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Abstract. We introduce local cut ratios as a sampling scheme for the cut

ratio of a vertex subset in a graph. We prove a bound for the sampling error,

as well as a two-sided estimate for the local cut ratio, in terms of Laplacian
eigenvalues. We derive an inequality for the vertex cut ratio in terms of the

(edge) cut ratio.

1. Prologue

Let X be a graph, and let U be a proper subset of vertices. The edge boundary
of U , denoted ∂U , is the set of edges joining a vertex in U to a vertex in U c, the
complement of U . The cut ratio of U is given by

h(U) =
|∂U |
|U |

.

The cut ratio, and its vertex relative, to be mentioned shortly, underpin expan-
sion behaviours in graphs. See [8] for the broad picture, as well as Section 4 herein.
The general problem we are interested in is that of estimating the cut ratio h(U)
as a function of the size of U . This relies, of course, on certain parameters of the
ambient graph X as being given. We use the number of vertices, denoted by n, and
the Laplacian eigenvalues

0 = λ1 ≤ λ2 ≤ · · · ≤ λn.
Actually, the relevant eigenvalues are λ2 and λn. These two Laplacian eigenval-

ues are, in effect, spectral ways of encoding the connectivity of X–an interpretation
which originates in Fiedler’s pioneering work [6]. Let us note, on the other hand,
that the vertex degrees, recording pointwise connectivity, are not involved in what
follows.

A good starting point that illustrates our perspective is the following estimate
(cf. [10, Prop.2.1]): if |U | = εn, where 0 < ε < 1, then

λ2(1− ε) ≤ h(U) ≤ λn(1− ε).(1)

The lower estimate is a penetrating observation of Alon and Milman [2]. The idea
is to relate the cut ratio h(U) to a suitable Rayleigh quotient, for which λ2 is a
lower bound thanks to the Courant-Fischer principle. On the other hand, using λn
as an upper bound for the Rayleigh quotient gives the upper estimate in (1). It
is conceptually more interesting to view the two estimates in (1) as being dual to
each other. Namely, consider the graph X ′, the complement of X. The cut ratios
for X and X ′ are related by h(U) + h′(U) = |U c| = n(1 − ε), and the Laplacian
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eigenvalues of X ′ are 0 = λ′1 ≤ λ′2 = n − λn ≤ · · · ≤ λ′n = n − λ2. It follows that
the double estimate (1) is invariant under graph complementation.

The question of extremal cuts, that is to say vertex subsets U attaining the lower
or the upper bound in (1), is natural and interesting. As pointed out above, the
two extremal cases are dual–a small cut in a graph is a large cut in its complement–
and attention has been mostly given to equality in the lower bound. See [5] for a
detailed study, and [11, p.117] for some examples.

2. Local cut ratios

Fix a vertex subset U in a graph X, and suppose we want to measure the cut
ratio h(U). Counting the boundary edges of U could be complicated if U is very
large, so we might try to estimate h(U) by sampling a relatively small subset of U .
This natural idea leads us to the following notion.

Definition. The local cut ratio of a non-empty subset S ⊆ U is given by

hU (S) =
e(S,U c)

|S|
where e(S,U c) denotes the number of edges joining a vertex in S to a vertex in U c,
the complement of U .

The local cut ratio hU is to be viewed as a function on subsets of U . Note that
for S = U we recover the cut ratio: e(U,U c) = |∂U |, and so hU (U) = h(U).

To what extent can the local cut ratio hU , evaluated on small subsets of U , be
used as a proxy for the cut ratio h(U)? The first pertinent fact is that, whenever
we sample a fixed proportion, the expected value of the local cut ratio is the cut
ratio.

Theorem 1. The expected value of hU (S), subject to S ⊆ U having a fixed size, is
h(U).

The second fact, more interesting, is an estimate for the absolute deviation from
the mean.

Theorem 2. Let |U | = εn, and let S ⊆ U be non-empty. Then:

∣∣hU (S)− h(U)
∣∣ ≤ λn − λ2

2

√
(1− ε)

( |U |
|S|
− 1
)
.

