
THREE THEOREMS ON LINEAR GROUPS
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INTRODUCTION

A group is linear if it is (isomorphic to) a subgroup of GLn(K), where K is a field. If we want to
specify the field, we say that the group is linear over K. The following theorems are fundamental,
at least from the perspective of combinatorial group theory.

Theorem (Mal’cev 1940). A finitely generated linear group is residually finite.

Theorem (Selberg 1960). A finitely generated linear group over a field of zero characteristic is virtually
torsion-free.

A group is residually finite if its elements are distinguished by the finite quotients of the group,
i.e., if each non-trivial element of the group remains non-trivial in a finite quotient. A group is
virtually torsion-free if some finite-index subgroup is torsion-free. As a matter of further termi-
nology, Selberg’s theorem is usually referred to as Selberg’s lemma, and Mal’cev is alternatively
transliterated as Maltsev.

Residual finiteness and virtual torsion-freeness are related to a third property - roughly speak-
ing, a “p-adic” refinement of residual finiteness. A theorem due to Platonov (1968) gives such
refined residual properties for finitely generated linear groups. Both Mal’cev’s theorem and Sel-
berg’s lemma are consequences of this more powerful, but lesser known, theorem of Platonov.

Once we have Platonov’s theorem and its proof, we are not too far from our third theorem
of interest. In order to formulate it, let us first observe that every non-trivial torsion element in
a group G gives rise to a non-trivial idempotent in the complex group algebra CG. Namely, if
g ∈ G has order n > 1, then e = 1

n (1 + g + . . . + gn−1) ∈ CG satisfies e2 = e, and e 6= 0, 1. The
Idempotent Conjecture is the bold statement that the converse holds: if G is a torsion-free group,
then the group algebra CG has no non-trivial idempotents. While not yet settled in general, this
conjecture is known for many classes of groups. A particularly important partial result is the
following.

Theorem (Bass 1976). Torsion-free linear groups satisfy the Idempotent Conjecture.

1. VIRTUAL AND RESIDUAL PROPERTIES OF GROUPS

Virtual torsion-freeness and residual finiteness are instances of the following terminology. Let
P be a group-theoretic property. A group is virtually P if it has a finite-index subgroup enjoying
P . A group is residually P if each non-trivial element of the group remains non-trivial in some
quotient group enjoying P . The virtually P groups and the residually P groups contain the P
groups. It may certainly happen that a property is virtually stable (e.g., finiteness) or residually
stable (e.g., torsion-freeness).

Besides virtual torsion-freeness and residual finiteness, we are interested in the hybrid notion
of virtual residual p-finiteness where p is a prime. This is obtained by residualizing the property
of being a finite p-group, followed by the virtual extension. The notion of virtual residual p-
finiteness has, in fact, a leading role in this account for it relates both to residual finiteness and to
virtual torsion-freeness.
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Observe the following.
(Going down) If P is inherited by subgroups, then both virtually P and residually P are inherited
by subgroups. In particular, virtual torsion-freeness, residual finiteness, and virtual residual p-
finiteness are inherited by subgroups.
(Going up) Virtually P passes to finite-index supergroups. In particular, both virtual torsion-
freeness and virtual residual p-finiteness pass to finite-index supergroups. Residual finiteness
passes to finite-index supergroups.

Residual p-finiteness trivially implies residual finiteness. Going up, we obtain:

Lemma 1.1. Virtual residual p-finiteness for some prime p implies residual finiteness.

On the other hand, residual p-finiteness imposes torsion restrictions. Namely, in a residually
p-finite group, the order of a torsion element must be a p-th power. Hence, if a group is residually
p-finite and residually q-finite for two different primes p and q, then it is torsion-free. Virtualizing
this statement, we obtain:

Lemma 1.2. Virtual residual p-finiteness and virtual residual q-finiteness for two primes p 6= q imply
virtual torsion-freeness.

2. PLATONOV’S THEOREM

In light of Lemmas 1.1 and 1.2, we see that Mal’cev’s theorem and Selberg’s lemma are conse-
quences of the following:

Theorem (Platonov 1968). Let G be a finitely generated linear group over a field K. If char K = 0, then
G is virtually residually p-finite for all but finitely many primes p. If char K = p, then G is virtually
residually p-finite.

