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1 Introduction

A recent article in The Intelligencer described in some
detail the theory of non-well-founded sets for the pur-
pose of being able to solve freely equations of the sort
X = A × X with A fixed ([Barwise & Moss, 1991]).
Of course, the empty set is a solution, but what was
wanted was a non-empty solution (in fact, the largest
solution, if such exists). If X were a non-empty so-
lution and x ∈ X, then we would have x = 〈a1, x1〉
for some a1 ∈ A and x1 ∈ X. Here I use 〈−,−〉 to
denote ordered pairs. What happens next depends to
some extent on the definition of ordered pair, but let us
take the common definition that 〈u, v〉 = {{u}, {u, v}}
which is a set with one or two elements, depending on
whether or not u = v. It seems a little complicated, but
it works and I believe that the same problem would oc-
cur no matter what definition of ordered pair is taken.

Let us write u ∈2 U to indicate that there is a
t with u ∈ t and t ∈ U . For example, u ∈2 〈u, v〉
and v ∈2 〈u, v〉. Now getting back to the equation
x = 〈a1, x1〉 with a1 ∈ A and x1 ∈ X, we have
that x1 ∈2 x. Since x1 ∈ X, it can be written as
x1 = 〈a2, x2〉 with a2 ∈ A and x2 ∈ X. This implies
that x2 ∈2 x1. Continuing in this way, we have a se-
quence of elements xn ∈ X such that

· · ·xn ∈2 xn−1 ∈2 · · · ∈2 x1 ∈2 x

This infinitely descending ∈-chain is banned (by a spe-
cific axiom of “well-foundedness”) from standard treat-
ments of set theory and the main point of the Barwise

and Moss paper is to describe a novel kind of non-well-
founded set theory in which such infinite chains are
allowed. The purpose of this note is to suggest that
the whole enterprise is wrong-headed.

It is clear that the “intended solution” to the equa-
tion X = A × X is that X should be the set of all
sequences

〈a0, a1, . . . , an, . . .〉

for a0, a1, . . . , an, . . . ∈ A. The reason that classical
set theory cannot provide this solution is not that this
set of sequences does not exist as that for the standard
definition of product the set Seq(A) does not satisfy
Seq(A) = A × Seq(A). Even if there were some alter-
nate definition of product that allowed this definition
to be satisfied, there would probably come along some
similar equation for which a solution was wanted and
for which the new definition was inadequate.

The theory of non-well-founded sets solves this
problem and all similar problems. It is unfortunate
that such solutions exist, for their main effect is to
avoid giving serious consideration to the real problem:
the irrelevance of actual elements in mathematics.

This is perhaps best illustrated by a two-person
game I heard described by someone recently (I have
unfortunately forgotten the source): Player A begins
by choosing a construction of the complex numbers.
Call it C. Player B then chooses an element z0 ∈ C.
Then A chooses a z1 ∈ z0. B responds by choosing
an element z2 ∈ z1. They alternate this way until the
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player unable to choose an element loses. By the well-
foundedness axiom, this is a finite game. By making
choices in the construction of C that are clearly irrel-
evant from a mathematical point of view, it is clearly
possible to describe a myriad of different sets, each of
which might function as “the” complex numbers.

There are two (at least!) rather differing views on
the relation of set theory to mathematics (from which,
for the purposes of this paragraph, I exclude set the-
ory itself). The first, which I held and supposed that
mathematicians held quite generally, was that we took
sets seriously and imagined that all mathematical ob-
jects were sets, that the number 3 was the set {0, 1, 2},
that the sine function, say, was a rather complicated
set and so on. A different view (which appears, on
the basis of a limited sample, to be the common one),
is that the main thing set theory does is to show that
there are models of these things inside these axioms. In
particular, if set theory is consistent, then so are the
constructions that could be made using them. (How-
ever, it goes beyond consistency, since there are lots of
things that are consistent with the axioms that we do
not assume because there is no model of them inside
the standard axioms.) One thing we agree on is that,
whatever they believe, mathematicians do not act as
though they took seriously the idea that the zeta func-
tion is nothing but a rather complicated set. For the
purposes of this article, it doesn’t matter which view
you hold. The foundations described here are in any
case much closer to the actual practice of mathematics.

