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1 Introduction

One of the earliest theorems in category theory stated that an abelian category could be
represented faithfully by exact functors into the category Ab of abelian groups [Freyd,
1964], [Lubkin, 1961] and [Heron, unpublished]. Then Mitchell [1965] showed that
every such category had a full exact embedding into a module category. An equivalent
formulation is that every abelian category into a category of additive functors into Ab
or even into a Set-valued functor category. Mitchell’s argument was based on what
was essentially the earliest theorem in category theory: Grothendieck’s theorem that
every AB5 category with a generator had an injective cogenerator [Grothendieck 1957].

Continuing in this vein, I showed in [Barr, 1971] that every regular category had a
full, regular embedding into a category of set-valued functors. In doing this, I first tried
to mimic Grothendieck’s argument. Unfortunately, I never succeeded in demonstrating
a non-abelian version of Grothendieck’s theorem. There is a very good reason for that:
it is false, see Corollary 12, below. Instead, the proof was based on showing that the
obvious non-abelian adaptation of Lubkin’s argument [Lubkin, 1960] not only continued
to give a family of embeddings, but when the functors were put together into a category
(with all natural transformations between them), the embedding was even full.

The proof was difficult, to say the least (it has been described as ‘hermetic’), and
the theorem has apparently had little impact although at least one better proof has
been published since [Makkai, 1980]. Here we give yet another proof (Corollary 15).
Surprisingly, it is based on Grothendieck’s argument. It turns out that a weaker con-
dition than injectivity is sufficient to make the proof work and the non-abelian version
of Grothendieck’s argument is sufficient to give that weaker condition. This argument
ultimately goes back to Baer’s proof that divisible abelian groups are injective.

Here is an outline of the new proof.
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1. Show that when C is regular, so is FL(C, Set)op . (FL is the full subcategory of
finite limit preserving functors.

2. Adapt Grothendieck’s transfinite induction proof [1957] of the existence of in-
jectives in an AB5 abelian category to show that Lex(C, Set)op has enough C -
projectives = regular functors.

3. Adapt Mitchell’s proof [1965] of the abelian category full embedding theorem
to show that by taking a sufficiently large full subcategory P in Lex(C, Set)
consisting of regular functors, then the evaluation functor C − −〉Func(Pop, Set)
is full and faithful.

The theorem suggests a natural generalization to toposes; one might expect that a
topos has a full embedding into a functor category that preserves the finitary part of
the topos structure, i.e. finite limits, finite sums and epis (such a functor is called bf
near exact in [Freyd, 1972] and we will stick to this usage). However, Makkai has given
an example to show that such a result is false. In fact, we give a necessary condition
for the existence of such an embedding—that the lattice of complemented subobjects
of each object be a complete atomic boolean algebra—that makes it seem as though
very few small toposes have such an embedding. We do give some sufficient condition
for the existence of such an embedding, but a necessary and sufficient condition is still
lacking. The necessary condition is very simple to state: any topos that has a full near
exact embedding into a functor category has a complete atomic boolean algebra as its
lattice of it complemented subobjects. Although there are some details to be checked,
the argument is very simple: in any topos, that lattice is represented by 2 and 2 is
preserved by near exact functors.

This research has been supported by the Ministère de L’Education du Québec
through a team grant as well as through a grant to the Centre Interuniversitaire en
Etudes Catégoriques. In addition, it was supported by the National Science and Engi-
neering Research Council. In part, the work was carried out while I was a guest of the
University of Sydney.

2 Representations of regular categories

For a category C , we let FL(C,Set) denote the category of finite limit preserving
functors into sets, with all natural transformations as morphisms. There is a Yoneda
embedding C −→ C̃ = FL(C,Set) and we will henceforth treat C as a full subcategory

of C̃ . We begin with some useful facts, which are given in the dual category because
the functor category is more familiar than its opposite. Let R = Cop and X = C̃op

2.1 Lemma. When C is small,

(i) X is complete and cocomplete;
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(ii) filtered colimits are exact;

(iii) the inclusion of R into X preserves all limits as well as finite colimits;

(iv) every object of X is a filtered colimit of objects of R;

(v) for R in R, Hom(R,−) commutes with filtered colimits;

(vi) R is coregular.

Proof. (i) is well known; see [Barr-Wells, 1984], Exercise (LIM FUN) of Section 1.7.
As for (ii), first observe that since a filtered colimit of left exact functors is left exact,
the inclusion X −→ Func(C,Set) preserves filtered colimits. It also preserves limits, in
particular, pullbacks. It follows that in X , pullbacks commute with filtered colimits.
It is clear that a colimit of a diagram, each of whose nodes is terminal is also terminal,
if and only if the diagram is connected, which every filtered diagram is. To see (iii),
the preservation of limits is a consequence of the Yoneda lemma, while the inclusion
preserves the colimit of any diagram in R whose dual in C is preserved by every functor
in X , essentially by definition. (iv) is well known; see [Barr-Wells, 1984], Exercise
(FILT) of Section 4.4. (v) follows from the fact that the representables commute with
all colimits in the functor category (Yoneda, again) and in the subcategory commute
with all those whose colimit is preserved by the inclusion. (vi) is obvious.

2.2 Theorem. Let C be a regular category. Then so is C̃ .

Proof. Since this is the one new idea in this paper, we will do it carefully. We must
show that in X , if the square

Z W-

X Y-

? ?

is a pushout and if the top row is regular mono, so is the bottom row. From (iv)
above each of the objects in the diagram is the colimit of the filtered diagram of all the
representable objects that map to it. Suppose we begin with arrows from representables
R −→ X , S −→ Y , and T −→ Z . Since the diagram of representables is filtered, we can
in fact suppose the existence of an S ′ −→ Y that factors both R −→ X −→ Y and S
−→ Y . In R , factor the arrow R −→ S ′ as R→→R′ )−→S ′ with the first arrow an epic
and the second a regular monic. It follows from (iii) that this is also an epic/regular
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monic factorization in X as well. Then from the diagram

S ′

R R′--

?

X Y--
??

we get an arrow R′ −→ X . The composite R′ −→ X −→ Z and replace R −→ X by R0

−→ X , a node later in the diagram. We may and do replace R by R0 . Similarly, we
can suppose that there is a T ′ −→ Z that factors both R′ −→ X −→ Z and T −→ Z .

