A NOTE ON NORMALIZED HEAT DIFFUSION FOR GRAPHS

BOGDAN NICA

Abstract

We show that, on graphs which have precisely three distinct Laplacian eigenvalues, heat diffusion enjoys a monotonic behaviour.

1. Introduction

Let X be a finite connected graph. The heat kernel on X is given by

$$
H_{t}=e^{-t L}
$$

where L is the Laplacian on X, and $t \geq 0$ is the time variable. In [5], Regev and Shinkar considered the question whether X has monotonic normalized heat diffusion: is the ratio

$$
\frac{H_{t}(u, v)}{H_{t}(u, u)}
$$

monotonically non-decreasing, as a function of time, for every pair of vertices u and v ? Specifically, Peres (2013) had asked whether this is always the case in a vertex-transitive graph. This turns out to be too optimistic: the main result of Regev and Shinkar is that there are Cayley graphs which do not have monotonic normalized heat diffusion. On the other hand, McMurray Price [3] has shown that Cayley graphs of abelian groups do have monotonic normalized heat diffusion. In [5], Regev and Shinkar also give an example, based on an idea of Cheeger, of a regular graph which does not have monotonic normalized heat diffusion. The example is a 4-regular graph on 10 vertices, obtained as follows: consider the usual cube graph on 8 nodes, and cone off two opposite faces by two additional vertices.

The vertex-transitivity assumption in the question raised by Peres is presumably meant to enforce a constant diagonal for the heat kernel, i.e., $H_{t}(u, u)$ is independent of the choice of vertex u. Actually, this heat homogeneity holds if and only if X is walk-regular, see Theorem 5 in the Appendix. Notable classes of walk-regular graphs include vertex-transitive graphs; distance-regular graphs; regular graphs having at most four distinct eigenvalues. We are thus led to the question whether the latter class enjoys monotonic normalized heat diffusion.

We show the following:
Theorem 1. If X has three distinct Laplacian eigenvalues, then X has monotonic normalized heat diffusion.

The regular graphs with three distinct Laplacian eigenvalues are precisely the strongly regular graphs. Therefore strongly regular graphs enjoy monotonic normalized heat diffusion.

[^0]Somewhat surprisingly, monotonic normalized heat diffusion also holds for nonregular graphs with three distinct Laplacian eigenvalues. Our favourite example of such a graph is the so-called Erdős - Rényi orthogonality graph. Given a finite field \mathbb{F} with q elements, the graph $E R_{q}$ has the projective plane $P G(2, \mathbb{F})=\left(\mathbb{F}^{3}\right)^{*} / \mathbb{F}$ as its vertex set as its vertex set. Two distinct vertices $\left[x_{1}, x_{2}, x_{3}\right]$ and $\left[y_{1}, y_{2}, y_{3}\right]$ are joined by an edge whenever $x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}=0$. The graph $E R_{q}$ has $q^{2}+q+1$ vertices; q^{2} of them have degree $q+1$, and the remaining $q+1$ have degree q. The Laplacian eigenvalues of $E R_{q}$ are 0 , and $q+1 \pm \sqrt{q}$. Historically, the Erdős - Rényi graph first appeared in Turán-type extremal graph theory, as a graph with many edges but no 4 -cycles. We refer to [4, Ch.12] for details. Several other constructions of non-regular graphs with three distinct Laplacian eigenvalues are studied in [1].

We conclude this preamble by raising the following problem: do regular graphs with four distinct eigenvalues enjoy monotonic normalized heat diffusion? It is likely that this problem can be handled by a strategy similar to the one employed below, but the computations are quite unwieldy.

2. Preliminaries

Let X be a finite connected graph, having at least two vertices. The Laplacian on X is a symmetric linear operator on the space of real-valued functions defined on the vertex set V of X. This is a finite-dimensional space, endowed with the inner product

$$
\langle\phi, \psi\rangle=\sum_{v \in V} \phi(v) \psi(v) .
$$

The Laplacian, denoted by L, has matrix coefficients $L(u, v)=\left\langle L \mathbb{1}_{v}, \mathbb{1}_{u}\right\rangle$, where $u, v \in V$, given as follows: off-diagonally, $L(u, v)=0$ if $u \neq v$ are not adjacent, respectively $L(u, v)=-1$ if $u \neq v$ are adjacent; diagonally, $L(u, u)=\operatorname{deg}(u)$, the degree of u.

Let $n=|V|$ denote the number of vertices of X. Then L has n non-negative eigenvalues, counted with multiplicities. The trivial eigenvalue $\lambda=0$ admits the constant function $\mathbb{1}$ as an eigenfunction, and it is simple thanks to connectivity. On the other hand, the non-trivial eigenvalues can, and usually do, have a high multiplicity.