The above inequality controls the discrepancy between hU (S), thought of as a
partial measurement of h(U), and the true value of h(U). For instance, it tells
us what proportion of nodes in U should be sampled–in the sense that a node
is accessed, and the connectivity of the node is used for counting the number of
boundary edges based at that node–in order to ascertain the value of the cut ratio
h(U) up to a given precision. To give a quantitative example: sampling more than
1/(2− ε) of the nodes in U pins the value of h(U) in a narrower interval than the
interval defined by (1).

On the other hand, we can also give a stand-alone estimate for the local cut ratio
hU (S), in terms of the size of U and the size of the sampling subset S ⊆ U . The
following two-sided estimate is a generalization of (1), which arises in the extremal
case S = U .
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Theorem 3. Let |U | = εn, and let S ⊆ U be non-empty. Then:

λ2(1− ε)− λn − λ2
2

(√
|U |
|S|
− 1

)
≤ hU (S) ≤ λn(1− ε) +

λn − λ2
2

(√
|U |
|S|
− 1

)
.

Note that Theorems 2 and 3 can be related by using the bound (1). Combining
Theorem 2 and (1), we get a double bound for the local cut ratio hU (S) that is
quite similar to the one of Theorem 3. This combined bound beats the bound of
Theorem 3 when the sampling set S is sufficiently small; for instance, |S| ≤ ε2|U |/4
suffices. Conversely, we might combine Theorem 3 and (1) to get bounds for the
deviation |hU (S)−h(U)|; it can be checked, however, that the bound of Theorem 2
is always sharper.

We now consider the notion of vertex cut ratio. Again, let U be a proper vertex
subset. The vertex boundary of U , denoted δU , is the set of all vertices in U c that
are adjacent to some vertex in U . Correspondingly, we have a vertex cut ratio for
U :

g(U) =
|δU |
|U |

.

Alternative notations are in circulation; we are more or less following Chung [3,
Sec.2.2].

The vertex and edge cut ratios are related by the inequality g(U) ≤ h(U) ≤
∆g(U), where ∆ denotes the maximal degree of X. As an application of Theorem 2,
we prove another lower bound for g(U) in terms of h(U). In line with the general
philosophy of the paper, it is degree-free.

Theorem 4. Assume X is connected. Let |U | = εn. Then:

1

g(U)
≤ ε

1− ε
+
(λn − λ2

2

)2 1− ε
h(U)2

.

The spectral quantity λn−λ2, which appears in Theorems 2, 3, and 4, is known
as the Laplacian spread of X. It measures the distance between λ2 and the top
of the spectrum, so it serves as the counterpart of the Laplacian gap λ2, which
measures the distance from λ2 to the bottom of the spectrum.

The Laplacian spread is invariant under graph complementation. In fact, invari-
ance under complementation–a principle we first highlighted when discussing (1)–is
a feature of the bounds involving the local cut ratio, Theorems 2 and 3 herein. This
owes to the functional relation hU + h′U = |U c|, where hU and h′U are the local cut
ratios defined by U in X, respectively in its complement X ′. By way of contrast,
the vertex cut ratio, and the bound of Theorem 4 in particular, is poorly behaved
under graph complementation. So there is no harm in assuming X is connected, as
we did.

3. Proofs

Let us first recall the bare essentials on the Laplacian. Given a finite simple
graph X, the Laplacian is a symmetric linear operator on the space of real-valued
functions defined on the vertex set V of X. This is a finite-dimensional space,
endowed with the inner product

〈φ, ψ〉 =
∑
v∈V

φ(v) ψ(v).
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The Laplacian, denoted L, is described by its matrix coefficients as follows: diago-
nally, 〈L1v,1v〉 is the degree of the vertex v; off-diagonally,

〈L1v,1w〉 =

{
−1 if v is adjacent to w

0 if v is not adjacent to w

for any two distinct vertices v and w.
The Laplacian has non-negative eigenvalues. The smallest one is λ1 = 0, and it

admits the constant function 1 as an eigenvector; that is, L1 = 0. The interested
reader is referred to, say, [3] or [11], for details and further information on Laplacian
eigenvalues.