Then given R −→ X , S −→ Y and T −→ Z and having made the above replace-
ments, we may consider the following diagram, in which the outer square is a pushout
and the map U ′ −→W is the unique one making all the squares commute.

T ′ U ′--

R′ S ′--

? ?

@
@
@@R

�
�
��	

�
�
���

@
@
@@I

Z W-

X Y--

? ?

Since colimits commute with pushouts and a filtered colimit of regular monos is a
regular mono, the conclusion follows.

2.3 Proposition. Suppose every epi in C is regular. Then C̃ has the same property.

Proof. We must show that every mono in FL(C,Set) is regular. If X )−→Y , we saw
in the proof above that it is a colimit of monos in R ∼= Cop . But in that category, all
monos are regular and it is evident that a filtered colimit of regular monos is a regular
mono.

2.4 Theorem. Let C be a pretopos. Then so is C̃ .
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Proof. The regularity follows from the preceding. We must show that if for i = 1, . . . , n ,

Z Wi
-

X Yi-

? ?

is a pushout, then so is

Z
∏
Wi

-

X
∏
Yi-

? ?

The conclusions of Lemma 2 are still valid and (vi) may now be strengthened to
(vi) it if C is a pretopos, then R is a co-pretopos.
The argument is similar. Given R −→ X , for i = 1, . . . , n , Si −→ Y and T −→ Z ,

we may, after suitable replacement, suppose that each R −→ X −→ Yi factors through
the corresponding Si and that R −→ X −→ Z factors through T . Thus we can form
pushout diagrams

T Ui-

R Si-

? ?

and the fact that R is a co-pretopos implies that

T
∏
Ui-

R
∏
Si-

? ?

is a pushout. Taking the colimit over all such diagrams and using the fact that filtered
colimits commute with finite products, we draw the desired conclusion.

2.5 Proposition. Any regular category (resp. pretopos) can be fully embedded in a
pretopos in which all epis (resp. finite epi families) are universal and regular.

Proof. Simply take the category of sheaves for the topology of regular epis (resp. finite
regular epi families). Then the least exact subcategory of the sheaf category which
contains the original category will do.

We therefore will suppose, whenever it is convenient, that every epi in a regular
category (resp. every finite epi family in a pretopos) is universal and regular.

5



2.6 Definition. Let C be a full subcategory of C̃ . An object P is said to be
C -projective if whenever A→→B is an arrow in C , then Hom(P,A) −→ Hom(P,B) is

surjective. An object is said to be C -bf injective if it is Cop -projective in C̃op .
We make the trivial observation that when C̃ = FL(C,Set)op an object P is C -

projective if and only if as a functor it preserves regular epimorphisms. In fact, taking
the variance into account, the Yoneda lemma says that HomeC(P,C) = P (C).

2.7 Theorem. Suppose C is a small, full subcategory of C̃ and the latter is complete,
with finite colimits and filtered limits commute with finite colimits. Then each object of
C̃ is covered by a C -projective.

Proof. We will prove this in the dual category, the formulation being more familiar.
So we assume a category X and a full subcategory R with filtered colimits and show
the existence of R-injectives. We systematically use capital letters R, S, T to denote
objects of R and X, Y, Z to denote those of X .

2.8 Lemma. Every object X of X has an embedding X )−→X# with the property
that for every diagram

X X#-

R S--

?

there is an arrow S −→ X# rendering the square commutative.

Proof. We define an ordinal sequence

X0 )−→X1 )−→X2 )−→· · ·Xω )−→· · ·
as follows. Well order the diagrams of R of the form:

X

R S--

?

Let X0 = X ; at a limit ordinal, let Xα = colim{Xβ|β < α} . To define Xα+1 , let
R )−→S be the least element of the well ordering such that there is no arrow S −→ Xα

for which

X Xα
--

R S--

?
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can be made to commute. Then define Xα+1 so that the square

X

R S--

?

Xα Xα+1
--

? ?

is a pushout. Since R is small, the process must eventually stop and when it does, the
final object clearly satisfies the conclusion. Of course the coregularity and exactness of
filtered colimits insure that all the required maps remain mono.

Now we may return to the proof of Theorem 6. Define a sequence

X0 )−→X1 )−→X2 )−→· · ·X∗

by letting X0 = X , and Xn+1 = Xn# and X∗ = colimXn . To see that X∗ has the
required property, it is clearly sufficient to show that if f :R −→ X∗ is a morphism
whose domain lies in R , then f factors through some Xn . But the colimit along a
chain – or any filtered colimit – is preserved by the embedding of the left exact functor
category into the category of all functors. Thus X∗ is the colimit of the Xn even in
the category of all functors. But in that category, Hom from representable functors
commutes with arbitrary colimits. This is what is meant when one says that colimits
(and limits) in a functor category are computed ‘pointwise’.

This construction does more than what was promised. We use it to simplify the
proof of the main embedding, although it is possible to avoid it.

2.9 Proposition. If X −→ X∗ is as described in the proof above and if Y is an
R-injective, then any map X −→ Y has an extension to X∗ .

Proof. We first prove that any such map can be extended to X# . But X# is con-
structed from colimits of Xβ along ordinal chains, so it is sufficient to extend to each
link. At limit ordinals, Xβ is constructed as a colimit, while the diagram

X

R S--

?

Xα Xα+1
--

? ?
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is defined to be a pushout. Assuming we have a map Xα −→ Y and its restriction to
R can, by the R-injectivity of Y , be extended to S , the universal mapping property
of the pushout gives us a map defined on Xα+1 .

The simplest way to think of this construction is as being a generalization of the
construction of the algebraic closure of a field. The algebraic closure is injective with
respect to algebraic extensions, but no other. And in fact, this observation will lead in
Section 4 to an example that shows that the existence of injectives in such categories
cannot be expected in general.

3 The embedding theorem

3.1 Theorem. Every small regular category has a full embedding into a set-valued
functor category that preserves finite limits and regular epimorphisms.

Proof. We will describe a full subcategory P ⊆ C̃ with the property that the functor
Φ: C −→ Func(Pop,Set) defined by Φ(C)(P ) = P (C) = HomeC(P,C) has the required

properties. First, the fact that all functors in C̃ preserve finite limits implies that Φ
does. A necessary and sufficient condition that Φ preserve regular epis is that every
functor in P be C -projective, so that we will allow only such functors into P . To
get faithfullness, it will be sufficient that each object of C is the target of a regular
epimorphism from at least one object of P . For in that case, given a monic C ′ )−→C in
C that is not an isomorphism, any regular epimorphism P →→C cannot factor through
C ′ so that P (C ′) −→ P (C) is not an isomorphism.