As an example, consider the question of what is an
ordered pair. One answer is that 〈u, v〉 = {{u}, {u, v}}
as described above. Other definitions are possible, but
let us ignore that. On the one view, this is what an
ordered pair is. On the second view, that is no more
than a model to show that the specification of ordered
pair by 〈u, v〉 = 〈u′, v′〉 implies u = u′ and v = v′ is
consistent. One thing for certain is that the specifica-
tion is the only property of ordered pair that is ever
used.

If one takes sets seriously, then to solve an equa-
tion X = A ×X requires demonstrating the existence
of a set with that property, which is impossible with
well-founded sets. If one doesn’t take them seriously,
then the only issue is the consistency of the assump-
tion. The equation X = the set of subsets of X can
easily be shown (by Cantor’s diagonal argument) to be
inconsistent with any reasonable idea of sets.

Until a few years ago, I knew as much about set
theory as the average mathematician, which is to say
virtually nothing. Had I been asked to state the re-

placement axiom scheme to save my life, I would have
perished in ignorance. Then a colleague went on leave
and I was asked to teach a course on set theory. I did
teach the course and in the process a curious thing hap-
pened. I lost all respect for set theory as a foundation
for mathematics. The reason is simple. In virtually
all branches of mathematics we define various kinds
of structures and then define some kind of admissi-
ble homomorphisms as those that preserve the struc-
ture. This is true everywhere but in set theory. The
elaborate structure exists, but we pay absolutely no
attention to the functions that preserve it. Every non-
empty set has its elements and the elements, unless
empty, have elements and they, when non-empty, have
elements in turn. We get this elaborate tree and the
foundation axiom requires that whenever you follow a
downward path through this tree, you eventually come
up empty.

What would it mean for a function to preserve this
structure? For a function f :X −→ Y , not only should f
map elements of X to elements of Y , but also if x ∈ X,
then f should map the elements of x to elements of
f(x) and so on. For most sets X, the only function
X −→ X that does this is the identity! Of course,
all this sounds silly because while one is interested in
the elements of a set, one is virtually never interested
in the elements of the elements. To take one exam-
ple, which I take from a recent paper of Colin McLarty
[preprint, 1991], suppose you consider two possible def-
initions of the natural numbers. In the first (common)
definition, 0 is defined to be the empty set and we de-
fine n = {0, 1, . . . , n− 1} so that n has n elements. In
the second definition, 0 is still defined to be the empty
set, but n = {n − 1}. The two definitions of natural
numbers are quite different. Is the number theory that
results different? Assuming it isn’t, why are we con-
cerned with the set theory at all? See also [McLarty, to
appear] in which he shows how to simplify and gener-
alize Barwise and Etchemendy’s representation of the
Liar paradox, precisely forgetting about the identity of
elements.

The problem in all these cases is not so much that
sets have elements as that the elements are sets that
have elements. There is a serious reason for this.
Many constructions, for example, products and quo-
tient structures, are carried out by building sets whose
elements are sets. From there it is a short distance to
assuming that all elements are sets, since that certainly
gives a parsimonious foundation.

The set theory of the Zermelo-Fraenkel, Gödel-
Bernays and similar axioms is reminiscent of defining
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vectors as n-tuples of scalars in that it introduces the
basis as part of the strucutre. But one does not nor-
mally suppose that linear transofrmations preserve the
bases and one does not normally suppose that function
between sets preserve this elementhood structure (ex-
cept at the first level). The set theory I describe here is
much more like the axioms for abstract vector spaces.
The motivation is the same as that of any other kind
of axiomatic mathematics: to abstract away from the
inessential detail, in this case the membership trees.

The analogy with vector spaces can be carried one
step further. Just as bases are still useful and their
existence one of the most important property of vector
spaces, here too it turns out to be important to be able
to introduce elements and reason with them.

One point should be made. It is tempting to say
that we will consider two sets indistinguishable if there
is a one one correspondence (which we call an isomor-
phism) between them. Stated thus, this leads to some
serious problems. For example, A × B certainly is in
one one correspondence with B × A, but if we iden-
tify them we run into trouble when A = B. For then
this identification is a non-trivial isomorphism of A×A
with itself and there is another one, namely the iden-
tity. The solution is to identify two sets with struc-
ture not merely when there is an isomorphism between
them that preserves that structure, but when there is
a unique isomorphism between them that does. As for
sets themselves, the only time it is safe to identify them
is if they each have one element or are each empty, for
in those cases, and only those, there is a unique iso-
morphism between them.