Actually, the zero characteristic part of Platonov’s theorem had been proved slightly earlier by
Kargapolov (1967) and, independently, Merzlyakov (1967).

Example 2.1. SLn(Z), where n ≥ 2, is a finitely generated linear group over Q. Reduction modulo
a positive integer N defines a group homomorphism SLn(Z)→ SLn(Z/N), whose kernel

Γ(N) := ker
(
SLn(Z)→ SLn(Z/N)

)
=

{
X ∈ SLn(Z) : X ≡ 1n mod N

}
is the principal congruence subgroup of level N. The principal congruence subgroups are finite-
index, normal subgroups of SLn(Z). They are organized according to the divisibility of their
levels: Γ(M) ⊇ Γ(N) if and only if M|N, that is, “to contain is to divide”. Hence the prime
stratum {Γ(p) : p prime}, and each descending chain {Γ(pk) : k ≥ 1} corresponding to fixed
prime p, stand out.

Elements of SLn(Z) can be distinguished both along the prime stratum, ∩p Γ(p) = {1n}, as
well as along each descending p-chain, ∩k Γ(pk) = {1n}. We thus have two ways of seeing that
SLn(Z) is residually finite.

There is no prime p for which SLn(Z) is residually p-finite, simply because
( 0 −1

1 1

)
has order

6. However, SLn(Z) is virtually residually p-finite for each prime p. The reason is that Γ(p) is
residually p-finite, and this is easily seen by noting that each successive quotient Γ(pk)/Γ(pk+1)
in the descending chain {Γ(pk) : k ≥ 1} is a p-group: for X ∈ Γ(pk) we have

Xp = 1n +
p

∑
i=1

(
p
i

)
(X− 1n)i ∈ Γ(pk+1).

Example 2.2. SLn(Fp[t]), where n ≥ 2, is linear over Fp(t) and finitely generated for n ≥ 3
(though not for n = 2). A similar argument to the one of the previous example, this time involving
the principal congruence subgroups corresponding to the descending chain of ideals (tk) for k ≥ 1,
shows that SLn(Fp[t]) is virtually residually p-finite. On the other hand, SLn(Fp[t]) contains a
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copy of the infinite torsion group (Fp[t], +), and this prevents SLn(Fp[t]) from being virtually
torsion-free. Consequently, SLn(Fp[t]) cannot be virtually residually q-finite for any prime q 6= p.

Platonov’s theorem implies the following “p-adic” refinement of Mal’cev’s theorem.

Corollary 2.3. A finitely generated linear group is virtually residually p-finite for some prime p.

This corollary, combined with Example 2.2, leads us to a simple example of a finitely gener-
ated group which is non-linear but residually finite: SLn(Fp[t])× SLn(Fq[t]), where p and q are
different primes, and n ≥ 3.

3. PROOF OF PLATONOV’S THEOREM

Let G be a finitely generated linear group over a field K, say G ≤ GLn(K). In K, consider the
subring A generated by the multiplicative identity 1 and the matrix entries of a finite, symmetric
set of generators for G. Thus A is a finitely generated domain, and G is a subgroup of GLn(A).
Platonov’s theorem is then a consequence of the following:

Theorem 3.1. Let A be a finitely generated domain. If char A = 0, then GLn(A) is virtually residually
p-finite for all but finitely many primes p. If char A = p, then GLn(A) is virtually residually p-finite.

Here, and for the remainder of the section, rings are commutative and unital. The proof of
Theorem 3.1 is a straightforward variation on the example of SLn(Z), as soon as we know the
following facts:

Lemma 3.2. Let A be a finitely generated domain. Then the following hold:

i. A is noetherian.
ii. ∩k Ik = 0 for any ideal I 6= A.

iii. If A is a field, then A is finite.
iv. The intersection of all maximal ideals of A is 0.
v. If char A = 0, then only finitely many primes p = p · 1 are invertible in A.

Let us postpone the proof of Lemma 3.2 for the moment, and focus instead on deriving Theo-
rem 3.1. The principal congruence subgroup of GLn(A) corresponding to an ideal I of A is defined
by

Γ(I) = ker
(
GLn(A)→ GLn(A/I)

)
.