For each object C of C , let PC
eC−−−→ C be a C -projective cover of C as in Theo-

rem 2.7 and let QC

aC−−−→−−−→
bC

PC be a C -projective cover of the kernel pair of PC −→ C .

Thus there is a coequalizer QC
−→−→ PC −→ C in C . Let P be the full subcategory

consisting of all the PC and QC . Then we need show only that the embedding C
−→ Func(P ,Set) is full. Suppose that φ: Φ(C) −→ Φ(C ′) is a natural transformation.
This means that there is given, for each object P of P a function φP : Hom(P,C)
−→ Hom(P,C ′). Naturality means that for g:P ′ −→ P

Hom(P,C ′) Hom(P ′, C ′)-
φP ′

Hom(P,C) Hom(P ′, C)-Hom(g, P )

?

φP

?

Hom(g, P ′)
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commutes. Aplying this to an h:P −→ C , this says that φ(h ◦ g) = φ(h) ◦ g . We apply

this to the diagram QC

aC−−−→−−−→
bC

PC
eC−−−→ C , which tells us that

φ(eC) ◦ aC = φ(eC ◦ aC) = φ(eC ◦ bC) = φ(eC) ◦ bC

The coequalizer then implies the existence of a unique arrow f :C −→ C ′ such that
φ(ec) = f ◦ eC . Now suppose k:P −→ C is arbitrary with P an object of P . From
Proposition 2.9, it follows that there is an l:P −→ PC such that eC ◦ l = k and then
φ(k) = φ(eC ◦ l) = φ(eC) ◦ l = f ◦ eC ◦ l = f ◦ k . Thus φ is just composition with f .

4 Example

Let C be the category of those rings which are finite products of fields of characteristic
0 generated by a finite number of elements, i.e. simple extensions of fields of finite
transcendence degree over the rational numbers. We denote the sum in this category
by ⊗̃ . The first thing we must do is to see how it relates to the ordinary tensor product,
which is the sum in the category of commutative rings.

4.1 Lemma. If B ←− A −→ C are morphisms of C , then B ⊗A C −→ B⊗̃AC is
monic.

Proof. We first observe that if we write A = k1× k2× · · · × kn , where the ki are fields,
then each of B and C splits up into a product of ki algebras and the tensor product
commutes with that decomposition. As a matter of fact, it will follow from this lemma
that Cop is a pretopos and this procedure dualizes what happens to a map into a finite
sum in a pretopos. Thus we can reduce the question to the case in which A = k is a
field. Then we may suppose that

B = k(x1, x2, . . . , xn)[α] and C = k(y1, y2, . . . , ym)[β]

with x1, . . . , xn and y1, . . . , ym independent transcendentals, while α and β are alge-
braic, resp., over the preceding transcendentals.

The argument can now be reduced, using associativity of tensor product and the
fact that tensoring over a field is exact, to the following observations:

1. k(x1, x2, . . . , xn)⊗̃kk(y1, y2, . . . , ym) ∼= k(x1, x2, . . . , xn, y1, y2, . . . , ym);

2. k[α]⊗̃kk(y1, y2, . . . , ym) ∼= k(y1, y2, . . . , ym)[α] ;

3. k[α]⊗̃kk[β] is the cartesian product of a finite number of field extensions of k .

This last observation is standard in the theory of separable field extensions. Its fail-
ure for inseparable extensions is the reason we have restricted ourselves to characteristic
0.

Note that in cases 2 and 3 above, ⊗̃ = ⊗ .
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4.2 Proposition. Every monomorphism of C rings is universal and regular.

Proof. Given A )−→B , form the commutative diagram

0 A-

0

?
B-

0

?
B/A-

0

?
0-

? ? ?

0 B/A-

0 B-

?
B/A⊗B-

B ⊗B-

?
B/A⊗B/A-

B ⊗B/A-

?
0-

0-

0
?

0
?

0
?

in which the second and third row are formed by tensoring the top row with B and
B/A , respectively and similarly for the columns. The top row is exact by definition
and flatness insures that the second and third rows are. A diagram chase shows that
then the upper left corner is a pullback, from which it is clear that

B B ⊗B-

A B-

? ?

is a pullback as well, which means that A )−→B is regular. Finally, if A −→ C is an
arbitrary map of C , the flatness of C as an A module forces C )−→B ⊗ C as well.

The following theorem was found by John Kennison, to whom many thanks.

4.3 Theorem. FL(Cop,Set) is equivalent to a full subcategory of von Neumann
regular rings of characteristic 0 which contains all fields of characteristic 0.

Proof. Every left exact functor T : Cop −→ Set is given by a filtered colimit of repre-
sentable functors. So let T = colim(Hom(−, Ri)), where each Ri is a finite product of
finitely generated fields. Let R = colimRi in the category of regular rings. Since this
is a finitary equational category and the diagram is filtered, this colimit is simply the
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union and is, in fact, the colimit in the category of rings. I claim that for F a product
of finitely generated fields,

colim(Hom(F,Ri)) −→ Hom(F,R)

is an isomorphism. If F = Q(x1, . . . , xn)[α] is a field, this is a standard argument since
every homomorphism to R takes each of the xi to some Rj and by directedness there
is some Rj that contains the image of all of them, along with the image of α . But a
regular ring that contains the image of an invertible element also contains its inverse.
This remark applies not only to the xi and α , but to all rational functions in these
elements. If now F is a finite product, repeat the above argument with each of the
finitely many primitive idempotents. This shows that each functor is represented by a
commutative regular ring. As for natural transformations between functors, it is clear
that each ring homomorphism induces one. For the converse, it is evident that if R and
S are two von Neumann regular rings, each of which is a filtered union of subrings which
are products of finitely generated fields, then a coherent family of homomorphisms on
those subrings extends to a unique homomorphism between the rings. Finally every
field of characteristic 0 is in the category, since it is the union of its finitely generated
subfields.

A commutative von Neumann regular ring not in the category is given by an infinite
power of a field, say QN . Only the subset of functions N −→ Q of finite range belong
to finitely generated extensions. At any rate, we can now conclude,

4.4 Corollary. The category FL(Cop,Set) has no non-zero injective.

Proof. For if k −→ K is an inclusion of fields, no map k −→ P can be extended to K
unless the latter is smaller than P . By first taking a putative injective P , we then take
Q −→ K where K is a field larger than P . Since there is always a map Q −→ K (Q is
initial in the category), this shows that P cannot be injective.

