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Abstract

We study the Laplace transforms of endlessly continuable one-forms
along rays. We focus, in particular, on the behaviour of the transform
as the ray sweeps through a direction in which our one-form has singu-
larities. This behaviour motivates the introduction of a class of “simple
singularities”, which are easy to manage. Passing back over to functions,
we briefly introduce Borel sums, the Stokes phenomenon, and resurgent
symbols, which are power series that have been augmented by exponen-
tially small corrections.
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In the previous lecture, we introduced the notion of a resurgent formal power
series f ∈ C[[x]]. “Resurgent” means that the one-form ω = B̂(f) ∈ Ω̂1(T), the
Borel transform of f , converges in a disk near the origin, and has an endless
analytic continuation to a Riemann surface TΓ that covers all T, except pos-
sibly some discrete subset Γ ⊂ T. Our aim in this lecture is to introduce the
operations that “resum” such series to functions in sectorial neighbourhoods of
p. The strategy is to construct a function asymptotic to f in some sector by
taking an appropriate Laplace transform of ω.

1



1 Laplace transforms of endlessly continuable
forms

1.1 Laplace transforms in nonsingular directions

Throughout this section, we fix a discrete subset Γ ⊂ T containing the origin,
and a Γ-continuable form ω ∈ Ω1(TΓ). We assume that ω is of exponential type
at infinity, meaning that it has at most exponential growth along any path from
0 to ∞ in TΓ.

Let α be a ray in T, i.e. a straight line from the origin to ∞ in some fixed
direction. If α does not intersect Γ \ {0}, we say that α is a nonsingular
direction . In this case, we may define the Laplace transform along α by the
formula

Lα =

∫
α

e−t/xω

will converge provided that the factor e−t/x decays sufficiently rapidly at infinity.
In particular, for the integral to converge for a fixed value of x, we need

Re(t/x) > 0 along the ray α. Thus the difference in phase between x and t is
less than π/2; this defines a sector of directions in x whose opening angle is π.

We can think of this geometrically as follows. Recalling that T = TpX is the
tangent space of our Riemann surface at the point of interest, we may interpret
α as defining a direction in X at p, i.e. a point on the boundary of the real
oriented blowup. Then the copolar of α is the sector copol(α) ⊂ SpX that is
centred at α and has opening angle |copol(α)| = π, as shown in Figure 1. With
this notation we have the

Lemma 1. The Laplace transforms Lα(ω) defines a function in a sectorial
neighbourhood of p ∈ X with opening copol(α).

[X : p]

copol(α)

α
α

T

Figure 1: The blue sector denotes the copolar of a ray α in T. The dark grey is
a hypothetical region in which the Laplace transform along α would converge.

More generally, if A = (α1, α2) ⊂ SpX is a sector of angle |A| < π, we may
associate two other sectors to A. They are the polar

pol(A) =
⋂
α∈A

copol(α) = (α2 − π
2 , α1 + π

2 )
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and the copolar

copol(A) =
⋃
α∈A

copol(α) = (α1 − π
2 , α2 + π

2 )

as shown in Figure 2. Thus, informally, the polar of A is the region in X such
that Re(t/x) > 0 along any ray in A, while the copolar is the region in which
there exists some ray in A along which Re(t/x) > 0.

SpX

A

copol(A)

pol(A)

Figure 2: The copolar and copolar of a sector.

Suppose now that we vary the ray α to some other ray α′. Then we have two
different Laplace transforms f = Lα and f ′ = Lα′ defined in different regions
U and U′, as shown in Figure 3. We would like to compare these two functions
in the overlap U ∩ U′.

[X : p]

U

U′ U ∩ U′ αα′
T

Figure 3: Overlapping domains for a pair of Laplace transforms.

In this region U ∩ U′, we evidently have

Lα(ω)−Lα′(ω) =

∫
α−α′

e−t/xω.

The integrand decays very rapidly at infinity, so provided that the contour α−α′
does not encircle any singular points of ω, this integral will be zero by Cauchy’s
theorem. This gives the
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Proposition 1. If the contour α−α′ encircles no singular points of ω, then the
corresponding Laplace transforms are equal on the intersection of their domains:

Lαω|U∩U′ = Lα′ω|U∩U′

Hence they patch together to a single holomorphic function on the larger neigh-
bourhood U ∩ U′ with opening copol(α) ∪ copol(α′).

What this means is that, as we vary the ray α through a sector A of nonsin-
gular directions, we can patch together the different Laplace transforms to get
a single function:

Corollary 1. Let A be a sector of size |A| < π at p ∈ X. If A contains no
singular directions, then the Laplace transforms Lα(ω) for α ∈ A assemble into
a single analytic function LA(ω) defined in a sectorial neighbourhood of p with
opening copol(A).