If π is a maximal ideal then A/π is a finite field, by part (iii) of Lemma 3.2, so Γ(π) has finite
index in GLn(A). Also ∩π Γ(π) = {1n} as π runs over the maximal ideals of A, by part (iv) of
Lemma 3.2. This shows that GLn(A) is residually finite, thereby proving Mal’cev’s theorem.

For each k ≥ 1, the quotient πk/πk+1 is naturally an A/π-module. It inherits finite generation
from the finite generation of the A-module πk, the latter due to A being noetherian. As A/π is
finite, πk/πk+1 is finite as well. It follows that the ring A/πk is finite, and so Γ(πk) has finite index
in GLn(A). Furthermore, ∩k Γ(πk) = {1n} by part (ii) of Lemma 3.2, which shows once again that
GLn(A) is residually finite. Now let p denote the characteristic of A/π, so p = p · 1 ∈ π. Then
Γ(πk)/Γ(πk+1) is a p-group: for X ∈ Γ(πk) we have

Xp = 1n +
p

∑
i=1

(
p
i

)
(X− 1n)i ∈ Γ(πk+1).

To conclude, GLn(A) is virtually residually p-finite for each prime p not invertible in A. By part
(v) of Lemma 3.2, this happens for all but finitely many primes p in the zero characteristic case. In
characteristic p, there is only such prime, namely p itself. Theorem 3.1 is proved.

We now return to the proof of the lemma.
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Proof of Lemma 3.2. The first two points are standard: i) follows from the Hilbert Basis Theorem,
and ii) is the Krull Intersection Theorem for domains.

iii) We claim the following: if F ⊆ F(u) is a field extension with F(u) finitely generated as a
ring, then F ⊆ F(u) is a finite extension and F is finitely generated as a ring.

We use the claim as follows. Let F be the prime field of A and let a1, . . . , ak be generators of A
as a ring. Thus A = F(a1, . . . , ak). Going down the chain

A = F(a1, . . . , ak) ⊇ F(a1, . . . , ak−1) ⊇ . . . ⊇ F

we obtain that F ⊆ A is a finite extension, and that F is finitely generated as a ring. Then F is a
finite field, as Q is not finitely generated as a ring, and so A is finite.

Now let us prove the claim. Assume that u is transcendental over F, i.e., F(u) is the field of
rational functions in u. Let P1/Q1, . . . , Pk/Qk generate F(u) as a ring, where Pi, Qi ∈ F[u]. The
multiplicative inverse of 1 + u · ∏ Qi is a polynomial expression in the Pi/Qi’s, which can be
written as R/ ∏ Qsi

i . Therefore ∏ Qsi
i = (1 + u ·∏ Qi)R in F[u]. But this is impossible, since ∏ Qsi

i
is relatively prime to 1 + u ·∏ Qi.

Thus u is algebraic over F. Let Xd + α1Xd−1 + · · ·+ αd be the minimal polynomial of u over F.
Let also a1, . . . , ak be ring generators of F(u) = F[u]. We may write each ai as ∑0≤m≤d−1 βi,m um,
with βi,m ∈ F. We claim that the αj’s and the βi,m’s are ring generators of F. Let c ∈ F. Then c is
a polynomial in a1, . . . , ak over F, hence a polynomial in u over the subring of F generated by the
βi,m’s, hence a polynomial in u of degree less than d over the subring of F generated by the αj’s
and the βi,m’s. By the linear independence of {1, u, . . . , ud−1}, the latter polynomial is actually of
degree 0. Hence c ends up in the subring of F generated by the αj’s and the βi,m’s.

iv) Let a 6= 0 in A. To find a maximal ideal of A not containing a, we rely on the basic avoidance:
maximal ideals do not contain invertible elements. Consider the localization A′ = A[1/a]. Let π′

be a maximal ideal in A′, so a /∈ π′. The restriction π = π′ ∩ A is an ideal in A, and a /∈ π. We
show that π is maximal. The embedding A ↪→ A′ induces an embedding A/π ↪→ A′/π′. As
A′/π′ is a field which is finitely generated as a ring, it follows from iii) that A′/π′ is finite field.
Therefore the subring A/π is a finite domain, hence a field as well.

v) We shall use Noether’s Normalization Theorem: if R is a finitely generated algebra over a
field F ⊆ R, then there are elements x1, . . . , xk ∈ R algebraically independent over F such that R is
integral over F[x1, . . . , xk].

