Multiple Choice answers

$\begin{array}{llllllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20\end{array}$
[b, d, d, a, b, c, e, c, d, c, e, a, b, d, a, b, c, b, a, b] ver 1
$[d, a, c, a, b, c, e, e, d, d, e, e, b, c, c, b, a, e, d, a]$ ver 2
$[b, b, b, a, a, e, a, a, b, e, b, c, c, b, e, b, a, b, d, a] \operatorname{ver} 3$
[c, c, e, a, b, e, a, a, a, e, d, b, a, b, e, a, d, b, b, c] ver 4
21. Since $x^{3}-2 x-4$ vanishes when $x=2, x-2$ divides $x^{3}-2 x-4$. Long division of polynomials gives $x^{3}-2 x-4=(x-2)\left(x^{2}+2 x+2\right)$. The correct form for partial fractions is then

$$
\frac{5 x}{x^{3}-2 x-4}=\frac{A}{x-2}+\frac{B x+C}{x^{2}+2 x+2}
$$

and we get

$$
5 x=A\left(x^{2}+2 x+2\right)+(B x+C)(x-2)
$$

Equating coefficients gives:

$$
0=A+B \quad 5=2 A-2 B+C \quad 0=2 A-2 C
$$

which solves easily to $A=1, B=-1, C=1$. The correct expression in partial fractions is

$$
\frac{5 x}{x^{3}-2 x-4}=\frac{1}{x-2}-\frac{x-1}{x^{2}+2 x+2}
$$

Therefore

$$
\begin{aligned}
\int_{3}^{\infty} \frac{5 x}{x^{3}-2 x-4} d x & =\int_{3}^{\infty} \frac{1}{x-2} d x-\int_{3}^{\infty} \frac{x+1}{x^{2}+2 x+2} d x+\int_{3}^{\infty} \frac{2}{x^{2}+2 x+2} d x \\
& =\left[\ln (x-2)-\frac{1}{2} \ln \left(x^{2}+2 x+1\right)\right]_{3}^{\infty}+2 \int_{\arctan 4}^{\frac{\pi}{2}} d \theta
\end{aligned}
$$

after the substitution $x+1=\tan (\theta)$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \ln \left(\frac{x-2}{\sqrt{x^{2}+2 x+1}}\right)+\frac{1}{2} \ln (17)+\pi-2 \arctan (4) \\
& =\frac{1}{2} \ln (17)+\pi-2 \arctan (4)
\end{aligned}
$$

Alternative correct answers:

$$
\frac{1}{2} \ln (17)+2 \arctan \left(\frac{1}{4}\right), \quad \frac{1}{2} \ln (17)+\arctan \left(\frac{8}{15}\right), \quad \frac{1}{2} \ln (17)+\frac{\pi}{2}-\arctan \left(\frac{15}{8}\right)
$$

22. The two circles meet when $\cos (\theta)=\sqrt{3} \sin (\theta)$, i.e. when $\tan (\theta)=\frac{1}{\sqrt{3}}$, i.e. when $\theta=\frac{\pi}{6}$ It follows that the area is

$$
\begin{aligned}
& \frac{1}{2} \int_{0}^{\frac{\pi}{6}} 3 \sin (\theta)^{2} d \theta+\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos (\theta)^{2} d \theta \\
& \frac{1}{2} \int_{0}^{\frac{\pi}{6}} 3 \sin (\theta)^{2} d \theta+\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos (\theta)^{2} d \theta=\frac{3}{4} \int_{0}^{\frac{\pi}{6}}(1-\cos (2 \theta)) d \theta+\frac{1}{4} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}(1+\cos (2 \theta)) d \theta \\
&=\frac{3}{4}\left[\theta-\frac{1}{2} \sin (2 \theta)\right]_{0}^{\frac{\pi}{6}}+\frac{1}{4}\left[\theta+\frac{1}{2} \sin (2 \theta)\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} \\
&=\frac{3}{4}\left(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right)+\frac{1}{4}\left(\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right)=\frac{5 \pi}{24}-\frac{\sqrt{3}}{4}
\end{aligned}
$$

Figure 1: Region for question 22 shown in gray.
23. The two curves meet where $\frac{2}{1+x^{2}}=x^{2}$, i.e. where $x^{4}+x^{2}-2=0$. This is a quadratic equation for x^{2} giving $\left(x^{2}+2\right)\left(x^{2}-1\right)=0$, leading to $x= \pm 1$. Since we are only interested in $x \geq 0$, the pieces we are interested in meet at $x=1$.

