
TR–??–??

Notes on sketches

Michael Barr∗

June 11, 1999

∗These notes are based on a series of lectures on sketches given at the ETL in Tsukuba. Parts
of it are adapted from [Barr & Wells, 1995]. I would like to acknowledge the support of the COE
budget of STA Japan.

1 In the beginning

1.1 Universal algebra In the 1930s, Garrett Birkhoff, Marshall H. Stone and
others created the subject known as universal algebra. This was one manifestation
of the rise of abstraction in mathematics that started in the mid 19th century. (It is
interesting to note that this rise in abstraction coincided, more or less, with increasing
abstraction in music, in art, in literature, in science and in other endeavors.) Although
universal algebra was not sufficient to describe all kinds of mathematical structures
(topological structures were notably absent), it was a vehicle for describing many
kinds, notably in algebra. We begin with a brief description.

1.2 Signatures A theory in universal algebra began with a signature, that is
an N-graded set of operations, S = {Ω0, Ω1, . . .}. An element ω ∈ Ωn is called an
n-ary operation. When n = 0, 1, 2, 3, 4, an n-ary operation is commonly called
a nullary, unary, binary, ternary, and quaternary operation, respectively. A
nullary operation is also often called a constant. An n-ary operation is also said to
have arity n.

1.3 Models A model of this signature is simply a set S together with a function
ω:Sn −→ S for each ω ∈ Ωn.

So, for example, you might have a signature S in which Ω0, Ω1, and Ω2 each had
one element and all the others were empty. A model of this signature would be a set
S equipped with functions ω0:S0(= 1) −→ S, ω1:S1(= S) −→ S, and ω2:S2(= S × S)
−→ S. It can be thought of as the raw material of a group, although it is not yet, of
course, a group.

1.4 homomorphisms of models If S is a signature and S and T are models of
S, that is sets equipped with the operations, then a function f :S −→ T is called a
homomorphism of models if for all n ∈ N, all ω ∈ Ωn, and all x1, x2, . . . , xn ∈ S
we have

f(ω(x1, . . . , xn)) = ω(f(x1), . . . , f(xn))

1.5 Derived operations and equations Beginning with the operations in a
signature, there are certain derived operations, defined inductively as follows. First,
for each pair of integers i ≤ n, there is a derived n-ary operation pi (or pni) whose
value at a model is given by pi(x1, . . . , xn) = xi. These are called projections and
are derived operations even if every Ωn is empty). It is convenient to also denote p1

1

by id, since its value on any element is that element. Then if ω is a k-ary operation
and ω1, ω2, . . . , ωk are n-ary operations, there is an n-ary derived operation denoted
ω ◦(ω1, . . . , ωk) whose value in a model is given by

ω ◦(ω1, . . . , ωk)(x1, . . . , xn) = ω(ω1(x1, . . . , xn), . . . , ωk(x1, . . . , xn))

1

Then an equation is the assertion of an equality of two operations, usually derived.
For example, in the theory described above, there are two derived ternary operations.
If the binary operation is called µ, then there are ternary operations µ ◦(µ ◦(p1, p2), p3)
and µ ◦(p1, µ ◦(p2, p3)). To see what these mean, note that p1(x, y, z) = x and so on.
Then we have,

µ ◦(p1, p2)(x, y, z) = µ(p1(x, y, z), p2(x, y, z)) = µ(x, y)

so that
µ ◦(µ ◦(p1, p2), p3)(x, y, z) = µ(µ(x, y), z)

and similarly,
µ ◦(p1, µ ◦(p2, p3))(x, y, z) = µ(x, µ(y, z))

Thus the equality of these two operations on a model is just the associativity of µ
in the usual sense. In a similar way, you can write equations that specify that the
nullary operation is an identity element for µ and that the unary operation is an
inverse for µ.

Then a theory of universal algebra is simply a signature and a set of equations. A
model of the theory is a model of the signature that satisifes the equations. That is,
the operations on the model satisfy the equations of the theory. A homomorphism
between models is the same as a homomorphism between models of the signature.

2 Enter Lawvere

2.1 Theory as category This was the situation in 1963, when F. W. Lawvere
burst on the scene with his Ph.D. thesis. It is probably not much of an exaggeration
to say that this and much of subsequent career has been devoted to “functorializ-
ing” mathematics. He showed how to make an equational theory into a category
in such a way that models are functors and homomorphisms of models are natural
transformations. This is done as follows.

2.2 The full clone The set of all operations—both given given and derived—is
called the full clone of operations of the theory. This full clone can be used to build
a category. The objects of the category are the natural numbers and an arrow m
−→ n is an n-tuple of m-ary operations of the theory. In particular, when n = 0,
there is a unique arrow m −→ n in the theory. If ω = (ω1, . . . , ωn):m −→ n and
ψ = (ψ1, . . . , ψm): k −→ m, then Lawvere defined ω ◦ψ = (ω1 ◦ψ, . . . , ωn ◦ψ): k −→ n.
This is readily seen to be a category with the n-tuple (p1, . . . , pn):n −→ n as identity
arrow at n.

Finally, if two operations are to be equal in the theory, then we make them equal
in the category. This implies as well that any derived operations that arise by substi-
tuting one for the other will also be equal. Thus the equations in the theory give rise
to commutative diagrams in the associated category. Let us call this category Th.

2

In this way, the full clone gives rise to a category. Conversely, the category gives
back the full clone if we define the n-ary operations to be the arrows from n −→ 1 in
the category.