The approach to sets that we outline below is due
to F. William Lawvere and Myles Tierney, who began
to study it when they were each spending two years at
Dalhousie University in 1969–71. Their axioms have
been refined by many people, too numerous to mention
here, but they have not changed in expressive power
since Lawvere and Tierney first set them out (and, by
the way, showed how to prove the independence of the
continuum hypothesis from them).

1.1 A categorical solution. To a category theo-
rist, the question of solutions to X = A×X is almost
a triviality. The problem is not one of finding solutions
but of characterizing the correct one.

To begin with, a product of two sets is not a set,
but a set plus two functions, the product projections.
More precisely, a product of A with X is a set we usu-
ally denote A×X together with two functions p:A×X
−→ A and q:A×X −→ X which have the property that

y ∈ A × X implies that there are unique a ∈ A and
x ∈ X such that p(y) = a and q(y) = x. It should
be understood that these elements y, a and x are not
elements in the usual sense; for one thing they are not
themselves sets and don’t have elements of their own.

The equation X = A ×X can be interpreted only
as asking for the existence of a set X together with two
functions p:X −→ A and q:X −→ X that satisfy the
above criterion. There is no problem in producing as
many solutions as wanted (unless A = ∅). Assuming,
for example, that A is non-empty and at most count-
able, then any infinite set X can be equipped with the
necessary structural functions to make it a solution.
How, from this plethora of solutions, do we pick out
the one that we want, the set of all sequences of ele-
ments of A?

Let us write p:Seq(A) −→ A for the function de-
fined by

p (〈a0, a1, . . . , an, . . .〉) = a0

and q: Seq(A) −→ Seq(A) for the function defined by

q (〈a0, a1, . . . , an, . . .〉) = 〈a1, a2, . . . , an, . . .〉
I emphasize that although we use elements, these are
not the same as the set theoretic elements. We will
explain later what these elements are. It is sufficient
here to say that they are mainly used just like ordi-
nary elements except that they themselves are without
structure and a set is not in any real sense made up of
its elements. But functions can be defined by giving
their values on elements, as illustrated.

Now let A
r←−− X s−−→ X be a solution, in the sense

described above, to X = A × X. For x ∈ X, we let
sn(x) = s(s(· · · (x) · · ·)), the nth composite of s at x.
Then we define f :X −→ Seq(A) by

f(x) = 〈r(x), r(s(x)), r(s2(x)), . . . , r(sn(x)), . . .〉
This function f is the unique function X −→ Seq(A)
for which the diagram

r
@
@I

A

p �
�	

?

f

Seq(A) Seq(A)-
q

X X-s

?

f

commutes. We summarize this by saying that Seq(A)
is the terminal solution to the equation.

This kind of equation does not always have a solu-
tion. For example, there is no set X that satisfies the
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equationX = 2X , the set of subsets ofX. However, the
essential categorical properties needed to know that a
terminal solution exists to this kind of equation, when
it does, has been known for at least 30 years, under the
name Special Adjoint Functor Theorem.

2 Sets

In this section, we give a set of elementary axioms for
the category of sets. These axioms have the same logi-
cal and philosophical status as any other axioms for set
theory. They are not based on an earlier formal system
since there is no earlier formal system. They are a basis
for formalization, not a result of it. Thus, although a
category normally begins with a set—or class—of ob-
jects and a class of arrows and domain and codomain
functions and a partial operation of composition, here
we begin with the undefined terms.

Although the motivation for these axioms comes di-
rectly from categorical studies, the word “category” is
not used; however, words familiar from category, such
as domain and codomain are used.

These axioms are written in the familiar language of
set theory. The actual undefined terms of the theory
are “set”, “function”, “domain”, “codomain”, “com-
posite” and “identity”. In practice, each of these will
be explained in categorical terms. One more word, “el-
ement” is also used, but will be defined.

We assume the following axioms:

Set–1. All functions, and only functions, have a do-
main and a codomain, which are sets.

