A NOTE ON NORMALIZED HEAT DIFFUSION FOR GRAPHS

BOGDAN NICA

ABSTRACT. We show that, on graphs which have precisely three distinct Laplacian eigenvalues, heat diffusion enjoys a monotonic behaviour.

1. INTRODUCTION

Let X be a finite connected graph. The *heat kernel* on X is given by

$$H_t = e^{-tL}$$

where L is the Laplacian on X, and $t \ge 0$ is the time variable. In [5], Regev and Shinkar considered the question whether X has monotonic normalized heat diffusion: is the ratio

$$\frac{H_t(u,v)}{H_t(u,u)}$$

monotonically non-decreasing, as a function of time, for every pair of vertices u and v? Specifically, Peres (2013) had asked whether this is always the case in a vertex-transitive graph. This turns out to be too optimistic: the main result of Regev and Shinkar is that there are Cayley graphs which do not have monotonic normalized heat diffusion. On the other hand, McMurray Price [3] has shown that Cayley graphs of abelian groups do have monotonic normalized heat diffusion. In [5], Regev and Shinkar also give an example, based on an idea of Cheeger, of a regular graph which does not have monotonic normalized heat diffusion. The example is a 4-regular graph on 10 vertices, obtained as follows: consider the usual cube graph on 8 nodes, and cone off two opposite faces by two additional vertices.

The vertex-transitivity assumption in the question raised by Peres is presumably meant to enforce a constant diagonal for the heat kernel, i.e., $H_t(u, u)$ is independent of the choice of vertex u. Actually, this heat homogeneity holds if and only if Xis walk-regular, see Theorem 5 in the Appendix. Notable classes of walk-regular graphs include vertex-transitive graphs; distance-regular graphs; regular graphs having at most four distinct eigenvalues. We are thus led to the question whether the latter class enjoys monotonic normalized heat diffusion.

We show the following:

Theorem 1. If X has three distinct Laplacian eigenvalues, then X has monotonic normalized heat diffusion.

The regular graphs with three distinct Laplacian eigenvalues are precisely the strongly regular graphs. Therefore strongly regular graphs enjoy monotonic normalized heat diffusion.

Date: September 12, 2019.

²⁰¹⁰ Mathematics Subject Classification. 05C50.

Key words and phrases. Heat kernel, Laplacian eigenvalues.

BOGDAN NICA

Somewhat surprisingly, monotonic normalized heat diffusion also holds for nonregular graphs with three distinct Laplacian eigenvalues. Our favourite example of such a graph is the so-called Erdős - Rényi orthogonality graph. Given a finite field \mathbb{F} with q elements, the graph ER_q has the projective plane $PG(2, \mathbb{F}) = (\mathbb{F}^3)^*/\mathbb{F}$ as its vertex set as its vertex set. Two distinct vertices $[x_1, x_2, x_3]$ and $[y_1, y_2, y_3]$ are joined by an edge whenever $x_1y_1 + x_2y_2 + x_3y_3 = 0$. The graph ER_q has $q^2 + q + 1$ vertices; q^2 of them have degree q + 1, and the remaining q + 1 have degree q. The Laplacian eigenvalues of ER_q are 0, and $q + 1 \pm \sqrt{q}$. Historically, the Erdős - Rényi graph first appeared in Turán-type extremal graph theory, as a graph with many edges but no 4-cycles. We refer to [4, Ch.12] for details. Several other constructions of non-regular graphs with three distinct Laplacian eigenvalues are studied in [1].

We conclude this preamble by raising the following problem: do regular graphs with four distinct eigenvalues enjoy monotonic normalized heat diffusion? It is likely that this problem can be handled by a strategy similar to the one employed below, but the computations are quite unwieldy.

2. Preliminaries

Let X be a finite connected graph, having at least two vertices. The Laplacian on X is a symmetric linear operator on the space of real-valued functions defined on the vertex set V of X. This is a finite-dimensional space, endowed with the inner product

$$\langle \phi, \psi \rangle = \sum_{v \in V} \phi(v) \ \psi(v).$$

The Laplacian, denoted by L, has matrix coefficients $L(u, v) = \langle L \mathbb{1}_v, \mathbb{1}_u \rangle$, where $u, v \in V$, given as follows: off-diagonally, L(u, v) = 0 if $u \neq v$ are not adjacent, respectively L(u, v) = -1 if $u \neq v$ are adjacent; diagonally, $L(u, u) = \deg(u)$, the degree of u.

Let n = |V| denote the number of vertices of X. Then L has n non-negative eigenvalues, counted with multiplicities. The trivial eigenvalue $\lambda = 0$ admits the constant function 1 as an eigenfunction, and it is simple thanks to connectivity. On the other hand, the non-trivial eigenvalues can, and usually do, have a high multiplicity.