1.2 Laplace transforms in singular directions

We must now understand what happens when the ray α is singular , i.e. it
intersects some nonzero points v1, v2, . . . ,∈ Γ. We would like to take a Laplace
transform along α, but we are impeded by the singularities. So we must deform
our contour slightly in order to ensure that it misses the singular points. This
is always possible because Γ is a discrete set.

Indeed, the ray α now determines a pair α± of paths in the Riemann surface
TΓ, well-defined up to homotopy, in the following way. At each point, we modify
α by introducing a small semi-circle around each point vi. This semicircle could
pass on either side of vi. We declare that path α+ is obtained by choosing each
of these semicircles to pass to the left of each point, while α− is obtained by
passing to the right, as shown in Figure 4. (Notice that the terms left and right
make sense here because the ray α has a definite direction.)

α+ α−

Figure 4: The two ways of lifting a ray in T to a path in TΓ.

We can now define the left and right Laplace transforms Lα+ and Lα−

by the formula

Lα±(ω) =

∫
α±

e−t/xω
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The left and right Laplace transforms are sometimes called lateral Laplace
transforms. Once again, they define functions in sectorial neighbourhoods
with opening copol(α).

1.3 Passing through a singular ray: examples

We would like to understand the difference

(Lα− −Lα+
)ω =

∫
α−−α+

e−t/xω.

of the right and left Laplace transforms along a singular ray. Let us consider
some illustrative examples.

Example 1. Choose a point v ∈ T with coordinate t(v) = a ∈ C, and consider
the form dt

t−a , which has an endless continuation away from v, and is single
valued. Let α be the ray in the direction of v; it is the only singular ray. The
integral along α−−α+ clearly reduces to the integral around a small positively
oriented loop that encircles the point v ∈ T:

(Lα− −Lα+)f =

∫
α−−α+

e−t/x dt

t− a

= 2πiRest=a

(
e−t/x dt

t− a

)
= 2πi · e−a/x

Hence, when the direction of summation passes through α, the sum jumps by
a function that decays exponentially in the copolar region copol(α). The exact
decay rate depends on how far away v is from the origin.

Example 2. Once again, let v ∈ T be a point with coordinate a = t(v), and now
let ω0 ∈ Ω1

exp(T) be an entire form of exponential type. Consider the form

ω =
log(t− a)

2πi
ω0

where we fix once and for all a branch of log(t − a) at the origin t = 0 ∈ T.
(The choice of branch will be inconsequential in what follows.) Evidently, ω is
Γ-continuable and the only singular point is v. So once again the only singular
ray is the ray α in that direction.

We now have

(Lα− −Lα+)ω = (2πi)−1

∫
γr

e−t/x log(t− a)ω0 +

∫
βr−−βr+

e−t/xω

where the contours γr and βr are indicated in Figure 5.
The contour γr is easily dispensed with. If γr is a circle of radius r, then

along γr, the norm of the integrand is bounded by C log r for some C > 0.
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r
βr−

βr+

γr0

Figure 5: The integration contours γr and βr± determined by a small radius
r > 0.

Hence the integral is at most 2πr ·C log r, which tends to zero as r goes to zero.
It remains to see what happens to the integrals along βr± as r → 0.

But the two rays βr± lie on different sheets of the Riemann surface. Consid-
ering the branching of logarithm as we encircle γr, we see that ω|βr− differs from

ω|βr+ by the globally defined holomorphic form e−t/xω0. We therefore have

(Lα− −Lα+
)ω = lim

r→0

∫
βr−−βr+

e−t/xω

= lim
r→0

∫
βr±

e−t/xω0

=

∫
β

e−t/xω0,

where β is the ray from v to ∞ in the direction α.
This looks integral looks like a Laplace transform of ω, but now the integral

starts from v instead of the origin. We can turn it into an honest Laplace
transform as follows. Consider the map σv : T → T defined by the translation
w 7→ w + v. Then the contour β is the translate of α:

β = (σv)∗α

Meanwhile, we have the pullback

σ∗ve
−t/x = e−(t+t(v))/x = e−(t+a)/x
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from which we compute

(Lα+
−Lα−)ω0 =

∫
(σv)∗α

e−t/xω0

=

∫
α

σ∗v

(
e−t/xω0

)
=

∫
α

e−(t+a)/xσ∗vω0

= e−a/xLα(σ∗vω0).

So the jump in the Laplace transform is computed as another Laplace transform,
but it is the Laplace transform of a different one-form, which measures the multi-
valuedness of ω at the singular point. Notice that this Laplace transform has
been weighted by the factor e−a/x, which once again decays in the whole copolar
copol(α). So again the jump is given by an exponentially small term, dictated
by the structure of the singularity at v.