If f is a function, we denote its domain by
dom (f) and its codomain by cod (f) and write
f : dom (f) −→ cod (f).

Set–2. If, and only if, f and g are functions for which
the domain of f is the codomain of g, there is a
composite function.

This composite is denoted f ◦ g.

Set–3. If f ◦ g is defined, then its domain is the do-
main of g and its codomain is the codomain of
f .

Set–4. If, and only if, A is a set, there is a function
called the identity of A and denoted idA. It has
the following properties:

(a) The domain and codomain of idA are A.

(b) For any function f with domain f , we have
f ◦ idA = f .

(c) For any function f with codomain f , we
have idA ◦ f = f .

Set–5. If f , g and h are functions for which the do-
main of f is the codomain of g and the domain
of g is the codomain of h, whence by Axioms
Set–2 and Set–3, all of f ◦ g, (f ◦ g) ◦h, g ◦h and
f ◦(g ◦h) are defined, then (f ◦ g) ◦h = f ◦(g ◦h).

Set–6. There is a set, denoted 1, with the property
that for each set A, there is exactly one function
A −→ 1.

Any set with this property is called a singleton or
one element set. If A is any set, by an element of
A, we mean a function a: 1 −→ A. If 1′ is a differ-
ent singleton, we say that the element a: 1 −→ A
is equal to the element a′: 1′ −→ A just in case
there is a function (evidently unique) t: 1 −→ 1′

such that a′ = t ◦ a. It is easy to show that each
element of A is equal to one whose domain is any
of the possible singletons. Thus for convenience
we will assume that all elements have domain 1.
We will write a ∈ A as usual to indicate that a is
an element of A. Also, if a ∈ A and f :A −→ B,
we see that f ◦ a ∈ B. When it is convenient to
do so, we will denote it by f(a).

If x is a variable in a formula whose type is that of
an element of the set A, we write x:A to indicate
that fact.

Set–7. Let A and B be sets. Then for any first or-
der formula φ(x:A, y:B) in our language with
exactly two free variables x and y, such that
∀x:A∃! y:B φ(x, y), there is a unique function
f :A −→ B such that f(a) = b if and only if
φ(a, b).

Actually, we do not need an axiom scheme of this
strength and, as explained below, it is sufficient
to suppose only two and a half instances of it.

Set–8. For every pair of functions f :A −→ C and
g:B −→ C with the same codomain there is a
set whose elements are the pairs 〈a, b〉 for which
f(a) = g(b). More formally, there is a set D and
functions p:D −→ C and q:D −→ C such that

∀x:A, y:B (f(x) = g(y)⇒
∃! z:D(p(z) = x) ∧ (q(z) = y))

This set is called the fibered product or pullback
of f and g. It is often denoted A×C B although
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that notation ignores the crucial role of the func-
tions f and g. The functions p and q are called
the projections. For elements a ∈ A and b ∈ B,
let 〈a, b〉 denote the unique element of A ×C B
for which p(〈a, b〉) = a and q(〈a, b〉) = b.

One special case is particularly interesting. If
C = 1, then since any two functions to C with
the same domain are the same, the elements of
the fibered product are simply pairs 〈a, b〉 with
a ∈ A and b ∈ B. In this case, we call the fibered
product simply the product (sometimes the carte-
sian product) and denote it by A×B.

Suppose that A and B are sets and A × B is
a product with projections p:A × B −→ A and
q:A×B −→ B. Suppose we are given a set C and
functions r:C −→ A and s:C −→ B. Then for any
c ∈ C, there is an element 〈r(c), s(c)〉 ∈ A × B.
This formula defines, by Set–6, a function we
call 〈r, s〉:C −→ A × B. From the definition of
p and q, it can be calculated that p ◦〈r, s〉 = r
and q ◦〈r, s〉 = s.

If f :A −→ C and g:B −→ D are functions and

if A
p
←−− A × B

q−−→ B and C
r←−− C × D

s−−→ D are products, then there is a function
〈f ◦ p, g ◦ q〉:A × B −→ C × D that we usually
denote by f × g.

Set–9. For any set A, there is a set PA of subsets of
A.

This requires a some explanation. A function
f :U −→ A is called an injection if whenever u1

and u2 are distinct elements of U , f(u1) 6= f(u2).
We can readily show that in any fibered product
diagram,

U A-
f

U ′ A′-f ′

?
h

?

g

if f is an injection, so is f ′.