The area of A can then be computed as

$$
\int_{0}^{1}\left(\frac{1}{1+x^{2}}-\frac{1}{2} x^{2}\right) d x=\left[\arctan (x)-\frac{1}{6} x^{3}\right]_{0}^{1}=\frac{\pi}{4}-\frac{1}{6}
$$

Alternative answer:

$$
\begin{aligned}
\int_{0}^{\frac{1}{2}} \sqrt{2 y} d y+\int_{\frac{1}{2}}^{1} \sqrt{\frac{1-y}{y}} d y & =\left[\frac{2 \sqrt{2}}{3} y^{\left(\frac{3}{2}\right)}\right]_{0}^{\frac{1}{2}}+\left[\sqrt{y(1-y)}+\frac{1}{2} \arcsin (2 y-1)\right]_{\frac{1}{2}}^{1} \\
& =\frac{1}{3}+\left(\frac{\pi}{4}-\frac{1}{2}\right)=\frac{\pi}{4}-\frac{1}{6}
\end{aligned}
$$

The volume of the solid obtained by revolving the region A about the y-axis is then

$$
2 \pi \int_{0}^{1} x\left(\frac{1}{1+x^{2}}-\frac{1}{2} x^{2}\right) d x=\pi\left[\ln \left(1+x^{2}\right)-\frac{1}{4} x^{4}\right]_{0}^{1}=\pi\left(\ln (2)-\frac{1}{4}\right)
$$

24. Since $y=2 x^{\frac{3}{2}}, y^{\prime}=3 x^{\frac{1}{2}}$ and $1+\left(y^{\prime}\right)^{2}=1+9 x$.

The desired arclength is then

$$
\int_{0}^{7} \sqrt{1+9 x} d x=\left[\frac{2}{27}(1+9 x)^{\frac{3}{2}}\right]_{0}^{7}=\frac{2}{27}\left(64^{\frac{3}{2}}-1^{\frac{3}{2}}\right)=\frac{2}{27}(512-1)=\frac{1022}{27}
$$

One loop of the polar curve is parametrized over $-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$. (The other one is over $\pi-\frac{\pi}{4} \leq \theta \leq \pi+\frac{\pi}{4}$). We find that

$$
\frac{d r}{d \theta}=\frac{-\sin (2 \theta)}{\sqrt{\cos (2 \theta)}}
$$

resulting in

$$
r^{2}+\left(\frac{d r}{d \theta}\right)^{2}=\cos (2 \theta)+\frac{\sin (2 \theta)^{2}}{\cos (2 \theta)}=\frac{1}{\cos (2 \theta)}
$$

Figure 2: Curve for question 24 second part.

Thus

$$
d s=\frac{1}{\sqrt{\cos (2 \theta)}} d \theta
$$

and the distance from the y-axis is $\sqrt{\cos (2 \theta)} \cos (\theta)$. Therefore, the desired surface area is

$$
2 \pi \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sqrt{\cos (2 \theta)} \cos (\theta) \frac{1}{\sqrt{\cos (2 \theta)}} d \theta=2 \pi \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos (\theta) d \theta=2 \pi[\sin (\theta)]_{-\frac{\pi}{4}}^{\frac{\pi}{4}}=2 \sqrt{2} \pi
$$

25. By the mean value theorem, for $x \geq 0$ we have $\arcsin (x)=\arcsin (x)-\arcsin (0)=\frac{x}{\sqrt{1-\xi^{2}}} \geq x$ with $0 \leq$ $\xi \leq x$. Therefore $\arcsin \left(\frac{1}{n}\right) \geq \frac{1}{n}$. The series does not converge absolutely by comparison with the harmonic series. The harmonic series diverges because its terms are decreasing and by the integral test.

But $\arcsin \left(\frac{1}{n}\right)$ is decreasing to zero as n increases and therefore the series converges by the alternating series test.

Conclusion: the series is conditionally convergent.
For the second series we use the ratio test. Let $a_{n}=\frac{(2 n)!}{5^{n} n!(n-1)!}$. Then we have

$$
\frac{a_{n+1}}{a_{n}}=\frac{(2 n+2)!5^{n} n!(n-1)!}{(2 n)!5^{n+1}(n+1)!n!}=\frac{(2 n+1)(2 n+2)}{5 n(n+1)} \underset{n \rightarrow \infty}{\longrightarrow} \frac{4}{5}<1
$$

The series converges by the ratio test, and since the terms are positive, the series is absolutely convergent.

