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ABSTRACT. It is almost always the case that the elementary matrices generate the special linear group
SLn over a ring of integers in a number field. The only exceptions to this rule occur for SL2 over
rings of integers in imaginary quadratic fields. The surprise is compounded by the fact that, in these
cases when elementary generation fails, it actually fails rather badly: the group E2 generated by the
elementary 2-by-2 matrices turns out to be an infinite-index, non-normal subgroup of SL2.

We give an elementary proof of this strong failure of elementary generation for SL2 over imaginary
quadratic rings.

1. INTRODUCTION

The group SLn(Z) is generated by the elementary matrices; recall, these are the matrices which
have 1 along the diagonal and at most one nonzero off-diagonal entry. The proof rests on the fact
that Z is a Euclidean domain: row- and column-operations dictated by division with remainder
will reduce any matrix in SLn(Z) to the identity matrix.

What happens if we replace Z by another ring of integers? More precisely, if OK denotes the
ring of integers in a number field K, then is it still the case that SLn(OK) is generated by the
elementary matrices?

We owe to Cohn [3] the first result in this direction: when n = 2, the answer is negative for all
but five imaginary quadratic fields.

Theorem 1.1 (Cohn). Let OD denote the ring of integers in Q(
√
−D), where D is a square-free positive

integer. If D 6= 1, 2, 3, 7, 11, then SL2(OD) is not generated by the elementary matrices.

We remind the reader that

OD =

{
Z[
√
−D] if D ≡ 1, 2 mod 4,

Z
[ 1

2 (1 +
√
−D)

]
if D ≡ 3 mod 4.

For D = 1, 2, 3, 7, 11 the ring of integers OD is a Euclidean domain, and hence SL2(OD) is
generated by the elementary matrices. For no other value of D isOD Euclidean (Motzkin [9]), and
Theorem 1.1 could be viewed as a strong way of asserting this fact. The values D = 19, 43, 67, 163
are particularly interesting, as OD is a principal ideal domain in these cases (for D = 19, see [12]
and [2]).

Soon after Cohn’s theorem, it became clear that he had uncovered a highly singular phenom-
enon: SLn(OK) is generated by the elementary matrices in all other cases. For n = 2, this was
shown in [11].

Theorem 1.2 (Vaserstein). Let OK denote the ring of integers in a number field K. If K is not an
imaginary quadratic field, then SL2(OK) is generated by the elementary matrices.

For n ≥ 3, the situation is pleasantly uniform. In the course of their solution to the congruence
subgroup problem [1], Bass, Milnor, and Serre established the following result.
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Theorem 1.3 (Bass - Milnor - Serre). Let OK denote the ring of integers in a number field K. If n ≥ 3,
then SLn(OK) is generated by the elementary matrices.

The failure of elementary generation for SL2(OD), where D 6= 1, 2, 3, 7, 11, is not only sur-
prising, but also dramatic. It turns out that E2(OD), the subgroup of SL2(OD) generated by the
elementary matrices, is a non-normal, infinite-index subgroup of SL2(OD). Our aim is to give an
elementary proof of this fact. For the moment, let us point out that the conceptual explanation
behind this situation is Murphy’s law: “When it rains, it pours.”

Instead of rings of integers in imaginary quadratic fields, we consider, more generally, imagi-
nary quadratic rings. A quadratic ring is a subring of C of the form Z⊕Zω. Then ω must satisfy a
quadratic relation which, up to an integral shift, is either ω2 ±D = 0 or ω2 −ω±D = 0, with D a
positive integer. The quadratic rings are split by the choice of sign into real quadratic rings, Z[

√
D]

and Z
[ 1

2 (1 +
√

1 + 4D)
]
, and imaginary quadratic rings, Z[

√
−D] and Z

[ 1
2 (1 +

√
1− 4D)

]
.

Using a criterion of Cohn, Dennis [5] extended Theorem 1.1 to imaginary quadratic rings.

Theorem 1.4 (Dennis). Let A = Z[
√
−D] or A = Z

[ 1
2 (1 +

√
1− 4D)

]
, where D ≥ 4. Then SL2(A)

is not generated by the elementary matrices.

In Theorem 1.4, the discarded values of D correspond to the following imaginary quadratic
rings:

Z[
√
−1], Z[

√
−2], Z[

√
−3], Z

[ 1
2 (1 +

√
−3)

]
, Z

[ 1
2 (1 +

√
−7)

]
, Z

[ 1
2 (1 +

√
−11)

]
These are the five Euclidean rings of integers that we ruled out in Theorem 1.1, together with
Z[
√
−3]. Although Z[

√
−3] is not a Euclidean domain (in fact, it even fails to be a unique factor-

ization domain), it is still the case that SL2(Z[
√
−3]) is generated by the elementary matrices (see

[5]).
The stage is now set for stating the theorem we are interested in. Namely, we prove the follow-

ing strong failure of elementary generation for SL2 over imaginary quadratic rings.