Let $\sigma(L)$ denote the set of distinct eigenvalues of L. We then have the spectral decomposition

$$
L=\sum_{\lambda \in \sigma(L)} \lambda P_{\lambda}
$$

where P_{λ} denotes the projection onto the λ-eigenspace. The projection P_{0}, corresponding to the trivial eigenvalue, is the averaging operator $P_{0} \phi=\frac{1}{n} \sum_{v \in V} \phi(v)$. In terms of matrix coefficients, we have $P_{0}(u, v)=\frac{1}{n}$ for all $u, v \in V$.

The spectral decomposition for the Laplacian induces, by functional calculus, a spectral decomposition for the heat kernel:

$$
H_{t}=e^{-t L}=\sum_{\lambda \in \sigma(L)} e^{-t \lambda} P_{\lambda}
$$

for all $t \geq 0$. This formula makes it apparent that the heat kernel evolves from $I=H_{0}$ towards $P_{0}=\lim _{t \rightarrow \infty} H_{t}$. We will make significant use of the spectral
decomposition of the heat kernel, a perspective that is quite different from the approaches taken in [5, 3].

3. Proof of Theorem 1

We start with two facts that hold without any spectral hypothesis on X. The first one is a well-known bound relating vertex degrees and Laplacian eigenvalues.

Lemma 2. The degree of each vertex u satisfies

$$
\min _{0 \neq \lambda \in \sigma(L)} \lambda \leq \operatorname{deg}(u), \quad \operatorname{deg}(u)+1 \leq \max _{\lambda \in \sigma(L)} \lambda
$$

The second fact says that normalized heat diffusion starts off in a non-decreasing way.

Lemma 3. For any pair of distinct vertices u and v, the normalized heat diffusion

$$
\frac{H_{t}(u, v)}{H_{t}(u, u)}
$$

has non-negative derivative at $t=0$.
Proof. We need to show that

$$
H_{t}^{\prime}(u, v) H_{t}(u, u) \geq H_{t}(u, v) H_{t}^{\prime}(u, u)
$$

at $t=0$. We have $H_{0}(u, u)=1$ and $H_{0}(u, v)=0$, since $H_{0}=I$, so we are left with checking that $H_{0}^{\prime}(u, v) \geq 0$. Now, $H_{t}^{\prime}=-L H_{t}$, in particular $H_{0}^{\prime}=-L H_{0}=-L$. Hence $H_{0}^{\prime}(u, v)=-L(u, v) \geq 0$, as desired.

Assume now that X has three distinct Laplacian eigenvalues, say $0<\theta_{1}<\theta_{2}$. Then the heat kernel is given by

$$
H_{t}=P_{0}+e^{-t \theta_{1}} P_{\theta_{1}}+e^{-t \theta_{2}} P_{\theta_{2}}
$$

Let u and v be distinct vertices of X. In order to prove Theorem 1, we have to check that the function

$$
h(t):=H_{t}^{\prime}(u, v) H_{t}(u, u)-H_{t}(u, v) H_{t}^{\prime}(u, u)
$$

satisfies $h(t) \geq 0$ at all times $t \geq 0$. One computes

$$
\begin{equation*}
e^{t\left(\theta_{1}+\theta_{2}\right)} h(t)=\frac{\theta_{1}}{n}\left(P_{\theta_{1}}(u, u)-P_{\theta_{1}}(u, v)\right) e^{t \theta_{2}}+\frac{\theta_{2}}{n}\left(P_{\theta_{2}}(u, u)-P_{\theta_{2}}(u, v)\right) e^{t \theta_{1}}-R \tag{*}
\end{equation*}
$$

where the remainder R is explicitly given as

$$
R=\left(\theta_{1}-\theta_{2}\right)\left(P_{\theta_{1}}(u, u) P_{\theta_{2}}(u, v)-P_{\theta_{1}}(u, v) P_{\theta_{2}}(u, u)\right)
$$

Importantly, note that the remainder R is independent of t.
Lemma 4. $P_{\theta_{1}}(u, u) \geq P_{\theta_{1}}(u, v)$ and $P_{\theta_{2}}(u, u) \geq P_{\theta_{2}}(u, v)$.
This lemma addresses the coefficients appearing on the right-hand side of $(*)$. It follows that $g(t)=e^{t\left(\theta_{1}+\theta_{2}\right)} h(t)$ is increasing, and so $g(t) \geq g(0)=h(0)$ for all $t \geq 0$. As $h(0) \geq 0$, by Lemma 3, we deduce that $h(t) \geq 0$ for all $t \geq 0$.