1.4 Simple singularities

The examples in the previous section show that the effect of certain singularities
on the Laplace transform can be easily determined. These are the “simple”
singularities, which look locally like

ω =

(
c

t− t(v)
+ g(t− t(v)) log(t− t(v)) + h

)
dt (1)

where g and h are holomorphic and single-valued, and c ∈ C. Notice that this
local form may depend on the homotopy class of a path from 0 to v along
which we perform the analytic continuation. In this course, we will restrict our
attention to these simple singularities, since they are slightly easier to manage,
but the full theory of resurgence does allow for more general cases.

Let us be more precise about the definition. Let Γ ⊂ T be a discrete subset,
and let V ⊂ T be a small disk around v ∈ Γ. We choose V small enough to
ensure that V∩Γ = {v} and σ−v(V)∩Γ = {0}, where σ−v : T→ T denotes the
translation by −v, as shown in Figure 6.

Notice that the preimage π−1(V) ⊂ TΓ decomposes into several connected
components Vγ , each labelled by a homotopy class of paths from 0 to v that
avoid Γ except at their endpoints. Each component Vγ provides a universal cover
of the punctured disk V \ {v} via the projection π. The group of deck trans-
formations of the covering is thus a copy of Z, with generator φ ∈ Aut(π−1(V))
given by wrapping once around v.

We say that a Γ-continuable form ω ∈ Ω1(TΓ) has logarithmic branching
at v ∈ Γ if for every connected component Vγ there exists a holomorphic form

ρ ∈ Ω1(V)

such that
(φ∗ω − ω) |Vγ = π∗ρ.
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0
σ−v(V)

V
v

Figure 6: A small disk around a singular point v and its translate.

Clearly, the form ρ, if it exists, is uniquely determined by ω and γ via this
formula. Its pullback ωγ = σ∗vρ along the translation by v is therefore a holo-
morphic form defined in the disk σ−v(V) centred about 0 ∈ T. This form
evidently only depends on ω and γ, so we denote it by ωγ .

Definition 1. The form ωγ constructed as above is called the minor of ω
along γ.

So the minor ωλ is a measure of the multi-valuedness of ω after continuation
along the path λ. If after analytic continuation along γ, the form ω has the
local structure (1) above, then the minor ωγ is given by

ωγ = 2πi g(t) dt.

Proposition 2. Let ω ∈ Ω1(TΓ) be a Γ-continuable form with logarithmic
branching at v ∈ Γ. Then for any homotopy class γ from 0 to v avoiding
Γ, the minor ωγ has an endless continuation away from the translate σ−v(Γ).

Proof. Consider a connected component Vγ ⊂ π−1(V) as above. Evidently the
form φ∗ω can be analytically continued along any path in T \ Γ because ω
can be continued there. Hence the difference φ∗ω − ω also admits an analytic
continuation along any path starting in V \ {v} and avoiding Γ. Translating by
−v, we obtain the desired property of ωγ .

If ω has logarithmic branching after continuation along γ, then the form

ω − log(t− t(v))

2πi
σ∗−vωγ

on Vγ , constructed from the minor and a branch of logarithm, will be invariant
under deck transformations. It will therefore descend to a form µγ ∈ Ω1(V\{0})
on the punctured disk.

Definition 2. We say that ω has a simple singularity at v if ω has logarith-
mic branching, and each corresponding form µγ has at most a first-order pole
at v.
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Notice that, if we change the linear coordinate t, the form µγ will be shifted
by a multiple of ωγ , but its residue Resvµλ ∈ C will be unchanged; hence we
have obtain a second invariant of ω at γ: its residue

Resγω ∈ C

We emphasize that these invariants depend on the full homotopy class γ, not
just the point v.

1.5 Passing through simple singularities

Suppose that ω ∈ Ω1(TΓ) has only simple singularities. Let α be a singular ray.
We would like to understand the jump in the Laplace transform of ω as we pass
through α. To do this we must integrate along the contour α+ − α− as before.

Evidently, this integral has a contribution from every singular point v1, v2, . . . ∈
Γ that the ray α encounters. Calculating exactly as in Section 1.3, we find that
each singular point contributes a term of the form(

2πiResγvω + Lα+
(ωγv )

)
e−t(v)/x

involving the residue and the minor at the singular point. The residue and
minor are extracted by analytically continuing along a path γ that goes from 0
to v along α, missing every singular point up to v by passing to the right. In
this way we obtain the following

Proposition 3. If ω has only simple singularities along the ray α, then

Lα−ω −Lα+
ω =

∑
v∈Γ∩α

(
2πiResγvω + Lα+

(ωγv )
)
e−t(v)/x

Evidently a similar formula holds with the role of the plus and minus signs
reversed, in which case, the paths γv must pass to the left of the other singular
points instead of the right.