Theorem 1.5. Let A = Z[
√
−D] or A = Z

[ 1
2 (1 +

√
1− 4D)

]
, where D ≥ 4. Then the group E2(A)

generated by the elementary matrices is a non-normal, infinite-index subgroup of SL2(A).

Theorem 1.5 significantly strengthens Theorem 1.4; furthermore, our proof is more elementary
and more explicit than the argument in [5]. It should be mentioned, however, that Theorem 1.5
is “known,” in the sense that experts in this topic would immediately see it as a consequence of
two other results from the literature. Firstly, the presentations obtained by Cohn in [4] show that,
for A as in Theorem 1.5, E2(A) is in fact independent of A. Secondly, a theorem of Frohman and
Fine [6] says that, for A a ring of integers as in Theorem 1.1, SL2(A) is an amalgamated product
having E2(A) as one of the factors. Alas, both results have complicated proofs. What we offer
here is a new proof for a fact that is interesting enough to be considered on its own. Our approach
descends directly from Cohn’s [3].

To put Theorem 1.5 into perspective, notice that the imaginary quadratic rings are precisely the
orders in imaginary quadratic fields. We remind the reader that an order in a number field K is a
subring of K which has maximal possible rank, namely equal to the degree [K : Q], when viewed
as an abelian group. The ring of integers OK is an order, in fact the maximal order in the sense
that all orders in K are contained in OK.

The following result, extracted from [8], shows that the behavior described by Theorem 1.5 is
exceptional among orders in number fields.

Theorem 1.6 (Liehl). Let A be an order in a number field which is not imaginary quadratic. Then E2(A)
is a normal, finite-index subgroup in SL2(A). Moreover, if the number field has a real embedding then
SL2(A) is generated by the elementary matrices.

The failure of normality in Theorem 1.5 should also be considered against the following impor-
tant, and somewhat mysterious, result from [10].
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Theorem 1.7 (Suslin). Let n ≥ 3, and let A be a commutative ring with identity. Then En(A) is normal
in SLn(A).

2. PRELIMINARIES

In this section, A denotes a commutative ring with identity.

2.1. Unimodular pairs. A pair of elements from A is said to be unimodular if it forms the first row
of a matrix in SL2(A). Observe that SL2(A) acts by right-multiplication on unimodular pairs, and
that this action is transitive.

Moreover, we have the following fact:
(†) SL2(A) is generated by the elementary matrices if and only if the elementary group E2(A)

acts transitively on the set of unimodular pairs of A.
The forward implication in (†) is obvious. For the converse, let S ∈ SL2(A). As E2(A) acts transi-
tively on unimodular pairs, we can right-multiply the first row of S by some E ∈ E2(A) to obtain
(1, 0). In other words, we have

SE =
(

1 0
∗ ∗

)
.

Taking determinants, we see that the (2, 2)-entry of the right-hand side is 1, so the right-hand side
is in fact an elementary matrix. Hence S ∈ E2(A), and we conclude that SL2(A) = E2(A).

We do not use (†) per se in what follows, but rather its message: the way E2(A) sits in SL2(A)
can be understood through the action of E2(A) on unimodular pairs.

2.2. Cohn’s standard form. Instead of the elementary matrices(
1 a
0 1

)
,
(

1 0
a 1

) (
a ∈ A

)
we use the following matrices:

E(a) =
(

a 1
−1 0

) (
a ∈ A

)
.

Note that

E(a) =
(

1 −a
0 1

)(
0 1
−1 0

)
=
(

0 1
−1 0

)(
1 0
a 1

)
(1)

for all a ∈ A. Since (
0 1
−1 0

)
=
(

1 1
0 1

)(
1 0
−1 1

)(
1 1
0 1

)
∈ E2(A),

we deduce from (1) that each E(a) is in E2(A). On the other hand, (1) shows that we can express
the elementary matrices as follows:(

1 a
0 1

)
= −E(−a)E(0),

(
1 0
a 1

)
= −E(0)E(a).

Consequently, every matrix in E2(A) has the form±E(a1) · · · E(ar). Furthermore, such a form can
be “standardized.”

Lemma 2.1 (Cohn). Every matrix in E2(A) can be written as ±E(a1) · · · E(ar) where all ai’s but a1 and
ar are different from 0,±1.

Proof. Given a matrix in E2(A), consider its shortest expression as ±E(a1) · · · E(ar). The relations

E(a)E(0)E(a′) = −E(a + a′), E(a)E(±1)E(a′) = ±E(a∓ 1)E(a′ ∓ 1)

show that only a1 and ar may take on the values 0,±1. �
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3. PROOF OF THEOREM 1.5

Let A = Z[
√
−D] or A = Z

[ 1
2 (1 +

√
1− 4D)

]
, with D ≥ 4. The verification of the next lemma

is left to the reader.