Proof of Lemma 4. The two projections, $P_{\theta_{1}}$ and $P_{\theta_{2}}$, can be determined from the following system:

$$
\begin{aligned}
P_{\theta_{1}}+P_{\theta_{2}} & =I-P_{0} \\
\theta_{1} P_{\theta_{1}}+\theta_{2} P_{\theta_{2}} & =L .
\end{aligned}
$$

The solution is

$$
P_{\theta_{1}}=\frac{L-\theta_{2}\left(I-P_{0}\right)}{\theta_{1}-\theta_{2}}, \quad P_{\theta_{2}}=\frac{L-\theta_{1}\left(I-P_{0}\right)}{\theta_{2}-\theta_{1}}
$$

Then one computes

$$
\begin{aligned}
& P_{\theta_{1}}(u, u)-P_{\theta_{1}}(u, v)=\frac{\operatorname{deg}(u)-\theta_{2}-L(u, v)}{\theta_{1}-\theta_{2}} \\
& P_{\theta_{2}}(u, u)-P_{\theta_{2}}(u, v)=\frac{\operatorname{deg}(u)-\theta_{1}-L(u, v)}{\theta_{2}-\theta_{1}}
\end{aligned}
$$

Lemma 2 says, for the case at hand, that $\theta_{1} \leq \operatorname{deg}(u)$, and $\operatorname{deg}(u)+1 \leq \theta_{2}$. It follows that $\operatorname{deg}(u)-\theta_{1}-L(u, v) \geq 0$, and $\operatorname{deg}(u)-\theta_{2}-L(u, v) \leq 0$. This proves the claim of the lemma.

4. Appendix: Walk-Regular graphs

A graph is walk regular if, for each $k \geq 2$, the number of closed walks of length ℓ starting and ending at a vertex is independent of the choice of vertex. Taking $\ell=2$, we see that a walk-regular graph is, in particular, regular. The notion of walk regularity, as well as some of its basic properties, first appeared in [2].

Theorem 5. The following are equivalent:
(x) X is walk-regular;
(A) A^{k} has constant diagonal, for all $k=0,1, \ldots$;
(L) L^{k} has constant diagonal, for all $k=0,1, \ldots$;
(н) H_{t} has constant diagonal, for all $t \geq 0$;
(Р) P_{λ} has constant diagonal, for all $\lambda \neq 0$.

Proof. The equivalence of (x) and (A), already noted in [2], owes to the fact that $A^{k}(u, u)$ counts the number of closed walks of length k starting and ending at a vertex u.

The equivalence of (A) and (L) owes, firstly, to the regularity of X, expressed by the value $k=2$ in (A), respectively the value $k=1$, or $k=2$, in (L). Then the relation $A+L=d I$, where d is the degree of X, leads to A^{k} being a polynomial of degree k in L, respectively L^{k} being a polynomial of degree k in A.

The equivalence of (L) and (H) is based on the power series formula

$$
H_{t}(u, u)=\sum_{k=0}^{\infty} \frac{(-1)^{k} L^{k}(u, u)}{k!} t^{k}
$$

for each vertex u, and all times $t \geq 0$. If (L) holds, then the right-hand side is independent of u, and (H) follows. If (H) holds, then the left-hand side is independent of u, so it can be seen as a function of t only. By the uniqueness of a power series expansion, $L^{k}(u, u)$ is independent of u, for all $k=0,1, \ldots$.

The equivalence of (H) and (P) is based on the formula

$$
H_{t}(u, u)=\sum_{\lambda \in \sigma(L)} e^{-t \lambda} P_{\lambda}(u, u)
$$

for each vertex u, and all times $t \geq 0$. Clearly, then, (P) implies (H). The converse implication owes to the fact that the scaled exponentials $t \mapsto e^{-t \lambda}$, for λ running over $\sigma(L)$, are linearly independent.

From a heat kernel perspective, the main upshot is the equivalence of (x) and (H): a graph is walk-regular if and only if its heat kernel has constant diagonal at all times.

The verification of walk-regularity, on the other hand, often exploits the equivalence of (x) and (A). For example, walk-regularity for distance-regular graphs can be shown in this way [2]. Let us illustrate this perspective by discussing walkregularity for regular graphs with few eigenvalues. If X is a regular graph with s distinct eigenvalues, then there is a monic polynomial p of degree $s-1$, the so-called Hoffman polynomial of X, with the property that the matrix $p(A)$ has constant entries. It follows that the walk-regularity of X is equivalent to A^{s} having constant diagonal for all $k=0, \ldots, s-2$. When $s=3$ or $s=4$, this clearly holds.

References

[1] E. van Dam, W.H. Haemers: Graphs with constant μ and $\bar{\mu}$, Graph theory (Lake Bled, 1995), Discrete Math. 182 (1998), no. 1-3, 293-307
[2] C.D. Godsil, B.D. McKay: Feasibility conditions for the existence of walk-regular graphs, Linear Algebra Appl. 30 (1980), 51-61
[3] T. McMurray Price: An inequality for the heat kernel on an Abelian Cayley graph, Electron. Commun. Probab. 22 (2017), Paper No. 57, 8 pp.
[4] B. Nica: A brief introduction to spectral graph theory, EMS Textbooks in Mathematics, European Mathematical Society (2018)
[5] O. Regev, I. Shinkar: A counterexample to monotonicity of relative mass in random walks, Electron. Commun. Probab. 21 (2016), Paper No. 8, 8 pp.

[^0]: Date: September 12, 2019.
 2010 Mathematics Subject Classification. 05C50.
 Key words and phrases. Heat kernel, Laplacian eigenvalues.