Let $\sigma(L)$ denote the set of distinct eigenvalues of L. We then have the spectral decomposition

$$L = \sum_{\lambda \in \sigma(L)} \lambda P_{\lambda}$$

where P_{λ} denotes the projection onto the λ -eigenspace. The projection P_0 , corresponding to the trivial eigenvalue, is the averaging operator $P_0\phi = \frac{1}{n}\sum_{v\in V}\phi(v)$. In terms of matrix coefficients, we have $P_0(u,v) = \frac{1}{n}$ for all $u, v \in V$.

The spectral decomposition for the Laplacian induces, by functional calculus, a spectral decomposition for the heat kernel:

$$H_t = e^{-tL} = \sum_{\lambda \in \sigma(L)} e^{-t\lambda} P_{\lambda}$$

for all $t \ge 0$. This formula makes it apparent that the heat kernel evolves from $I = H_0$ towards $P_0 = \lim_{t\to\infty} H_t$. We will make significant use of the spectral

decomposition of the heat kernel, a perspective that is quite different from the approaches taken in [5, 3].

3. Proof of Theorem 1

We start with two facts that hold without any spectral hypothesis on X. The first one is a well-known bound relating vertex degrees and Laplacian eigenvalues.

Lemma 2. The degree of each vertex u satisfies

$$\min_{0 \neq \lambda \in \sigma(L)} \lambda \leq \deg(u), \qquad \deg(u) + 1 \leq \max_{\lambda \in \sigma(L)} \lambda.$$

The second fact says that normalized heat diffusion starts off in a non-decreasing way.

Lemma 3. For any pair of distinct vertices u and v, the normalized heat diffusion

$$\frac{H_t(u,v)}{H_t(u,u)}$$

has non-negative derivative at t = 0.

Proof. We need to show that

$$H'_t(u,v)H_t(u,u) \ge H_t(u,v)H'_t(u,u)$$

at t = 0. We have $H_0(u, u) = 1$ and $H_0(u, v) = 0$, since $H_0 = I$, so we are left with checking that $H'_0(u, v) \ge 0$. Now, $H'_t = -LH_t$, in particular $H'_0 = -LH_0 = -L$. Hence $H'_0(u, v) = -L(u, v) \ge 0$, as desired.

Assume now that X has three distinct Laplacian eigenvalues, say $0 < \theta_1 < \theta_2$. Then the heat kernel is given by

$$H_t = P_0 + e^{-t\theta_1} P_{\theta_1} + e^{-t\theta_2} P_{\theta_2}.$$

Let u and v be distinct vertices of X. In order to prove Theorem 1, we have to check that the function

$$h(t) := H'_t(u, v)H_t(u, u) - H_t(u, v)H'_t(u, u)$$

satisfies $h(t) \ge 0$ at all times $t \ge 0$. One computes

$$(*)$$

$$e^{t(\theta_1+\theta_2)} h(t) = \frac{\theta_1}{n} \left(P_{\theta_1}(u,u) - P_{\theta_1}(u,v) \right) e^{t\theta_2} + \frac{\theta_2}{n} \left(P_{\theta_2}(u,u) - P_{\theta_2}(u,v) \right) e^{t\theta_1} - R$$

where the remainder R is explicitly given as

$$R = (\theta_1 - \theta_2)(P_{\theta_1}(u, u) P_{\theta_2}(u, v) - P_{\theta_1}(u, v) P_{\theta_2}(u, u)).$$

Importantly, note that the remainder R is independent of t.

Lemma 4. $P_{\theta_1}(u, u) \ge P_{\theta_1}(u, v)$ and $P_{\theta_2}(u, u) \ge P_{\theta_2}(u, v)$.

This lemma addresses the coefficients appearing on the right-hand side of (*). It follows that $g(t) = e^{t(\theta_1 + \theta_2)} h(t)$ is increasing, and so $g(t) \ge g(0) = h(0)$ for all $t \ge 0$. As $h(0) \ge 0$, by Lemma 3, we deduce that $h(t) \ge 0$ for all $t \ge 0$.