5 Embedding conditions

Although the embedding has already been established, it is worth exploring more gen-
eral conditions that allow one to infer that a restricted Yoneda embedding is full and
faithful. We begin with faithfulness.

5.1 Theorem. Let X be a category and P be a small full subcategory of X . Then
the ‘restricted’ Yoneda embedding X op −→ Func(P ,Set) is faithful if and only if every
object of X is the target of an epimorphic sieve whose domains are in P .

Proof. Consider, for each object X of X the largest sieve: the family {P −→ X} of all
maps to X with domain in P . This is an epi family if and only if for any two distinct
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maps f, g:X −→ Y , there is at least one h:R −→ X with fh 6= gh . But this is exactly
the same condition as that the images of f and g remain distinct in Func(P ,Set).

In any category D , we say that a sieve {fi:Di −→ D} is a regular epimorphic
sieve if, given any object D′ and family of arrows {gi:Di −→ D′} such that for any
object E and any pair of arrows h:E −→ Di and k:E −→ Dj , fi ◦ h = fj ◦ k implies
that gi ◦ h = gj ◦ k , then there is a unique g:D −→ D′ for which g ◦ fi = gi . We say it
is universal if given any D′ −→ D there is a family of commutative squares

Di D-

D′i D′-

? ?

for which {D′i −→ D′} is a regular epimorphic sieve.
This amounts to the statement that

Hom(D,D′) −→
∏

Hom(Di, D
′) −→−→

∏
Hom(E,D′)

is an equalizer, where the second product is indexed by the (possibly large) family
of all pairs (h, k) as in the definition. If G is a generating family in D , so that
for every object E , there is an epimorphic family {Gk −→ E} , which implies that
Hom(E,D′) )−→∏Hom(Gk, D

′) is monic, then we conclude that

Hom(D,D′) −→
∏

Hom(Di, D
′) −→−→

∏
Hom(G,D′)

is also an equalizer, where the second product is indexed by all pairs (h, k) whose
common domain lies in G . Thus we conclude:

5.2 Proposition. Suppose D is a category and G is a generating set. Then in order
that {Di −→ D} be a regular epimorphic sieve it is sufficient that given any object D′

and family of arrows {gi:Di −→ D′} such that for any object G ∈ G and any pair of
arrows h:G −→ Di and k:G −→ Dj , fi ◦ h = fj ◦ k implies that gi ◦ h = gj ◦ k then
there is a unique g:D −→ D′ for which g ◦ fi = gi .

5.3 Theorem. Let D be a category with pullbacks and G be a full subcategory of
D . Then the ‘restricted’ Yoneda embedding Φ:D −→ Func(Gop,Set) is full and faithful
if every object of D is the target of a universal regular epimorphic sieve whose domains
are in G .

Proof. Let φ: ΦD −→ ΦD′ be a natural transformation. This means that for all g:G
−→ D with G an object of G , we have φ(g):G −→ D′ . Naturality means that for any
h:G′ −→ G with G′ also an object of G , φ(g ◦ h) = φ(g) ◦ h . Now suppose {gi:Gi
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−→ D} is a universal regular epic sieve. Then we have a family {φ(gi):Gi −→ D′} and
for any object G of G , if h:G −→ Gi, k:G −→ Gj is any pair of morphisms,

φ(gi) ◦ h = φ(gi ◦ h) = φ(gj ◦ k) = φ(gj) ◦ k

so that there is a unique f :D −→ D′ such that φ(gi) = f ◦ gi .
We must still show that φ(g) = fg for all h:G −→ D . According to the definition

of universality, there is a family of squares

Gi D-gi

G′i G-
g′i

?

hi

?
h

in which the family {G′i −→ G} is a (regular) epimorphic family. Then for each i ,

φ(h) ◦ g′i = φ(h ◦ g′i) = φ(gi ◦ hi) = φ(gi) ◦ h = f ◦ gi ◦ h = f ◦ h ◦ g′i

from which we conclude that φ(h) = f ◦ h as required.

This gives an alternate proof of Theorem 3.1 that does not make use of 2.9

6 Intersections

One of the interesting, but heretofore unutilized properties of the full embedding of
[Barr, 1971] is the fact that the functor preserved arbitrary intersections. In this section,
we explore this condition.

A natural monomorphism α:F )−→G of left exact functors is said to be an elemen-
tary embedding if whenever A )−→B ,

GA GB-

FA FB-

? ?

is a pullback.

6.1 Example. If F = hD and G = hC are representable, then a natural transfor-
mation F −→ G is induced by a map C −→ D . The transformation is mono if and only
if the inducing map is epi. We claim the transformation is an elementary embedding if
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and only if the inducing map is a strong epi. For the definition of strong epi is that C
−→ D is a strong epi if and only if any square

A B--

C D-

? ?

Hom(C,A) Hom(C,B)--

Hom(D,A) Hom(D,B)-

? ?

is a pullback.
Let F be a left exact functor on the left exact category C and A be an object of

C . If a ∈ FA , and A0 is a subobject of A , then we say that A0 bf admits a if there is
an element a0 ∈ FA0 which maps to a under the function FA0 −→ FA induced by the
inclusion. Since F is left exact, it preserves monos, and hence a0 is unique if it exists.
If one distinguishes monos form subobjects (a mono represents a subobject), we can
legitimately say that a ∈ FA0 . Consider the set of all subobjects of A which admit a .
If that collection of subobjects has an intersection then we say that intersection is the
bf support of a .

If A0 is the support of a , we do not usually expect A0 to admit a .

6.2 Theorem. Let C be a left exact category and F : C −→ Set a left exact functor.
Then of the following conditions,

(i) F is a filtered colimit of elementarily embedded representable functors;

(ii) F is a filtered colimit of representable functors in which the transition morphisms
are elementary embeddings;

(iii) for every object A of C , every element of a ∈ FA has a support and that support
admits a;

(iv) F preserves all intersections.

(i) ⇒ (ii); (ii) ⇒ (iii) provided every morphism can be factored as a strict epi
followed by a mono; (iii) ⇒ (i) and (iv); and, if subobject lattices are complete, (iv) ⇒
(iii).