A key fact for our purposes is the following relation between the Laplacian and
the local cut ratio:

hU (S) =
〈
L1U ,

1

|S|
1S

〉
(2)

for any non-empty subset S ⊆ U . As usual, 1S denotes the characteristic function
of S. To justify the relation (2), we start by writing

e(S,U c) = −
∑

v∈S,w∈Uc

〈L1v,1w〉 = −〈L1S ,1Uc〉 = −〈L1Uc ,1S〉.

On the other hand,

〈L1Uc ,1S〉+ 〈L1U ,1S〉 = 〈L1,1S〉 = 0.

We deduce that e(S,U c) = 〈L1U ,1S〉; dividing through by |S| yields (2).

3.1. Proof of Theorem 1. Let s ∈ {1, . . . , |U |} be the fixed size for the variable
subset S ⊆ U . Then

E

[
1

|S|
1S

∣∣∣ S ⊆ U, |S| = s

]
=

1(|U |
s

) ∑
S⊆U,|S|=s

1

|S|
1S

=
1

s
(|U |

s

)(|U | − 1

s− 1

)
1U =

1

|U |
1U .

Using (2), we deduce that

E
[
hU (S)

∣∣ S ⊆ U, |S| = s
]

=
〈
L1U ,

1

|U |
1U

〉
= hU (U) = h(U).

3.2. Proof of Theorem 2. We actually prove a more general estimate. We let
S and T be two non-empty vertex subsets of U , and we seek an upper bound for
|hU (S)− hU (T )|. In light of (2), we can write

hU (S)− hU (T ) = 〈L1U , f〉, f =
1

|S|
1S −

1

|T |
1T .

We note, for later use, that

〈1, f〉 = 〈1U , f〉 = 0.

Now let ϕ1, ϕ2, . . . , ϕn be an orthonormal basis consisting of Laplacian eigen-
functions. They correspond to the Laplacian eigenvalues λ1, λ2, . . . , λn, and we
set

ϕ1 =
1√
n

1
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to be the eigenfunction corresponding to λ1 = 0. Expand the characteristic function
of U , as well as f , in the above eigenbasis:

1U =

n∑
k=1

ukϕk, f =

n∑
k=1

fkϕk.

The first Fourier coefficients are, respectively

u1 = 〈1U , ϕ1〉 =
|U |√
n
, f1 = 〈f, ϕ1〉 = 0.

We now have

L1U =

n∑
k=1

λkukϕk =

n∑
k=2

λkukϕk

and so

hU (S)− hU (T ) = 〈L1U , f〉 = 〈L1U , f〉 − C〈1U , f〉 =

n∑
k=2

(λk − C) ukfk

for any real constant C. An optimal choice of C will be specified shortly. We
deduce that∣∣hU (S)− hU (T )

∣∣ ≤ n∑
k=2

|λk − C||uk||fk| ≤
(

max
k=2,...,n

|λk − C|
) n∑

k=2

|uk||fk|.

We now choose C so as to minimize the above maximum: C = 1
2 (λ2 + λn). As for

the right-most sum, it can be bounded by using the Cauchy-Schwarz inequality. To
that end, we compute

n∑
k=2

|uk|2 = 〈1U ,1U 〉 − |u1|2 =
|U ||U c|
n

,

n∑
k=2

|fk|2 = 〈f, f〉 =
|S4T |
|S||T |

.

Summarizing, we have shown that

∣∣hU (S)− hU (T )
∣∣ ≤ λn − λ2

2

√
|U ||U c|
n

√
|S4T |
|S||T |

.(3)

The bound stated in the theorem follows by specializing T = U .

Remark. The strategy of the previous proof is similar to the one used in proving
any version of the Expander Mixing Lemma.