Lemma 3.1. Let a ∈ A. Then |a| ≥ 2 whenever a is different from 0,±1.

We call a unimodular pair (a, b) special if |a| = |b| < |a ± b|. Geometrically, this means that
0, a, b, and a + b are the vertices of a “fat” rhombus in which both diagonals are longer than the
sides. The key observation is that special unimodular pairs are equivalent under the action of the
elementary group E2(A) only in a very restricted circumstance.

Lemma 3.2. Let (a, b) and (a′, b′) be special unimodular pairs which are E2(A)-equivalent. Then (a′, b′)
is one of (a, b), (−b, a), (−a,−b), (b,−a).

Note that the set
{
(a, b), (−b, a), (−a,−b), (b,−a)

}
is the orbit of (a, b) under the 4-element sub-

group of E2(A) generated by E(0), and that it consists of special unimodular pairs whenever (a, b)
is a special unimodular pair. Lemma 3.2 can then be re-stated as follows: two special unimodular
pairs are E2(A)-equivalent if and only if they are 〈E(0)〉-equivalent.

The proof of Lemma 3.2 is based on the following analysis.

Lemma 3.3. Let (a, b) be a unimodular pair. Denote by (a′, b′) the unimodular pair (a, b)E(c) = (ca−
b, a), where c ∈ A.

i) If |a| > |b|, then |a′| > |b′| whenever c 6= 0,±1.
ii) If (a, b) is special, then |a′| > |b′| whenever c 6= 0.

Proof. i) Let c 6= 0,±1, so |c| ≥ 2. Then |ca− b| ≥ |ca| − |b| ≥ 2|a| − |b| > |a|.
ii) Let c 6= 0. For c = ±1, we have |ca− b| = |a∓ b| > |a| because (a, b) is special. Now let

c 6= 0,±1, so |c| ≥ 2. As in part i), we have

(2) |ca− b| ≥ |ca| − |b| ≥ 2|a| − |b| = |a|.

Assume, by way of contradiction, that |ca − b| = |a|. Consequently, we must have equalities
throughout (2): |ca − b| = |ca| − |b|, and |c| = 2. The first equality says that 0, b, and ca are
colinear in this order; as |ca| = 2|a| = 2|b|, we deduce that b = ca/2.

If c = ±2, then b = ±a, which contradicts the fact that (a, b) is special. As an addendum
to Lemma 3.1, the reader may check that |c| = 2 admits solutions different from ±2 only when
D = 4; namely, c = ±ω or c = ±ω in Z[ω], where ω =

√
−4 or ω = 1

2 (1 +
√
−15).

We have ax + by = 1 for some x, y ∈ Z[ω], since (a, b) is unimodular. Using b = ca/2, we get

(3) a(2x + cy) = 2.

If both a and 2x + cy are different from ±1, then |a| ≥ 2 and |2x + cy| ≥ 2—by Lemma 3.1—and
(3) fails. Also, if a = ±1, then b = ±c/2 is no longer in Z[ω]. Therefore 2x + cy = ±1. By
conjugating or changing the signs of x or y if necessary, we may assume that 2x + ωy = 1. Putting
x = x1 + x2ω and y = y1 + y2ω (where x1, x2, y1, y2 ∈ Z), we obtain 2x1 + 2x2ω + y1ω + y2ω2 = 1.
But ω2 = −4 (when ω =

√
−4) or ω2 = ω − 4 (when ω = 1

2 (1 +
√
−15)), and we reach the

contradiction 2x1 − 4y2 = 1 in either case. �

Lemma 3.2 follows readily from Lemma 3.3.

Proof of Lemma 3.2. According to Lemma 2.1, we have

(a′, b′) = ±(a, b)E(c1) · · · E(cr),

where only c1 and cr can take on the values 0,±1. Assume that (a′, b′) is not 〈E(0)〉-equivalent to
(a, b). By replacing (a, b) by (a, b)E(0), and (a′, b′) by (a′, b′)E(0) if necessary, we may furthermore
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impose c1, cr 6= 0. For r = 1, part ii) of Lemma 3.3 leads to a contradiction. For r ≥ 2, parts i) and
ii) of Lemma 3.3 show that

(a′′, b′′) := ±(a, b)E(c1) · · · E(cr−1)

has |a′′| > |b′′| so necessarily cr = ±1. But then

(a′′, b′′) = (a′, b′)E(±1)−1 = (b′,±b′ − a′)

has |b′| < | ± b′ − a′|, that is, |a′′| < |b′′|. This contradiction ends the proof. �

We now attack Theorem 1.5.
The case A = Z[

√
−D]. The general strategy is captured by the following claim:

(‡) Let k be a positive integer for which the Pell-type equation X2−DY2 = k2 + 1 has integral
solutions. To each positive integral solution (x, y) of X2 − DY2 = k2 + 1 we associate a
matrix

Sx,y :=
(
−k + y

√
−D −x

x k + y
√
−D

)
∈ SL2(A).

