0(C2, 0) are related by a holomorphic trans-
formation, we will have a commutative diagram

F1
ρ //

Φ1   

F2

Φ2~~
F0

relating their formal isomorphisms with the normal form F0.
Because ρ is holomorphic, it does not change as we cross the singular rays,

and hence we have a similar identity relating the Borel sums of the formal series,
namely

Φ1,± = Φ2,± ◦ ρ

on the overlap of their domains. This immediately implies that the Stokes data
for these two series are the same:

Ψ1,L = Φ1,+ ◦ Φ−1
1,−

= Φ2,+ ◦ ρ ◦ (Φ2,− ◦ ρ)−1

= Φ2,+ ◦ ρ ◦ ρ−1 ◦ Φ−1
2,−

= Φ2,+ ◦ Φ−1
2,−

= Ψ2,L

on the appropriate overlap. Similarly, Ψ1,R = Ψ2,R. Hence the two foliation have
the same image under the classifying map, i.e. the classifying map descends to
the quotient, as claimed.

To see that the map is injective, we essentially reverse the previous calcula-
tion. Indeed, suppose that Φ1 and Φ2 have the same Stokes data. Then over
appropriate regions Ũ±, their Borel sums give isomorphisms

ρ± = Φ−1
2,± ◦ Φ1,±

between F1 and F2. A calculation nearly identical to the one above shows that
ρ+ and ρ− agree on the overlap of their domains, and hence they can be glued
together to give a single holomorphic isomorphism

ρ : F1 → F2.
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defined in a neighbourhood of the origin in C2. Thus F1 and F2 lie in the same
orbit.

Finally, the surjectivity is established as follows. Starting with the Stokes
data (τ, gL), we can construct the corresponding automorphisms ΨL and ΨR of
the normal form F0 over the regions L and R. We then use these automorphism
to glue F0|Ũ+

to F0|Ũ−
on the appropriate overlap L̃

∐
R̃. This results in a

foliation that is formally equivalent to F0, but has the prescribed Stokes data.

Remark 1. The reader familiar with sheaf cohomology may recognize that the
Stokes data define a Čech 1-cocycle for the sheaf of automorphisms of the formal
normal form; this is the viewpoint taken in Martinet and Ramis’ paper [5].
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différentielles non linéaires du premier ordre, Inst. Hautes Études Sci. Publ.
Math. (1982), no. 55, 63–164.

[6] D. Sauzin, Initiation to mould calculus through the example of saddle-node
singularities, Rev. Semin. Iberoam. Mat. 3 (2008), no. 5-6, 147–160.

[7] , Mould expansions for the saddle-node and resurgence monomi-
als, Renormalization and Galois theories, IRMA Lect. Math. Theor. Phys.,
vol. 15, Eur. Math. Soc., Zürich, 2009, pp. 83–163.
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