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Abstract. We show that, on graphs which have precisely three distinct Lapla-

cian eigenvalues, heat diffusion enjoys a monotonic behaviour.

1. Introduction

Let X be a finite connected graph. The heat kernel on X is given by

Ht = e−tL

where L is the Laplacian on X, and t ≥ 0 is the time variable. In [5], Regev
and Shinkar considered the question whether X has monotonic normalized heat
diffusion: is the ratio

Ht(u, v)

Ht(u, u)

monotonically non-decreasing, as a function of time, for every pair of vertices u
and v? Specifically, Peres (2013) had asked whether this is always the case in a
vertex-transitive graph. This turns out to be too optimistic: the main result of
Regev and Shinkar is that there are Cayley graphs which do not have monotonic
normalized heat diffusion. On the other hand, McMurray Price [3] has shown
that Cayley graphs of abelian groups do have monotonic normalized heat diffusion.
In [5], Regev and Shinkar also give an example, based on an idea of Cheeger, of
a regular graph which does not have monotonic normalized heat diffusion. The
example is a 4-regular graph on 10 vertices, obtained as follows: consider the usual
cube graph on 8 nodes, and cone off two opposite faces by two additional vertices.

The vertex-transitivity assumption in the question raised by Peres is presumably
meant to enforce a constant diagonal for the heat kernel, i.e., Ht(u, u) is independent
of the choice of vertex u. Actually, this heat homogeneity holds if and only if X
is walk-regular, see Theorem 5 in the Appendix. Notable classes of walk-regular
graphs include vertex-transitive graphs; distance-regular graphs; regular graphs
having at most four distinct eigenvalues. We are thus led to the question whether
the latter class enjoys monotonic normalized heat diffusion.

We show the following:

Theorem 1. If X has three distinct Laplacian eigenvalues, then X has monotonic
normalized heat diffusion.

The regular graphs with three distinct Laplacian eigenvalues are precisely the
strongly regular graphs. Therefore strongly regular graphs enjoy monotonic nor-
malized heat diffusion.
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Somewhat surprisingly, monotonic normalized heat diffusion also holds for non-
regular graphs with three distinct Laplacian eigenvalues. Our favourite example of
such a graph is the so-called Erdős - Rényi orthogonality graph. Given a finite field
F with q elements, the graph ERq has the projective plane PG(2,F) = (F3)∗/F as
its vertex set as its vertex set. Two distinct vertices [x1, x2, x3] and [y1, y2, y3] are
joined by an edge whenever x1y1 +x2y2 +x3y3 = 0. The graph ERq has q2 + q+ 1
vertices; q2 of them have degree q+ 1, and the remaining q+ 1 have degree q. The
Laplacian eigenvalues of ERq are 0, and q+ 1±√q. Historically, the Erdős - Rényi
graph first appeared in Turán-type extremal graph theory, as a graph with many
edges but no 4-cycles. We refer to [4, Ch.12] for details. Several other constructions
of non-regular graphs with three distinct Laplacian eigenvalues are studied in [1].

We conclude this preamble by raising the following problem: do regular graphs
with four distinct eigenvalues enjoy monotonic normalized heat diffusion? It is
likely that this problem can be handled by a strategy similar to the one employed
below, but the computations are quite unwieldy.

2. Preliminaries

Let X be a finite connected graph, having at least two vertices. The Laplacian
on X is a symmetric linear operator on the space of real-valued functions defined
on the vertex set V of X. This is a finite-dimensional space, endowed with the
inner product

〈φ, ψ〉 =
∑
v∈V

φ(v) ψ(v).

The Laplacian, denoted by L, has matrix coefficients L(u, v) = 〈L1v,1u〉, where
u, v ∈ V , given as follows: off-diagonally, L(u, v) = 0 if u 6= v are not adjacent,
respectively L(u, v) = −1 if u 6= v are adjacent; diagonally, L(u, u) = deg(u), the
degree of u.

Let n = |V | denote the number of vertices of X. Then L has n non-negative
eigenvalues, counted with multiplicities. The trivial eigenvalue λ = 0 admits the
constant function 1 as an eigenfunction, and it is simple thanks to connectivity.
On the other hand, the non-trivial eigenvalues can, and usually do, have a high
multiplicity.

Let σ(L) denote the set of distinct eigenvalues of L. We then have the spectral
decomposition

L =
∑

λ∈σ(L)

λ Pλ

where Pλ denotes the projection onto the λ-eigenspace. The projection P0, corre-
sponding to the trivial eigenvalue, is the averaging operator P0φ = 1

n

∑
v∈V φ(v).

In terms of matrix coefficients, we have P0(u, v) = 1
n for all u, v ∈ V .

The spectral decomposition for the Laplacian induces, by functional calculus, a
spectral decomposition for the heat kernel:

Ht = e−tL =
∑

λ∈σ(L)

e−tλ Pλ

for all t ≥ 0. This formula makes it apparent that the heat kernel evolves from
I = H0 towards P0 = limt→∞Ht. We will make significant use of the spectral
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decomposition of the heat kernel, a perspective that is quite different from the
approaches taken in [5, 3].

3. Proof of Theorem 1

We start with two facts that hold without any spectral hypothesis on X. The
first one is a well-known bound relating vertex degrees and Laplacian eigenvalues.

Lemma 2. The degree of each vertex u satisfies

min
06=λ∈σ(L)

λ ≤ deg(u), deg(u) + 1 ≤ max
λ∈σ(L)

λ.

The second fact says that normalized heat diffusion starts off in a non-decreasing
way.

Lemma 3. For any pair of distinct vertices u and v, the normalized heat diffusion

Ht(u, v)

Ht(u, u)

has non-negative derivative at t = 0.