Let A × PA be a product of A and PA and let
p:A×PA −→ A and q:A×PA −→ PA be the pro-
jections. Then we suppose that there as an object
denoted ∈A and an injection wA:∈A−→ A×PA.
The object is intended to denote the set of pairs
〈a, U〉 such that a ∈ U . The way we say that is
that for any injection f :U −→ A, there is a unique

function χ(f): 1 −→ PA such that the diagram

∈A A× PA-
wA

U A-
f

? ?

〈id, χ(f)〉

is a fibered product.

Set–10. There is a set N and functions zero: 1 −→ N
and succ: N −→ N that have the property that for
any object T and functions t0: 1 −→ T and t:T
−→ T there is a unique f : N −→ T such that the
diagram

t0@@R

1

zero
�
��

?

f

T T�
t

N N�succ

?

f

commutes.

Set–11. Every surjection has a right inverse.
This means that if f :A −→ B has the property
that for every b ∈ B there is an a ∈ A with
f(a) = b, then there is a g:B −→ A such that
f ◦ g = id.

2.1 Variations on these axioms These axioms
can be varied in a number of ways. In fact, that is
one of the most attractive features of this approach:
the ease with which different kinds of set theories can
be explored by varying these axioms. We will mention
here a few possibilities.

The first variation doesn’t change the expressive
power at all. One can omit the undefined terms “set”
and “identity” entirely. We can suppose that the do-
main and codomain of a function are also functions
such that f ◦ dom (f) = cod (f) ◦ f = f . In other words,
we are identifying sets with their identity functions.
This has the advantage of reducing the number of un-
defined terms. The price paid is essentially psycholog-
ical. We still think of sets as primary and if theory is
to follow practice, then we had better keep sets, even
at the price of a less elegant formulation. It is possible
that a later generation would see things differently.

The second variation arises from the fact that, as
mentioned above, the axiom scheme in Axiom Set–7
is stronger than needed. The following instances of it
suffice to develop set theory.

5



Set–7a. Let g:A −→ B be a function and let φ(x, y): =
y = g(x).

In this case, the function g already satisfies the
condition; uniqueness is the issue here. What this
axiom means is that if f(a) = g(a) for all a ∈ A,
then f = g.

Set–7b. Let A
f−−→ C

g
←−− B be a pair of functions

with the same codomain. Let A
p
←−− A ×C B

q−−→ B be the fibered product. Let r:D −→ A
and s:D −→ B be functions such that f ◦ r = g ◦ s.
Let φ(x:D, y:A×C B): = (〈r(x), s(x)〉 = y).

This says there is a unique h:D −→ A×C B such
that p ◦h = r and q ◦h = s.

Set–7c. Suppose that g:U −→ A × B has the prop-
erty that for u 6= u′ ∈ U , g(u) 6= g(u′). Then we
define φ(x:B, y:PA) by

∃p, q(U
p
←−− dom p = cod q

q−−→ A is a fibered
product of g and 〈idA, x〉) ∧ (χ(q) = y)

What this axiom says is that for any injective
function g:U −→ A × B there is a unique func-
tion we usually call f = χ(g) (it specializes to the
previous use of χ when B = 1) with the property
that for all b ∈ B, if

U A×B-
f

Ub A-
qb

?

pb

?

〈idA, b〉

is a fibered product, then χ(g) ◦ b = χ(qb). It can
further be shown that there is a fibered product
diagram

∈A A× PA-
wA

U A×B-g

? ?

idA × χ(g)

Other sorts of variations involve weakening Set–6.
If that is done, then so-called global elements—what
we here have called elements—no longer play an im-
portant role in the theory. In their stead, we use what
we might call local or variable elements. A variable is

determined by a parameter T , which can be any set.
A T -based element of A is function T −→ A. With
appropriate changes in the axioms to reflect this, we
get variations on the axioms which looks just like in-
tuitionistic mathematics. Other variations of the same
nature lead to forcing, models in which the reals are
non-standard and so on.