Remark. The quantity √
|S4T |
|S||T |

=

∥∥∥∥ 1

|S|
1S −

1

|T |
1T

∥∥∥∥
2

defines a metric on the non-empty subsets of U . From this viewpoint, the bound
(3) is a Lipschitz inequality for the local cut ratio hU .
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3.3. Proof of Theorem 3. Recall the following Laplacian version of the Expander
Mixing Lemma, due to Chung [4, Thm.7].

(†) Let S and T be disjoint vertex subsets in X, and let e(S, T ) denote the
number of edges joining a vertex in S to a vertex in T . Then∣∣∣e(S, T )− λ2 + λn

2n
|S||T |

∣∣∣ ≤ λn − λ2
2n

√
|S|(n− |S|)|T |(n− |T |).

Now let S be a subset of U . We apply (†) to the disjoint vertex subsets S and

T = U c. Note that
√

(n− |S|)(n− |U |) ≤ n −
√
|S||U |, with equality if and only

if S = U . Hence √
|S|(n− |S|)|U |(n− |U |) ≤ n

√
|S||U | − |S||U |.

Using the above estimate, the bound of (†) gives the following:∣∣∣e(S,U c)− λ2 + λn
2n

|S||U c|
∣∣∣ ≤ λn − λ2

2n

(
n
√
|S||U | − |S||U |

)
.

Dividing through by |S|, and using |U | = εn, we get∣∣∣hU (S)− λ2 + λn
2

(1− ε)
∣∣∣ ≤ λn − λ2

2

(√
|U |
|S|
− ε
)

=
λn − λ2

2
(1− ε) +

λn − λ2
2

(√
|U |
|S|
− 1

)
The desired two-sided bound for hU (S) immediately follows.

3.4. Proof of Theorem 4. Let U be a proper vertex subset, and partition U as
follows: the interior of U , denoted int(U), is the set of vertices in U all of whose
neighbours are still in U ; the inner boundary of U , denoted δin(U), is the set of
vertices in U that are adjacent to some vertex in the complement U c.

Consider the subset S = int(U) of U . Then hU (S) = 0; in fact, the interior of U
is the largest subset of U with this property. The bound of Theorem 2 gives(

2h(U)

λn − λ2

)2

≤ (1− ε)
(
|U |
|S|
− 1

)
=
|U c|
n

|δin(U)|
|U | − |δin(U)|

.

Rearranging, we get

|U | − |δin(U)|
|δin(U)|

=
|U |
|δin(U)|

− 1 ≤
(
λn − λ2

2

)2 |U c|
n h(U)2

.

We pass to the usual, outer, vertex boundary by the relation δU = δin(U c). Re-
placing U by U c, the above inequality turns into

|U c|
|δU |

− 1 ≤
(
λn − λ2

2

)2 |U |
n h(U c)2

.

As |U c| h(U c) = e(U c, U) = h(U) |U |, the above inequality can be brought to

|U |
|δU |

− |U |
|U c|

≤
(
λn − λ2

2

)2 |U c|
n h(U)2

.

That is

1

g(U)
− ε

1− ε
≤
(λn − λ2

2

)2 1− ε
h(U)2

,
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as claimed.

Remark. For the vertex cut ratio, the following spectral bound holds: if |U | = εn,
then

1

g(U)
≤ ε

1− ε
+

(λn − λ2)2

4λnλ2

1

1− ε
.(4)

This is a slight variation on a result of Chung [4, Thm.8]. It can be deduced from
the Expander Mixing Lemma (†), as follows. Firstly, let us note that a consequence
of (†) is the following inequality due to Haemers. The original approach [7, Lem.6.1]
used a different spectral technique.

(∗) Assume S and T are disjoint vertex subsets in X, such that there are no
edges between S and T . Then

|S||T |
(n− |S|)(n− |T |)

≤
(
λn − λ2
λn + λ2

)2

.

Now fix a proper vertex subset U . Then S = int(U) and T = U c are disjoint,
and there are no edges between the two sets. Applying the Haemers inequality (∗),
and rearranging, leads to the bound

|int(U)| ≤ n|U |
n+ (κ− 1)|U c|

, κ :=
(λn + λ2
λn − λ2

)2
In inner boundary terms:

|δin(U)| = |U | − |int(U)| ≥ |U | − n|U |
n+ (κ− 1)|U c|

=
(κ− 1)|U ||U c|
n+ (κ− 1)|U c|

.