Note that if subobject lattices are complete, then strict epi/mono factorizations ex-
ists and all four conditions are equivalent. Simply take the intersection of all subobjects
through which the map factors.
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Proof. (i)⇒(ii): This follows easily from the fact that if the outer square and right
hand square of

Hom(D,B) Hom(C,B)--

Hom(D,A) Hom(C,A)--

? ?
FB--

FA--

?

are pullbacks, so is the left hand square.
(ii)⇒(iii) in the presence of the factorization: Let F be a colimit as described in

the statement. Consider an element a ∈ F (A), represented by a morphism Ai −→ A ,
where Ai is one of the nodes in the colimit. The map Ai −→ A factors through a least
subobject A0 ⊆ A . If Aj −→ Ai is a map in the colimit diagram, the induced map
on the representable functors is an elementary embedding, which implies, as already
observed, that the map is a strict epi. But then Aj −→ Ai −→ A has the same image as
Ai −→ A , which means that A0 is the least subobject of A which admits a .

(iii)⇒(i): Let hA −→ F be a node in a diagram of which F is the colimit. This
represents an element of a ∈ F (A) which has a support A0 . I claim that the induced
hA0 −→ F is an elementary embedding. In fact, if g:B )−→C is a mono, we must show
that

Hom(A0, C) FC--
F (−)(a)

Hom(A0, B) FB-- F (−)(a)

?

?

Hom(A0, g)

?

?

F (g)

is a pullback. Let f ∈ Hom(A0, C) and b ∈ F (B) such that F (f)(a) = F (g)(b). Form
the pullback

A0 C-
f

A1 B-

? ?

g

and apply F to get a pullback

FA0 FC-
F (f)

FA1 FB-

? ?

F (g)

15



But then the existence of the elements a ∈ A0 and b ∈ B with F (f)(a) = F (g)(b)
implies that a ∈ FA1 . Since we assumed that A0 was the support of a , this implies
that A0 = A1 which means that f factors through B , just what is needed.

(iii)⇒(iv): Consider an intersection A0 =
∧

(Ai) of subobjects of A . The map FA0

−→ ∧
F (Ai) is clearly monic. If a ∈ FAi for each i , then the support of a is included

in each Ai , hence in their intersection A0 . But then a ∈ FA0 .
(iv)⇒(i) if the subobject lattices are complete: Consider an element a ∈ FA . Since

subobject lattices are complete, we can form A0 =
∧{Ai | a ∈ Ai} . Since F preserves

intersections, a ∈ FA0 . It is clear that a /∈ FA1 for any proper subobject A1 ⊆ A0 , so
that A0 is the support of a .

6.3 Theorem. Let C be a regular category, and R be the image of Cop in X =
FL(C,Set). Then if the object X of X preserves intersections, so does X∗ .

Proof. We begin by assuming, as we may from Proposition 5, that in C all epis are
regular. It follows from Theorem 3 that all monos in X are regular. But regular
monos are strict, so all monos are elementary embeddings. It is sufficient to show that
the property of preserving intersections is preserved by the passage from Xα to Xα+1

and by colimits along monomorphic chains. The latter condition will do both for the
passage to Xα and the one to Xα when α is a limit ordinal. As for the first step, let
that Xα = colimRi , with each Ri an elementarily embedded subobject from R . Let

X

R S--

?

Xα Xα+1
--

? ?

be the pushout that defines Xα+1 . The map R −→ Xα factors through some Ri . The
diagram may be replaced by the subdiagram consisting of all nodes beyond Ri . Let

Ri Si--

R S--

? ?

16



be a pushout. For i < j , let Si −→ Sj be defined so that the lower square in

Ri Si--

R S--

? ?

Rj Sj--
? ?

commutes. Since the outer and upper squares in this diagram are pushouts, so is the
lower square. Since Ri )−→Rj , the same is true of Si −→ Sj . This verifies the finite
step. Now let Xα = limβ〈αXβ in which β < γ implies that Xβ )−→Xγ , which means
it is an elementary embedding. Let {Ri} be a set of subobjects of R and R0 be their
intersection. It is immediate that Xα(R0) )−→∧iXα(Ri). Let a ∈ Xα(R) such that
a ∈ Xα(Ri) for all i . Then fix an i and choose β < α such that a ∈ Xβ(Ri). For any
Rj ⊆ Ri , there is a γ , which may be assumed less than β such that a ∈ Xγ(Rj). Since

Xβ(Rj) Xγ(Rj)-

Xβ(Rj) Xγ(Rj)-

? ?

is a pullback, it follows that a ∈ Xβ(Rj) for all j for which Rj ⊆ Ri . Thus a ∈∧
iXα(Ri).

7 Pretoposes

There would seem to be a regular progression: a small abelian category has a full,
exact embedding into a module category and a small regular category has a full regular
embedding into a functor category. The next step would seem to be a Theorem that
embeds a pretopos near exactly into a functor category. No such theorem is possible,
as shown by examples below. The first such example is the one credited to Makkai. We
do show is that every pretopos E has a near exact embedding into a category in which
there is a regular epimorphic cover by a family of E projectives. Only the universality
is lacking.

There seems to be some confusion as to whether ‘pretopos’ includes the hypothesis
of effective equivalence relations. One source of this confusion is in [Makkai-Reyes,
1977] in which, on page 122, a pretopos is defined to have quotients of equivalence
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relations. On page 117, a quotient of an equivalence relation is defined so that the
equivalence relation is required to be the kernel pair, but the definition on page 122
does not point out this non-standard usage, so potential for confusion is evident. Thus
to set the record straight, a pretopos is required to have effective equivalence relations.
Nonetheless, none of the results of this paper depend on this hypothesis. I know that
to be the case because I wrote it under the misapprehension engendered by the Makkai-
Reyes paper.

Let E be a pretopos and A be the opposite of FL(E ,Set). Then A is also a
pretopos by Theorem 4.

7.1 Lemma. For A an object of A, Hom(A,−) preserves finite sums if and only if
A is not decomposable into a sum of two subobjects.