In our case, Z is a subring of A, and A is an integral domain which is finitely generated as
a Z-algebra. Extending to rational scalars, we have that AQ = Q ⊗Z A is a finitely generated
Q-algebra. By the Normalization Theorem, there exist elements x1, . . . , xk in AQ which are alge-
braically independent over Q, and such that AQ is integral over Q[x1, . . . , xk]. Up to replacing each
xi by an integral multiple of itself, we may assume that x1, . . . , xk are in A. There is some positive
m ∈ Z such that each ring generator of A is integral over Z[1/m][x1, . . . , xk]. Thus A[1/m] is inte-
gral over the subring Z[1/m][x1, . . . , xk]. If a prime p is invertible in A, then it is also invertible in
A[1/m] while at the same time p ∈ Z[1/m][x1, . . . , xk].

Now we use the following general fact. Let R be a ring which is integral over a subring S. If
s ∈ S is invertible in R, then s is already invertible in S. The proof is easy. Let r ∈ R with rs = 1.
We have rd + s1rd−1 + · · ·+ sd−1r + sd = 0 for some si ∈ S, since r is integral over S. Multiplying
through by sd−1 yields r ∈ S.

Returning to our proof, we infer that p is invertible in Z[1/m][x1, . . . , xk]. By the algebraic
independence of x1, . . . , xk, it follows that p is actually invertible in Z[1/m]. But only finitely
many primes have this property, namely the prime factors of m. �

4. THE IDEMPOTENT CONJECTURE FOR LINEAR GROUPS

Our approach to Bass’s theorem relies on the following criterion of Formanek [2], whose proof
is postponed for the next section.
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Theorem 4.1 (Formanek 1973). Let G be a torsion-free group with the property that, for infinitely many
primes p, G has no p-self-similar elements. Then the Idempotent Conjecture holds for G.

Given a group G, we say that a non-trivial element g ∈ G is self-similar if g is conjugate in G
to a proper power gN , where N ≥ 2. Clearly, torsion elements are self-similar. It turns out that the
converse holds for linear groups in positive characteristic.

Lemma 4.2. In a linear group over a field of positive characteristic, every self-similar element is torsion.

Proof. Let char K = p, and consider the relation gN = x−1gx in GLn(K), where N ≥ 2. Without
loss of generality, K is algebraically closed and g is in Jordan normal form. Each Jordan block is of
the form λ · 1k + ∆k, where ∆k is the k× k-matrix with 1’s on the super-diagonal and 0’s everywhere
else. Since (λ · 1k + ∆k)ps

= λps · 1k + ∆ps

k , and ∆ps

k = 0 for large enough s, it follows that gps
is

diagonal for large enough s. Thus, up to replacing g by gps
, we may assume that g is diagonal.

So let g have λ1, . . . , λn ∈ K along the diagonal, and write out the relation gx = xgN in matrix
form: (xij λi) = (xij λN

j ). Compare the i-th row on the two sides. At least one of xi1, xi2, . . . , xin is

non-zero, hence λi = λN
σ(i) for some σ(i) ∈ {1, . . . , n}. Since σs = σs+t for some positive integers s

and t, it follows that

λi = λNs+t

σs+t(i) =
(
λNs

σs(i)
)Nt

= λNt

i

for each i. We conclude that gNt−1 = 1 in GLn(K). �

In characteristic zero, a linear group may contain self-similar elements of infinite order. A
simple example in, say, GL2(R) is provided by

( 1 1
0 1

)
, which is conjugated into its N-th power by( 1 0

0 N
)
. Furthermore, it can be checked that the entire subgroup generated by these two matrices

is torsion-free.
The analogue of Lemma 4.2 in characteristic zero involves the following refined notion of self-

similarity. Given a group G and a prime p, let us say that a non-trivial element g ∈ G is p-self-
similar if g is conjugate in G to a proper p-th power gpk

, where k ≥ 1.