3 Solving the domain equation

Solving the domain equation X = A×X is not entirely
trivial from these axioms. The most important thing
that has to be shown is that for each pair of sets A
and B there is a set BA of functions A −→ B charac-
terized by a one one correspondence between functions
A −→ B and elements of BA. One way of doing this
is by defining BA to be the subset of P(A × B) con-
sisting of all those subsets that consist of the graphs
of functions. The usual construction is indirect, but
probably amounts to the same thing. Details of the
second approach are found in [Barr & Wells, 1985],
with the precise result coming on page 183 as Theorem
1 of Section 5.4. Many treatments of these axioms use
a weaker power set axiom and assume function sets
explicitly. These two approaches have the same ex-
pressive power and the choice between them is purely
a matter of taste.

In the case of the equation X = A×X, a solution
in the terms described here is to find a pair of functions

p:X −→ A and q:X −→ X such that A
p
←−− X

q−−→ X
is a product diagram. This is readily possible with the
set X of sequences of A, which is defined to be the
function set AN with p and q defined as evaluation at
zero and succ, respectively.

3.1 Other domain equations. In the study of
theoretical computer science, it is important for the-
oretical reasons—in order to know that computer
languages that allow recursion are consistent, for
example—to be able to solve equations of the sort

X = A0 +A1×X+A2×X2 + · · ·+An×Xn+ · · · (∗)

In this equation, A0, A1, . . . are fixed sets, Xn stands
for the product of n copies of X and the sum of sets
is the so-called disjoint union. This sum is defined by
saying that a function whose domain is a sum is deter-
mined by its values on each of the components. One
can show that such sums exist using the axioms we
have described. And the meaning of this equation is
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that there is a set X that can be equipped with func-
tions that makes it the sum described above. Axiom
Set–10 in fact says that the equation

X = 1 +X

has a solution and its solution is what we call the nat-
ural numbers. Using our axioms, one can show that
(∗) always has a solution. In fact, not only some so-
lution, but two special solutions, called the initial and
terminal solutions.

To explain these notions, we write, for a set S,

T (S) = A0 +A1 × S +A2 × S2 + · · ·+An × Sn + · · ·
If f :R −→ S is a function, there is a function f2 =
f × f :R×R −→ S×S and similarly fn:Rn −→ Sn and
finally, one can define a function

T (f):T (R) −→ T (S)

by using the functional definition of sums. Technically,
we say that T is a functor on the category of sets. This
means that it takes sets to sets, functions to functions
and preserves the predicates domain, codomain, com-
position and identity that define sets.

Now a solution X0 = T (X0) is called initial if, for
any solution S = T (S) there is a unique f :X0 −→ S
such that under the identification of X0 with T (X0)
and S with T (S), we also identify f with T (f). It is
a little awkward to give the full definition here, since I
haven’t specified what the equality actually means but
there is no problem being completely explicit. Analo-
gously, X1 = T (X1) is a terminal solution if for every
S = T (S), there is a unique g:S −→ X1 such that un-
der the identifications, g = T (g). It can be shown that
initial and terminal solutions of (∗) (and domain equa-
tions even more complicated) exist in the set theory
outlined here.

For the equation we began with X = A × X, the
initial solution is the empty set and the terminal so-
lution is the set of countable sequences of A. For the
equation X = 1 + X, the integers are the initial so-
lution and the integers with one more element is the
terminal solution. although the two sets are in one one
correspondence, there is no such correspondence be-
tween them that respects the structure of X = 1 +X.
The second is usefully thought of as the ordinal ω + 1.

4 Conclusions

A particular problem with standard set theory is that
sets have too much structure. This structure consists
of the elements, the elements of the elements and so on
down the tree. For almost all mathematical purposes,
this further structure is irrelevant. It is there, however,
and one of its effects is to complicate the solution of
domain equations.

For example, in standard set theory, for a non-
empty set A the equation X = X×A has no non-empty
solution. It is possible to remedy this by allowing the
structure of sets to be yet more complicated. This was
explored by Barwise and Moss in their Intelligencer ar-
ticle. A second, very different, way to solve equations
of this sort is to simplify set theory so that the elements
are unstructured. This requires a different approach to
such things as power sets and products, but the result is
a very natural set theory whose sets have just the prop-
erties that are needed and no extraneous ones. This
is done by making the primitive undefined notion not
set and element, but set and function with functional
composition replacing membership as the fundamental
binary relation.
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