Proof. If f :A −→ B1+B2 , then the universality of sums allows us to write A = A1+A2 ,
when Ai is defined by letting

Bi B1 +B2
-

Ai A-

? ?

be a pullback for i = 1, 2. If A is indecomposable, it must be that one the Ai is 0
and the other is A which means that f factors through one of the summands and that

Hom(A,B1 +B2) ∼= Hom(A,B1) + Hom(A,B2)

To go the other way, let A ∼= A1 + A2 with neither summand 0. A non-zero object
of a functor category has an element defined over at least one representable functor,
so there is, for i = 1, 2, and object Yi and a non-trivial morphism ei:Ai −→ Ei .
Then e = e1 + e2 belongs to Hom(A,B1 + B2), but not to either of Hom(A,B1) or
Hom(A,B2).

Remark. It is important to observe that A may be indecomposable even when
Hom(A,−) does not commute with infinite sums. For an example in the dual of the
category of commutative rings, observe that a map from a product of fields to a field
factors through one of the direct factors, but there is no no need for this happen with
an infinite product. To make this argument work with infinite products as well, we
would have to suppose that, in addition, infinite sums were universal.

7.2 Lemma. If P = P1 + P2 , then P is E -projective if and only if both P1 and P2

are.
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Proof. Let P = P1 + P2 be E -projective. Consider a diagram

A B-

P1

?

with A and B in E . Unless P2 = 0, in which there is nothing to prove, there is an
object C of E and a morphism h:P2 −→ C . Then in the diagram

A+ C B + C-

P1 + P2

?

the projectivity of P = P1 + P2 guarantees the existence of a morphism k:P1 + P2

−→ A+ C that makes the triangle commute. Now in the diagram

A+ C B + C-

A B-

? ?

P1

P1 + P2

?

k
@
@
@@R

f

HHHHHHHHj

the fact that the square is a pullback (in a pretopos) gives the required map P1 −→ A .
The converse is trivial.

Now for an E -projective object P , let Bool(P ) denote the poset of complemented
subobjects of P .

7.3 Lemma. Bool(P ) is a boolean algebra.

Proof. If P = P1 + P2 = P3 + P4 , then the universality of sums implies that also

P = (P1 ∧ P3) + (P1 ∧ P4) + (P2 ∧ P3) + (P2 ∧ P4)

from which it is easily seen that both P1 ∧ P3 and P1 ∨ P3 are complemented. Since
the complement of a complemented object as well as the least and greatest subobjects
are evidently complemented, the conclusion follows.

Now let u be an ultrafilter on Bool(P ). Let Pu = lim{Pi | Pi ∈ u} .
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7.4 Theorem. For any E -projective P , and any ultrafilter u in Bool(P ), Pu is an
E -projective indecomposable.

Proof. It follows from the dual of Lemma 2(v) that when E is an object of E , and
D: I −→ X is a cofiltered diagram, then

colim(Hom(Di,E)) ∼= Hom(limDi,E)

Consequently, for E in E , Hom(Pu, E) ∼= colim(Hom(Pi, E)), the colimit taken over
the Pi ∈ u . Since from Lemma 19 each Pi is E -projective and evidently a colimit of epis
is epi, it is evident that Pu is also E -projective. To show that Pu is indecomposable,
consider a morphism f :Pu −→ A + B where A and B are objects of E . From the
above, it is represented by an arrow Pi −→ A + B , for some Pi ∈ u . Then as in the
proof of Lemma 18, we can decompose Pi = P1 +P2 where f |P1 factors through A and
f |P2 factors through B . But the characteristic property of ultrafilters is that exactly
one of P1 and P2 belongs to u . If it is P1 that belongs, then in the colimit f and f |P1

represent the same element of Hom(Pu, A+B) and the latter belongs to Hom(Pu, A).
Thus by the converse of Lemma TK, P is indecomposable.

7.5 Theorem. The canonical map
∑
Pu −→ P , the sum taken over all the ultrafilters

in Bool(P ), is epic.

Proof. Since the objects of E cogenerate, it is sufficient to show that given two maps
f, g:P −→ A , with A an object of E , there is an ultrafilter u on Bool(P ) such that
Hom(Pu, f) 6= Hom(Pu, g). To see this, observe that for any decomposition P =
P1 + P2 , either f |P1 6= g|P1 or f |P2 6= g|P2 (or both). {i | f |Pi 6= g|Pi} is clearly the
dual of an ideal in Bool(P ) and hence contains an ultrafilter u with the property that
whenever Pi ∈ u , f |Pi 6= g|Pi . Since two morphisms in a filtered colimit are equal if
and only if they become equal at some stage, it follows that Hom(Pu, f) 6= Hom(Pu, g).

From Propositions 3 and 5 above, we may suppose that this epi is, in fact, regular
from which it follows that if P is a cover of an object X , so is {Pu | u ∈ Bool(P )} .
This epi is not universal, however, as we see in the next section.

8 Bounded pretoposes

We say that a pretopos is bf bounded is it has a full, near exact embedding into a
set-valued functor category. In this section, we will investigate some of the properties
of bounded pretoposes. In particular, we will show that if the pretopos has countable
sums, then such an embedding is not only exact, but in fact preserves all colimits. If the
pretopos is a Grothendieck topos, the embedding has a right adjoint and is therefore
the left adjoint part of a geometric morphism.
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In this section, we suppose that E is a bounded pretopos and that Φ: E −→ SetC is
a full, near exact embedding. We begin with an exercise in boolean algebras which is
left to the reader.

8.1 Proposition. Let B′ and B be lattices and f :B′ −→ B be a bijective increasing
function. Suppose that B is a (complete) boolean algebra. Then so is B′ and f is an
isomorphism of those algebras.

8.2 Proposition. Let E be a bounded topos. Then for every object E of E , Bool(E)
is a complete atomic boolean algebra. If f :E ′ −→ E is a morphism of E , then Bool(f)
is a morphism of complete atomic boolean algebras.

Proof. It follows from the preceding proposition and

Hom(E, 2) ∼= Hom(ΦE,Φ2) ∼= Hom(ΦE, 2)

that Bool(E) ∼= Bool(ΦE). Similarly,

Hom(E ′, 2) Hom(ΦE ′, 2)-∼=

Hom(E, 2) Hom(ΦE, 2)-∼=

?

Hom(f, 2)

?

Hom(Φf, 2)

commutes. Hence it is sufficient to prove that in a functor category SetC , the com-
plemented subobject lattice is a complete atomic boolean algebra. But the forgetful
functor SetC −→ SetOb(C) creates all limits and colimits and may easily be seen to pre-
serve the lattice operations in the subfunctor lattices. A subfunctor is complemented if
and only if its complement in the latter lattice is a subfunctor. Thus any inf or sup of
complemented subfunctors is complemented.