Proof. We need to show that

H ′t(u, v)Ht(u, u) ≥ Ht(u, v)H ′t(u, u)

at t = 0. We have H0(u, u) = 1 and H0(u, v) = 0, since H0 = I, so we are left with
checking that H ′0(u, v) ≥ 0. Now, H ′t = −LHt, in particular H ′0 = −LH0 = −L.
Hence H ′0(u, v) = −L(u, v) ≥ 0, as desired. �

Assume now that X has three distinct Laplacian eigenvalues, say 0 < θ1 < θ2.
Then the heat kernel is given by

Ht = P0 + e−tθ1 Pθ1 + e−tθ2 Pθ2 .

Let u and v be distinct vertices of X. In order to prove Theorem 1, we have to
check that the function

h(t) := H ′t(u, v)Ht(u, u)−Ht(u, v)H ′t(u, u)

satisfies h(t) ≥ 0 at all times t ≥ 0. One computes

et(θ1+θ2) h(t) =
θ1
n

(
Pθ1(u, u)− Pθ1(u, v)

)
etθ2 +

θ2
n

(
Pθ2(u, u)− Pθ2(u, v)

)
etθ1 −R

(∗)

where the remainder R is explicitly given as

R = (θ1 − θ2)(Pθ1(u, u) Pθ2(u, v)− Pθ1(u, v) Pθ2(u, u)
)
.

Importantly, note that the remainder R is independent of t.

Lemma 4. Pθ1(u, u) ≥ Pθ1(u, v) and Pθ2(u, u) ≥ Pθ2(u, v).

This lemma addresses the coefficients appearing on the right-hand side of (∗).
It follows that g(t) = et(θ1+θ2) h(t) is increasing, and so g(t) ≥ g(0) = h(0) for all
t ≥ 0. As h(0) ≥ 0, by Lemma 3, we deduce that h(t) ≥ 0 for all t ≥ 0.
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Proof of Lemma 4. The two projections, Pθ1 and Pθ2 , can be determined from the
following system:

Pθ1 + Pθ2 = I − P0

θ1Pθ1 + θ2Pθ2 = L.

The solution is

Pθ1 =
L− θ2(I − P0)

θ1 − θ2
, Pθ2 =

L− θ1(I − P0)

θ2 − θ1
.

Then one computes

Pθ1(u, u)− Pθ1(u, v) =
deg(u)− θ2 − L(u, v)

θ1 − θ2
,

Pθ2(u, u)− Pθ2(u, v) =
deg(u)− θ1 − L(u, v)

θ2 − θ1
.

Lemma 2 says, for the case at hand, that θ1 ≤ deg(u), and deg(u) + 1 ≤ θ2. It
follows that deg(u)− θ1 − L(u, v) ≥ 0, and deg(u)− θ2 − L(u, v) ≤ 0. This proves
the claim of the lemma. �

4. Appendix: Walk-regular graphs

A graph is walk regular if, for each k ≥ 2, the number of closed walks of length
` starting and ending at a vertex is independent of the choice of vertex. Taking
` = 2, we see that a walk-regular graph is, in particular, regular. The notion of
walk regularity, as well as some of its basic properties, first appeared in [2].

Theorem 5. The following are equivalent:

(x) X is walk-regular;
(a) Ak has constant diagonal, for all k = 0, 1, . . . ;
(l) Lk has constant diagonal, for all k = 0, 1, . . . ;
(h) Ht has constant diagonal, for all t ≥ 0;
(p) Pλ has constant diagonal, for all λ 6= 0.

Proof. The equivalence of (x) and (a), already noted in [2], owes to the fact that
Ak(u, u) counts the number of closed walks of length k starting and ending at a
vertex u.

The equivalence of (a) and (l) owes, firstly, to the regularity of X, expressed
by the value k = 2 in (a), respectively the value k = 1, or k = 2, in (l). Then the
relation A+L = dI, where d is the degree of X, leads to Ak being a polynomial of
degree k in L, respectively Lk being a polynomial of degree k in A.

The equivalence of (l) and (h) is based on the power series formula

Ht(u, u) =

∞∑
k=0

(−1)kLk(u, u)

k!
tk

for each vertex u, and all times t ≥ 0. If (l) holds, then the right-hand side is inde-
pendent of u, and (h) follows. If (h) holds, then the left-hand side is independent
of u, so it can be seen as a function of t only. By the uniqueness of a power series
expansion, Lk(u, u) is independent of u, for all k = 0, 1, . . . .
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The equivalence of (h) and (p) is based on the formula

Ht(u, u) =
∑

λ∈σ(L)

e−tλ Pλ(u, u)

for each vertex u, and all times t ≥ 0. Clearly, then, (p) implies (h). The converse
implication owes to the fact that the scaled exponentials t 7→ e−tλ, for λ running
over σ(L), are linearly independent. �

From a heat kernel perspective, the main upshot is the equivalence of (x) and
(h): a graph is walk-regular if and only if its heat kernel has constant diagonal at
all times.

The verification of walk-regularity, on the other hand, often exploits the equiv-
alence of (x) and (a). For example, walk-regularity for distance-regular graphs
can be shown in this way [2]. Let us illustrate this perspective by discussing walk-
regularity for regular graphs with few eigenvalues. If X is a regular graph with s
distinct eigenvalues, then there is a monic polynomial p of degree s−1, the so-called
Hoffman polynomial of X, with the property that the matrix p(A) has constant en-
tries. It follows that the walk-regularity of X is equivalent to As having constant
diagonal for all k = 0, . . . , s− 2. When s = 3 or s = 4, this clearly holds.
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