Lemma 4.3. In a finitely generated linear group over a field of characteristic zero, the following holds for
all but finitely many primes p: every p-self-similar element is torsion.

Proof. The characteristic zero case of Platonov’s theorem reduces the claim to showing that, in a
virtually residually p-finite group, every p-self-similar element is torsion. This easily follows from
the observation that a residually p-finite group has no p-self-similar elements. �

The upshot of Lemmas 4.2 and 4.3 is that a finitely generated, torsion-free linear group comfort-
ably meets the requirement of Formanek’s criterion, and so it satisfies the Idempotent Conjecture.
The theorem of Bass follows.

5. PROOF OF FORMANEK’S CRITERION

The proof of Theorem 4.1 uses tracial methods. Let us first recall that a trace on a K-algebra
A is a K-linear map τ : A → K with the property that τ(ab) = τ(ba) for all a, b ∈ A. In short,
traces are linear functionals which vanish on commutators. The ersatz commutativity afforded by
a trace is extremely valuable in a noncommutative world.

On a group algebra KG, the standard trace tr : KG → K is the linear functional which records
the coefficient of the identity element:

tr
(
∑ ag g

)
= a1
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In general, traces on KG are in bijective correspondence with maps G → K which are constant on
conjugacy classes. The characteristic map 1C : G → K of a conjugacy class C ⊆ G defines the trace

τC
(
∑ ag g

)
= ∑

g∈C
ag

so tr = τ{1} with this notation. The traces τC, where C runs over the conjugacy classes of G,
provide a natural basis for the K-linear space formed by the traces of KG. Another distinguished
trace is the augmentation map ε : KG → K given by

ε
(
∑ ag g

)
= ∑ ag.

This is the trace on KG defined by the constant map 1 : G → K. The augmentation map is in fact
a unital K-algebra homomorphism, hence ε is a trace which is {0, 1}-valued on idempotents.

Understanding the range of the standard trace on idempotents is much more difficult. The
following theorem addresses this problem in the case of complex group algebras.

Theorem 5.1 (Kaplansky 1969). Let e be an idempotent in CG. Then tr(e) ∈ [0, 1]. Furthermore,
tr(e) = 0 if and only if e = 0, and tr(e) = 1 if and only if e = 1.

Now let us return to the proof of Formanek’s criterion. It consists of two steps.
(Positive characteristic claim) Fix a prime p. If G has no p-self-similar elements and K is a field of
characteristic p, then the standard trace is {0, 1}-valued on the idempotents of KG.

It is a familiar fact that the identity (a + b)p = ap + bp holds in any commutative K-algebra.
Its noncommutative generalization, somewhat lesser known, says that, in a K-algebra, (a + b)p −
ap − bp is a sum of commutators. Indeed, we may assume that we are in the free K-algebra on a
and b. We expand (a + b)p into monomials of degree p in a and b, and we let the cyclic group of
order p act on these monomials by cyclic permutations. We see orbits of size p, except for ap and
bp, which are fixed by the action. Now we observe that the sum of monomials corresponding to
each orbit of size p is a sum of commutators. This follows from the identity

x1x2 . . . xp−1xp + x2x3 . . . xpx1 + · · ·+ xpx1 . . . xp−2xp−1

= p · x1x2 . . . xp−1xp − [x1, x2 . . . xp]− [x1x2, x3 . . . xp]− · · · − [x1 . . . xp−1, xp].

Next, let us iterate: we show by induction that (a + b)pk − apk − bpk
is a sum of commutators for

every positive integer k. For the induction step we write

(a + b)pk+1
=

(
apk

+ bpk
+ ∑[ui, vi]

)p
= apk+1

+ bpk+1
+ ∑[ui, vi]p + ∑[u′j, v′j]

and

[u, v]p = (uv)p − (vu)p + ∑[yl , zl ] =
[
(uv)p−1u, v

]
+ ∑[yl , zl ].