8.3 Proposition. For any object E of E , Bool(E) is a complete sublattice of
Sub(E).

Proof. The argument above shows that the assertion is true when E is a functor
category. That is, the union and intersection of complemented subobjects it is com-
plemented. Let

∨
and

⋃
denote the supremum operation in subobject lattices in E

and SetC , respectively and temporarily let Sup denote the operation in the comple-
mented subobject lattices in E . Then we have, for an object E of E and a collection
{Ei} of subobjects of E ,

⋃
ΦEi ⊆ Φ(

∨
Ei) ⊆ Φ(SupEi) =

⋃
ΦEi

The last equality is from Proposition 23.
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We say that a pretopos is bf molecular if every object is the union of indecomposable
objects and the sum is universal. We say it is bf effectively molecular if every object
is the sum of its indecomposable subobjects and that it is bf universally effectively
molecular if those sums are universal. It is clear that in a topos, the last two concepts
coincide and that in a Grothendieck topos, all three do.

8.4 Corollary. Every bounded topos is universally effectively molecular.

Proof. We must show that if E is an object of E and {Ei} is the set of atoms of
Bool(E), then E ∼= ∑

Ei . Let Φ: E −→ SetC be a full embedding. Then from the
construction above it is clear that ΦE ∼= ∑

ΦEi . If for each i , fi:Ei −→ F is given,
there is a unique map g: ΦE −→ ΦF such that g|ΦEi = Φfi . Since Φ is full and
faithful, there is a unique map h:E −→ F such that Φh = g . The universality also
follows immediately from that of the functor category.

8.5 Theorem. Let E be a bounded topos. Then a near exact functor Φ: E −→ SetC

preserves all sums. If E has countable sums, then Φ is exact. If E is a Grothendieck
topos, then Φ is a left adjoint of a geometric morphism SetC −→ Set.

Proof. Let E =
∑
Ei . If the Ei are atoms, the preceding corollary gives the conclusion.

For the general case, write Ei =
∑
Eij . Then E =

∑
Eij and this sum is preserved by

Φ. Since also ΦEi =
∑

j ΦEij , it follows easily that
∑

i,j ΦEij = ΦE . It is well known
[Freyd, 1972] that a near exact functor is exact as soon as countable sums exist and are
preserved. Finally, the special adjoint functor theorem gives a right adjoint as soon as
all colimits are preserved.

Any small pretopos can be fully embedded in a Grothendieck topos in which all
universal sums are preserved. Simply form the category of sheaves for the least topology
that includes all finite epi families and in which universal sums are covered by their
summands. Although the Grothendieck topos is no longer small, it is bf essentially
small [Barr-Wells, 1984], Exercise (UNIV) of Section 7.3, and we can work with it as
though it were small. In particular, it is bounded as soon as the original category is.
For any functor into a topos that preserves the covers will extend into a left adjoint of
a geometric morphism.

9 Sufficient conditions for boundedness

A lattice is called bf noetherian if every ascending chain is finite. Such a lattice is
evidently sup and hence inf complete. A lattice is bf co-heyting if finite sups distribute
over arbitrary infs.

9.1 Theorem. A small pretopos in which the subobject lattices are noetherian and
co-heyting is bounded.

Proof. We begin the proof with:
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9.2 Lemma. A noetherian co-heyting lattice has a complete embedding into a power
set. In particular, such a lattice is completely distributive.

Proof. Let L be such a lattice and consider two elements a and b of L for which b 6≤ a .
Among all ideals of I ⊆ L with a ∈ L and b /∈ L—there is at least one, namely a∧L—
let I be maximal. The noetherian condition on L insures that all ideals are principal,
so that I is the principal ideal generated by an element p . Like every principal ideal
it is closed under arbitrary sups. I claim its complement is closed under arbitrary infs.
In fact, if

∧
xi ∈ I , then from the co-heyting hypothesis,

∧
xi = p ∨

∧
xi =

∧
(p ∨ xi)

But maximality of I means that if none of the xi belong to I , b ∈ p ∨ xi for all i ,
whence b ∈ ∧xi . a contradiction. Thus both I and its complement are complete, so
that the 2-valued homomorphism of which I is the kernel is a morphism of complete
lattices. Since such an ideal exists whenever b 6≤ a , the set of such morphisms gives a
complete embedding of L into a power set from which complete distributivity follows.

9.3 Proposition. Let C satisfy the hypotheses of the theorem. Then every cover in
C̃ of an object of C has a finite refinement.

Proof. Let A be an object of C and {Pi −→ A} be a cover, i.e. a regular epimorphic
family. Let Pi = limBij , a limit of representables taken over a filtered index category
Ji . By replacing, if necessary, the index category by final segments, we can suppose
that for each i, j there is given a map gij:Bij −→ A which represents Pi −→ A . Let
Aij denote the image of gij . Let c be a ‘choice function’ which chooses for each i an
object c(i) in Ji . We must have

∨
iAi,c(i) = A . For otherwise that union would be a

subobject of A which evidently contains the image of every Pi −→ A . Thus,

A =
∧
c

∨
i

Ai,c(i) =
∨
i

∧
j∈Ji

Aij

, the latter equality being the complete distributive law. But the noetherian condition
implies that there is a finite set of indices, say i = 1, 2, . . . , n such that

A =
n∨
i=1

∧
j∈Ji

Aij

from which it is evident that P1, P2, . . . , Pn cover A .

We can now return to the proof of Theorem 28. From Theorem 6, there is a
cover P →→A , with P C -projective. Form Theorem 14, this can be replaced be a
cover

∑
Pu→→A with each Pu C projective and indecomposable. From the preceding

proposition, it follows that the sum can be replaced by a finite sum. From Theorem 4
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and Proposition 5, the finite family {Pu −→ A} is universal and it then follows from
Theorem 14 that if A is the small exact subcategory generated by C and by enough C -
projective indecomposable functors to resolve the objects of C , then the induced functor
C −→ SetA is full and faithful.

9.4 Corollary. A pretopos in which subobject lattices are finite is bounded.

Proof. A finite, distributive lattice is completely distributive.