We use U c in place of U , in view of the relation δU = δin(U c), and we obtain

|δU | ≥ (κ− 1)|U ||U c|
n+ (κ− 1)|U |

.

Thus

1

g(U)
=
|U |
|δU |

≤ n+ (κ− 1)|U |
(κ− 1)|U c|

=
|U |
|U c|

+
1

κ− 1

n

|U c|
.

Upon replacing, on the right-hand side, |U | = εn, |U c| = (1− ε)n, and κ, we arrive
at (4).

The bound of Theorem 4 beats the bound (4) precisely when the cut ratio satisfies

h(U) ≥
√
λnλ2 (1− ε).(5)

From the perspective of the spectral squeeze (1), the inequality (5) says that the cut
ratio h(U) is somewhat large–larger than the geometric average of the endpoints.
This is, certainly, likely to happen. In fact, we claim that the cut ratio defined by
any vertex subset U satisfies (5) either in X, or in the complement X ′, possibly in
both. For otherwise we would have

h(U) <
√
λnλ2 (1− ε),

h′(U) <
√
λ′nλ

′
2 (1− ε) =

√
(n− λ2)(n− λn) (1− ε).

However, h(U) + h′(U) = n(1 − ε), and n −
√
λnλ2 <

√
(n− λ2)(n− λn) would

follow, a contradiction.
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4. Isoperimetric constants and profiles

Isoperimetry in graphs is concerned with minimizing cut ratios. This can mean
several things, according to which cut ratio we use, and what constraints we respect
while minimizing. The following are the most common ones. They are based on the
edge and vertex cut ratios for proper vertex subsets, h(U) and g(U) as previously
defined.

Definition. (cf. [9], [8, Def.4.2, Def.4.3]) Let X be a connected graph on n vertices.
The edge isoperimetric profile of X and the vertex isoperimetric profile of X are

the functions

h(ε) = min
|U |=εn

h(U), g(ε) = min
|U |=εn

g(U)

defined for ε ∈ (0, 1).
The edge isoperimetric number, or the edge expansion, of X and the vertex

isoperimetric number, or the vertex expansion, of X are the numbers

h = min
|U |≤n/2

h(U) = min
ε≤1/2

h(ε), g = min
|U |≤n/2

g(U) = min
ε≤1/2

g(ε).

Recall that g(U) ≤ h(U), whence g(ε) ≤ h(ε) for all ε ∈ (0, 1), and g ≤ h.
The thrust of this paper is has to do with spectral bounds for cut ratios. We now

interpret them as bounds for isoperimetric profiles and isoperimetric constants. To
begin with, (1) gives the following well-known lower bounds for edge isoperimetry:

h(ε) ≥ λ2(1− ε), h ≥ λ2
2
.(6)

Next, we derive bounds for vertex isoperimetry from Theorem 4, and the bound
(4).

Corollary 5. With the above notations, the following hold:

1

g(ε)
≤ ε

1− ε
+
(λn − λ2

2

)2 1− ε
h(ε)2

,
1

g
≤ 1 +

(λn − λ2
2

)2 1

h2
;(7)

1

g(ε)
≤ ε

1− ε
+

(λn − λ2)2

4λnλ2

1

1− ε
,

2

g
≤ λn
λ2

+
λ2
λn
.(8)

Comparing, again, the two bounds, we see that (7) beats (8) precisely when
h(ε) ≥

√
λnλ2 (1 − ε), respectively h ≥ 1

2

√
λnλ2. These requirements are more

stringent than (5), and they indicate a high connectivity–for instance, complete
graphs satisfy them.

We end by mentioning another spectral bound for the vertex isoperimetric con-
stant g which, just like (6), only involves λ2:

4

g2
≥ 1

λ2
− 2.

This was proved by Alon in [1], a seminal work on the close relationship between
eigenvalues and expansion in graphs.
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