Then, for sufficiently large solutions (x, y), the following assertions hold:
i) the conjugate S−1

x,yE(0)Sx,y is not in E2(A), and in particular Sx,y is not in E2(A);
ii) matrices Sx,y corresponding to distinct sufficiently large solutions (x, y) lie in distinct

left cosets of E2(A).
We prove the claim (‡). Consider the unimodular pairs

ux,y := (1, 1)Sx,y = (x− k + y
√
−D,−x + k + y

√
−D),

vx,y := (−1, 1)Sx,y = (x + k− y
√
−D, x + k + y

√
−D).

Note that a unimodular pair of the form (a,±a) is special if and only if |Im a| <
√

3 |Re a| and
|Re a| <

√
3 |Im a|. Therefore, ux,y and vx,y are special unimodular pairs precisely when

(4)
1√
3

<
x± k
y
√

D
<
√

3.

The relation x2 − Dy2 = k2 + 1 implies that

x± k
y
√

D
−→ 1 as x, y −→ ∞;

consequently, sufficiently large solutions (x, y) of X2 − DY2 = k2 + 1 fulfill (4).
Let (x, y) be a sufficiently large solution so that ux,y and vx,y are special unimodular pairs.

Clearly, ux,y and vx,y are not 〈E(0)〉-equivalent. As

ux,y
(
S−1

x,yE(0)Sx,y
)

= (1, 1)E(0)Sx,y = (−1, 1)Sx,y = vx,y,

it follows by Lemma 3.2 that S−1
x,yE(0)Sx,y is not in E2(A). This justifies part i) of (‡). For part ii), let

(x, y) and (x′, y′) be distinct, sufficiently large solutions and assume that Sx′ ,y′ = Sx,y E for some
E ∈ E2(A). Right-acting on (1, 1), we obtain ux′ ,y′ = ux,y E. Now Lemma 3.2 implies that ux′ ,y′

and ux,y are in fact 〈E(0)〉-equivalent, a contradiction.
We can infer from (‡) that E2(A) is a non-normal, infinite-index subgroup of SL2(A) as soon

as we dispel the doubts surrounding the following two points: that positive integers k for which
X2 − DY2 = k2 + 1 has integral solutions do exist, and that X2 − DY2 = k2 + 1 has, indeed,
sufficiently large integral solutions as soon as it is solvable at all. Both points will be clarified by
the following concrete implementation of (‡).

For k = 2D, the equation X2 − DY2 = k2 + 1 admits the solution x = 2D + 1, y = 2. The
identity

(x2 − Dy2)(p2 − Dq2) = (xp + Dyq)2 − D(xq + yp)2
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tells us how to generate more integral solutions for X2 −DY2 = k2 + 1. Namely, let (pn, qn) be the
nth solution of the Pell equation X2 − DY2 = 1; it is given by the recurrence

pn+1 = p1 pn + Dq1qn, qn+1 = p1qn + q1 pn,

where (p1, q1) is the smallest positive solution—the fundamental solution—of X2 − DY2 = 1. (See
the first section of [7] for a quick reminder.) Setting

xn = (2D + 1)pn + 2Dqn, yn = (2D + 1)qn + 2pn

we obtain a sequence of solutions for X2 − DY2 = k2 + 1. Clearly xn, yn → ∞ as n→ ∞.
We have already noticed that (xn, yn) satisfies the key condition (4) for large enough n. In this

particular realization of (‡), however, it turns out that (xn, yn) satisfies (4) for all n ≥ 1. Indeed,
start by observing that xn ≥ 2k + 1. Then a straightforward manipulation shows that

1√
3

<
x± k√

x2 − k2 − 1
<
√

3

whenever x ≥ 2k + 1.
Thus, if we let

Sn :=
(
−2D + yn

√
−D −xn

xn 2D + yn
√
−D

)
=

(
−2D 0

0 2D

)
+
(

2
√
−D −(2D + 1)

2D + 1 2
√
−D

)(
pn qn

√
−D

−qn
√
−D pn

)
then we have:

· Sn ∈ SL2(A);
· S−1

n E(0)Sn /∈ E2(A), and in particular Sn /∈ E2(A);
· the Sn’s lie in distinct left cosets of E2(A).

The case A = Z
[ 1

2 (1 +
√

1− 4D)
]

requires no extra work. A moment’s thought will convince the
reader that, if we perform the above construction over Z[

√
1− 4D], then we can still conclude that

E2(A) is a non-normal, infinite-index subgroup in SL2(A).
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