2 Borel sums and resurgent symbols

2.1 Borel summation

As we have now alluded to several times, the method of Borel summation gives
a way to resum certain divergent series. Indeed, let f ∈ ÔX,p

∼= C[[x]] be a

resurgent series, and assume that the Borel transform ω = B̂(f) has exponential
type at infinity.

Suppose that α is a nonsingular ray. Then we define the Borel sum of f
in the direction α by the formula

sαf = f(p) + LαB̂(f) = f(p) +

∫
α

e−t/xω
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where f(p) denotes the constant term of f . On the other hand, if α is a singular
direction, then can define left and right Borel sums sα±f along singular rays,
but they will, in general, be different. This jump in the Borel sum as we pass
through a singular point is the Stokes phenomenon .

Let us focus for the moment on the nonsingular case. As we saw in Corol-
lary 1, if A ⊂ SpX is a sector that contains no singular directions, then we can
patch together the sums along the different rays in A, and define the Borel sum
in the direction A to be the function

sAf = f(p) + LAB̂(f).

We then have the following

Theorem 1. Let f ∈ ÔX,p be a summable resurgent series whose Borel trans-
form has exponential type, and let A ⊂ SpX be a sector of size |A| < π that
contains no singular directions of f . Then the Borel sum sAf is a Gevrey
function that is asymptotic to f in a sectorial neighbourhood of p with opening
copol(A).

To prove this result, one must give appropriate bounds on the derivatives
of f ; this is done by differentiating under the integral sign using the formula
for the Laplace transform, and then integrating by parts. We shall not go into
details since this argument is similar to the discussion in Section 2.4 of Lecture
3. See, for example, [1, Section 7] for a proper treatment.

One key observation is that, by construction, the copolar copol(A) has an
opening angle |copol(A)| > π. Hence there can be at most one Gevrey function
that is asymptotic to f in this sector. What this means it that the Borel sum
sAf is, in some sense, the unique sum of the series in this region. (Although
there will of course be other sums that are not Gevrey.) In particular, although
the Borel and Laplace transforms depend on the choice of a coordinate x, the
Borel sum sAf is ultimately independent of this choice.

2.2 Algebras of resurgent symbols

In order to deal with the Stokes phenomenon, we must understand how the sum
of the series jumps when we cross through a singular point. For this it will be
useful to focus our attention on the case of simple singularities:

Definition 3. A simple resurgent function is a Gevrey formal power series
f ∈ C[[x]] = OX,p whose Borel transform admits an endless analytic continua-
tion with only simple singularities.

We must then account for the fact that expressions of the form g e−a/x will
start appearing once we pass through singular directions. The series g that
appear in this way are always given by Laplace transforms of minors ωγ . Since
the minors are endlessly continuable with simple singularities, these new series
g are also simple resurgent functions.
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Definition 4. An elementary resurgent symbol is an expression of the
form ge−a/x where g ∈ C[[x]] = ÔX,p is a resurgent series. The support of an
elementary resurgent symbol is the vector v ∈ T such that t(v) = a.

When we pass through a singular ray α, the Borel sum jumps by a series
of elementary resurgent symbols that all decay in the sector defined by α. We
would like to allow α to vary in a small sector and collect all such expressions
into a single algebra, so we make the following definition:

Definition 5. Let A ⊂ SpX be an arc of angle |A| < π. A resurgent symbol
along A with support in the discrete set Γ ⊂ T is a series

f =
∑
v∈Γ

fv e
−t(v)/x

such that each exponential e−t(v)/x decays as x→ 0 in A, i.e. every directions in
Γ is contained in the polar pol(A). We denote by R(A) the space of all resurgent
symbols along A.

Exercise 1. Determine what happens to an elementary resurgent symbol when
we change the coordinate from x to u = u(x). Conclude that elementary resur-
gent symbols with support v ∈ TpX should really be viewed as sections of a
line bundle over X. This bundle is canonically trivialized away from p. Its
holomorphic sections can then identified with the holomorphic functions f on
X \ {p} such that ea/xf is holomorphic at p, a condition that is independent of
the coordinate x. This construction is the analogue for exponential singularities
of the well-known line bundles OX(k · p) formed by meromorphic functions with
poles of order at most k at p.

References

[1] D. Sauzin, Introduction to 1-summability and resurgence, 1405.0356.

11

http://arxiv.org/abs/1405.0356

	Laplace transforms of endlessly continuable forms
	Laplace transforms in nonsingular directions
	Laplace transforms in singular directions
	Passing through a singular ray: examples
	Simple singularities
	Passing through simple singularities

	Borel sums and resurgent symbols
	Borel summation
	Algebras of resurgent symbols