Proof of Lemma 4. The two projections, P_{θ_1} and P_{θ_2} , can be determined from the following system:

$$P_{\theta_1} + P_{\theta_2} = I - P_0$$

$$\theta_1 P_{\theta_1} + \theta_2 P_{\theta_2} = L.$$

The solution is

$$P_{\theta_1} = rac{L - \theta_2 (I - P_0)}{\theta_1 - \theta_2}, \qquad P_{\theta_2} = rac{L - \theta_1 (I - P_0)}{\theta_2 - \theta_1}.$$

Then one computes

$$P_{\theta_1}(u, u) - P_{\theta_1}(u, v) = \frac{\deg(u) - \theta_2 - L(u, v)}{\theta_1 - \theta_2},$$
$$P_{\theta_2}(u, u) - P_{\theta_2}(u, v) = \frac{\deg(u) - \theta_1 - L(u, v)}{\theta_2 - \theta_1}.$$

Lemma 2 says, for the case at hand, that $\theta_1 \leq \deg(u)$, and $\deg(u) + 1 \leq \theta_2$. It follows that $\deg(u) - \theta_1 - L(u, v) \geq 0$, and $\deg(u) - \theta_2 - L(u, v) \leq 0$. This proves the claim of the lemma.

4. Appendix: Walk-regular graphs

A graph is walk regular if, for each $k \ge 2$, the number of closed walks of length ℓ starting and ending at a vertex is independent of the choice of vertex. Taking $\ell = 2$, we see that a walk-regular graph is, in particular, regular. The notion of walk regularity, as well as some of its basic properties, first appeared in [2].

Theorem 5. The following are equivalent:

- (X) X is walk-regular;
- (A) A^k has constant diagonal, for all k = 0, 1, ...;
- (L) L^k has constant diagonal, for all k = 0, 1, ...;
- (H) H_t has constant diagonal, for all $t \ge 0$;
- (P) P_{λ} has constant diagonal, for all $\lambda \neq 0$.

Proof. The equivalence of (X) and (A), already noted in [2], owes to the fact that $A^k(u, u)$ counts the number of closed walks of length k starting and ending at a vertex u.

The equivalence of (A) and (L) owes, firstly, to the regularity of X, expressed by the value k = 2 in (A), respectively the value k = 1, or k = 2, in (L). Then the relation A + L = dI, where d is the degree of X, leads to A^k being a polynomial of degree k in L, respectively L^k being a polynomial of degree k in A.

The equivalence of (L) and (H) is based on the power series formula

$$H_t(u, u) = \sum_{k=0}^{\infty} \frac{(-1)^k L^k(u, u)}{k!} t^k$$

for each vertex u, and all times $t \ge 0$. If (L) holds, then the right-hand side is independent of u, and (H) follows. If (H) holds, then the left-hand side is independent of u, so it can be seen as a function of t only. By the uniqueness of a power series expansion, $L^k(u, u)$ is independent of u, for all $k = 0, 1, \ldots$

The equivalence of (H) and (P) is based on the formula

$$H_t(u, u) = \sum_{\lambda \in \sigma(L)} e^{-t\lambda} P_\lambda(u, u)$$

for each vertex u, and all times $t \ge 0$. Clearly, then, (P) implies (H). The converse implication owes to the fact that the scaled exponentials $t \mapsto e^{-t\lambda}$, for λ running over $\sigma(L)$, are linearly independent.

From a heat kernel perspective, the main upshot is the equivalence of (X) and (H): a graph is walk-regular if and only if its heat kernel has constant diagonal at all times.

The verification of walk-regularity, on the other hand, often exploits the equivalence of (X) and (A). For example, walk-regularity for distance-regular graphs can be shown in this way [2]. Let us illustrate this perspective by discussing walkregularity for regular graphs with few eigenvalues. If X is a regular graph with s distinct eigenvalues, then there is a monic polynomial p of degree s-1, the so-called Hoffman polynomial of X, with the property that the matrix p(A) has constant entries. It follows that the walk-regularity of X is equivalent to A^s having constant diagonal for all $k = 0, \ldots, s-2$. When s = 3 or s = 4, this clearly holds.

References

- E. van Dam, W.H. Haemers: Graphs with constant μ and μ
 , Graph theory (Lake Bled, 1995), Discrete Math. 182 (1998), no. 1-3, 293–307
- [2] C.D. Godsil, B.D. McKay: Feasibility conditions for the existence of walk-regular graphs, Linear Algebra Appl. 30 (1980), 51–61
- [3] T. McMurray Price: An inequality for the heat kernel on an Abelian Cayley graph, Electron. Commun. Probab. 22 (2017), Paper No. 57, 8 pp.
- [4] B. Nica: A brief introduction to spectral graph theory, EMS Textbooks in Mathematics, European Mathematical Society (2018)
- [5] O. Regev, I. Shinkar: A counterexample to monotonicity of relative mass in random walks, Electron. Commun. Probab. 21 (2016), Paper No. 8, 8 pp.

DEPARTMENT OF MATHEMATICS AND STATISTICS MCGILL UNIVERSITY, MONTREAL