10 Examples

Let X be any topological space which is T1, but not discrete. Then it is known that the
points of Sh(X), the topos of sheaves on X , are exactly the stalks at the points of X .
But being T1, there are no natural transformations between stalks at different points
and no non-trivial endomorphisms of the individual stalk functors. In other words,
the category of points is discrete. But the category of sheaves on a non-discrete space
cannot be fully embedded into a discrete functor category by a functor that preserves
sums. For one thing, the commutative diagram

Bool(ΦY ) Sub(ΦY )-

Bool(Y ) Sub(Y )-

? ?

in which Φ is the functor and Y is a sheaf, consists of all monos and both the left hand
and bottom arrows would be isomorphisms, whence the other two would be as well.
But then the subobject lattices would be boolean, contradicting the assumption that
the space is not discrete. Note that the space may be locally connected, thus showing
that a molecular topos need not be bounded.

Here is another interesting example of the same thing which is instructive in other
ways as well. Consider the category of sheaves on the open unit interval (0,1) (or
equivalently, on the real line, but the open interval is a bit more convenient). Suppose
we take for E the category of sheaves for which there is a uniform finite upper bound on
the number of elements in each stalk. This is evidently the least exact full subcategory
containing the space itself. Here is a projective over the space. Take the sequence of
spaces of which the first is the interval (0,1), the second is the sum of the two intervals
(0,2/3) and (1/3,1), the third is the sum of four intervals (0,4/9), (2/9,2/3), (1/3,7/9)
and (5/9,1), etc. At each stage, divide each interval of the preceding stage into two
overlapping intervals, each 2/3 the length of the previous ones. If these spaces are
denoted

X1 ←− X2 ←− X3 ←− · · ·
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then P = colim(Hom(Xi,−) is a projective functor since if Y →→Z is a surjection of
covers and some Xi −→ X is given, it will, after suitable subdivision lift to Xj −→ X .
On the other hand, an ultrafilter on Bool(P ) is determined a point of (0,1) and the
corresponding limit is the stalk at the point. It is known from sheaf theory that the
only points of the category Sh(X) are given by the stalks at a point, when the space is
sober.

Any near exact functor into Set is actually exact, since every relation generates an
equivalence relation after a finite number of steps. For a set of n elements has only
2n

2
relations on it and hence every reflexive symmetric relation on such a set generates

an equivalence relation after at most that many steps and the same is true of a sheaf
in which each stalk has at most n elements. In any case, such a functor preserves
covers and thus extends to the left adjoint of a geometric morphism on the category of
sheaves, i.e. a point.

But the category of stalks is discrete (there are no morphisms when the space is
hausdorff) and if the category of sheaves were bounded, and we would have a full
embedding Φ of Sh(X) into a power of Set . In the latter category, every subobject is
complemented. We have a commutative diagram,

Bool(ΦY ) Sub(ΦY )-

Bool(Y ) Sub(Y )-

? ?

in which every arrow is mono and the left hand and bottom arrows are isomorphisms,
which implies that the other two are as well. But then every subobject in Sh(X) would
be complemented, which is not the case. On the other hand, Sh(X) is molecular, since
X is locally connected [Barr-Paré, 1980].

Here is an example due to Makkai. It was given to show that not every pretopos is
bounded at a time when that seemed like a plausible conjecture. Let E be a countable
model of set theory with the axiom of choice, e.g. the standard model. If E were
bounded, E would have to be molecular. But the only molecules are singletons, so that
N , for example, would have to be the sum of countably many copies of 1. But there
are uncountably many ways of mapping such a sum to 1, so that is impossible.

11 Prime generated pretoposes

We say that an object in a pretopos is a prime if it is not the union of two proper
subobjects. We say that a pretopos is prime generated if every object has a regular
cover by primes.
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11.1 Theorem. A coherent prime generated pretopos is bounded.

Proof. Every coherent object has a finite cover by primes. Hence it is sufficient to show
that for every prime in C , there is a C -projective indecomposable P for which there
is a regular epi P →→A . Begin by finding a P →→A with a C -projective P . In any
decomposition P = P1 + P2 , I claim that either P1→→A or P2→→A . For suppose
neither of these holds. Write Pi = limBij for i = 1, 2. Then for any object C of C ,

Hom(A,C) −→ Hom(Pi, C) ∼= colim Hom(Bij, C)

is not monic, which means at least one Bij −→ A is not epi. Since this can be done
for i = 1, 2, the result is that for some indices j, k , neither B1j nor B2k is a regular
epi, which means, since A is prime, that B1j + B2k −→ A factors through some proper
subobject of A which means that P −→ A does as well. Now we can apply the method
of proof of Theorem 22. {Pi ∈ Bool(P ) | Pi→→A} contains an ultrafilter u with the
property that when Pi ∈ u , Pi→→A . The result is that since filtered limits in X
preserve finite colimits, Pu→→A as well.

11.2 Corollary. If C is a pretopos in which every object is the finite union of prime
subobjects, then C is bounded.

An bf atomic topos [Barr-Diaconescu, 1980] is a topos in which every object is a
sum of irreducible subobjects. It is not entirely clear what the definition of atomic
pretopos should be, but in the coherent case there is no doubt that every object should
be the finite sum of such subobjects.

11.3 Corollary. A small coherent atomic pretopos is bounded.

Proof. Since an object in a coherent atomic topos is the finite universal sum of its
atoms and its atoms are evidently primes, the conclusion follows from Theorem 33.

11.4 Corollary. A coherent Grothendieck atomic topos is bounded.

Proof. We can always take a small subcategory which is a pretopos and contains all
the atoms. An embedding into a functor category can be extended in a unique way to
all sums of atoms, which is what the atomic topos consists of.

11.5 Remark. All the toposes shown by the theorems above to be bounded
have completely distributive subobject lattices. This raises the question of whether all
bounded toposes do. There does not seem to be any obvious reason to expect this, but I
have not found any counterexample either. One approach to finding a counter-example
comes down to this: Find a left exact idempotent cotriple on a functor category that
does not preserve unions. For if G is such a cotriple and it does turn out to preserve
unions, we have the following computation in which the Eij are all G-coalgebras,

∨
i

∧
j

Eij =
⋃
i

G(
⋂
j

Eij) = G(
⋃
i

⋂
j

Eij) = G(
⋂
c

⋃
i

Ei,c(i)) =
∧
c

∨
i

Ei,c(i)
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which means the subobject lattices are completely distributive.
However, the only examples I can think of of idempotent cotriples involve all func-

tors that take a class of cocones (directed to get left exactness) to colimits. But then
the cotriple evidently preserves unions.
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