In particular, a trace τ on a K-algebra has the property that τ
(
(a + b)pk )

= τ
(
apk )

+ τ
(
bpk )

for
every positive integer k. For a basic trace τC, where C 6= {1}, and an idempotent e ∈ KG, we
obtain

τC(e) = τC(epk
) = τC

((
∑ eg g

)pk )
= ∑ τC

(
(eg g)pk )

= ∑ epk

g 1C
(

gpk )
for each positive integer k. The hypothesis that G has no p-self-similar elements implies that, for
each g in the support of e, there is at most one k so that gpk ∈ C. Thus, taking k large enough, we
see that τC(e) = 0. Using the relation ε = tr + ∑C 6={1} τC, we conclude that tr is {0, 1}-valued on
the idempotents of KG.
(Zero characteristic claim) Assume that, for infinitely many primes p, the following holds: the
standard trace is {0, 1}-valued on the idempotents of KG, whenever K is a field of characteristic
p. Then the standard trace is {0, 1}-valued on the idempotents of CG.

Arguing by contradiction, we assume that e is an idempotent in CG with e1 = tr(e) /∈ {0, 1}.
Let A ⊆ C be the subring generated by the support of e together with 1/e1 and 1/(1− e1), and
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view e as an idempotent in the group ring AG. By part (v) of Lemma 3.2, for all but finitely many
primes p there is a quotient map A � K, a 7→ a, onto a field of characteristic p. Note that e1 6= 0, 1
in K, since e1 and 1− e1 are invertible in A. The induced ring homomorphism AG → KG sends e
to an idempotent e in KG with tr(e) 6= 0, 1, thereby contradicting our hypothesis.

The proof of Theorem 4.1 is concluded by invoking Kaplansky’s theorem.

NOTES

Platonov’s theorem. Besides the Russian original [4], the only other source in the literature for
Platonov’s theorem appears to be the presentation by Wehrfritz in Infinite linear groups. An account
of the group-theoretic properties of infinite groups of matrices (Springer 1973). The proof presented
herein seems considerably simpler. It is mainly influenced by the discussion of Mal’cev’s theorem
in lecture notes by Stallings (Commutative rings and groups, UC Berkeley 2000), and it has a certain
degree of similarity with Platonov’s own arguments in [4].
Selberg’s lemma. It is important to note that Selberg’s lemma is just a minor step in Selberg’s
paper [5], whose true importance is that it started the rich stream of rigidity results for lattices in
higher rank. An alternative road to Selberg’s lemma is to use valuations. This is the approach
taken by Cassels in Local fields (Cambridge University Press 1986), and by Ratcliffe in Foundations
of hyperbolic manifolds (2nd edition, Springer 2006).
The Idempotent Conjecture. The Idempotent Conjecture is usually attributed to Kaplansky, but a
reference seems elusive. What Kaplansky did state on more than one occasion (Problem 1, p.122 in
Fields and rings, The University of Chicago Press 1969; Problem 6, p.448 in Amer. Math. Monthly
1970) is a problem nowadays referred to as the Zero-Divisor Conjecture: if G is a torsion-free
group and K is a field, then the group algebra KG has no zero-divisors, i.e., ab 6= 0 whenever
a, b 6= 0 in KG. The Zero-Divisor Conjecture over the complex field, which clearly implies the
Idempotent Conjecture, is still not settled for the class of (torsion-free) linear groups.
Kaplansky’s theorem. We refer to Burger and Valette (J. Lie Theory 1998) for a proof, as well as
for a nice complementary reading. The main insight of Kaplansky’s analytic proof is to pass from
the group algebra CG to a completion afforded by the regular representation on `2G. One can use
the weak completion, that is the von Neumann algebra LG, or the norm completion, the so-called
reduced C∗-algebra C∗r G. Kaplansky’s proof, while remarkable in itself, is perhaps more important
for suggesting what came to be known as the Kadison Conjecture: for every torsion-free group G,
the reduced C∗-algebra C∗r G has no non-trivial idempotents. At the time of writing, the Kadison
Conjecture for the class of (torsion-free) linear groups is still open.
Bass’s theorem. As we have seen, the step from Formanek’s criterion to the theorem of Bass is
rather short, and it uses results on linear groups which were known - certainly on the eastern side
of the Iron Curtain, but probably also on its western side - at the time of [2]. Ascribing the theorem
to Bass and Formanek is therefore not entirely unwarranted. The hard facts, however, are that Bass
actually proves much more in [1] whereas Formanek states less in [2].
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