2.3 Lawvere theories The category so defined is characterized by the following
properties. Its objects can be thought of as the natural numbers 0, 1, 2, Since an
arrow m −→ 1 is an n-ary operation and an arrow m −→ n is an n-tuple of the n-ary
operations, this means that Hom(m,n) ∼= Hom(m, 1)n. This in turn means that in
the category Th, the object 1 is the n-fold power of the object 1. It might be a little
easier if we denoted the objects X0, X1, . . . , Xn, . . . , but this notation is historically
correct.

2.4 Models Now suppose that M is a model of the original theory. This means
that for each ω ∈ Ωm there is given a function Mω:Mm −→ M . If ω1, . . . , ωn is an
n-tuple of m-ary operations, then you get a function (ω1, . . . , ωn):Mm −→ Mn given
by the formula

(ω1, . . . , ωn)(x1, . . . , xm) = (ω1(x1, . . . , xm), . . . , ωn(x1, . . . , xm))

Thus we can make M into a functor on Th; define M(n) = Mn and M(ω1, . . . , ωn) =
(Mω1, . . . ,Mωn). It is easy to see that M so defined is a functor. Moreover, M
preserves products since M(n) = M(1)n. This allowed Lawvere to define a theory
(now usually called a Lawvere theory) as a category whose objects are all the finite
products of one specified object and a model of the theory as a product preserving
functor. One obvious advantage of this is that it makes it natural to define models
in other categories, so that a topological group is nothing but a model of the theory
of groups in the category of topological spaces. Of course, this had been done before,
but that at least made it systematic.

One characterization of a Lawvere theory is as a category Th equipped with
a contravariant product preserving functor from the category of finite sets that is
bijective on objects.

2.5 Generalizations Lawvere’s definition was an eye-opener. Suddenly, a theory
was nothing but a category and a model was a (product-preserving) functor. This
seems (to me) much simpler than the previous definition. The equations of the theory
are now simply commutative diagrams and all the methods of category theory can
now be brought to bear on the subject. Before doing this, I wanted to mention that
there are some obvious generalizations. The first, by F. E. J. Linton [1966, 1969a,b],
was to drop the finiteness implicit in the fact that the objects are natural numbers.
Instead, we can define a theory to be a category whose objects are sets with the
property that the object S is the S-fold power of the object 1. Again, it might be

3

useful to call the objects XS where S is an arbitrary set. Another way of saying this
is to say that there is a contravariant product preserving functor Setop −→ Th that is
bijective on objects. What this means is that there are now allowed to be operations
of arbitrary arity. For example, it is not hard to show that there is a theory whose
model category is equivalent to the category of commutative C∗-algebras. It includes
operations that allow infinite absolutely convergent sums to be formed. (Just for the
record, the underlying functor used is the unit ball. For any sequence a1, a2, . . . of
complex numbers for which

∑ |ai| ≤ 1, there is an ℵ0-ary operation {xn} 7→
∑
aixi

which is convergent for a sequence of elements of the unit ball.)
Another direction of generalization is to allow multi-sorted theories. One example

of a multi-sorted theory is that of all monoid actions. A monoid action is defined as
a pair (M,S) where M is a monoid and S is a set on which M acts. An arrow is a
pair (ϕ, f): (M,S) −→ (M ′, S ′) where ϕ:M −→ M ′ is a monoid homomorphism and
f :S −→ S ′ is a function that satisfies f(ms) = ϕ(m)f(s) for all m ∈M and s ∈ S. In
an obvious way, there is a theory for this category, but the objects are the products
of powers of two given objects, one corresponding to the monoid part and one to the
set part. This is an example of a 2-sorted theory, but the number of possible sorts is
unlimited.

In some cases, but not in this one, it is possible to replace a 2-sorted (or more)
theory by a single-sorted one. Here is the reason it is not possible. In the category
of models of a single-sorted theory, for any object A, either A = ∅ or the obvious
diagram A×A −→−→ A −→ A is a coequalizer. Now we can take A = (M, ∅) for which
A×A −→−→ A −→ (1, ∅) is a coequalizer and (1, 0) is not terminal, since (1, 1) is. Nor
is (M, ∅) empty since there is at most empty model and M is arbitrary.

Finally, we can define a product theory as a category with products. A model is
a product preserving functor into sets. A homomorphism between models is a natural
transformation between functors. This definition pushes the Lawvere theory about
as far as it can go without changing its character in a fundamental way.

Later generalizations included limit theories which are categories with limits and
models are limit-preserving functors. This will be discussed in further detail when we
come to sketches.

3 Ehresmann and sketches

Charles Ehresmann was a French differential geometer who got interested in category
theory late in his career. He founded a school on the subject that is still active.
Although I am guessing to some extent in this history, I imagine he must have learned
of Lawvere’s work and reasoned while Lawvere had captured the full clone of a theory,
but the original idea à la Birkhoff, was much smaller, usually finite, at least for the
common theories we usually use, while Lawvere’s theories were always infinite (with

4

two trivial exceptions). At any rate, Ehresmann (often in conjunction with Andrée
Bastiani, later Bastiani-Ehresmann), wrote a series of papers defining and working out
many of the important properties of sketches (French esquisses). See [Ehresmann,
1968, 1969], [Bastiani & Ehresmann, 1972] and [Bastiani, 1973]. He gave a number
of different definitions and variations, so that he really defined the idea of a sketch.
Thus Wells and I felt justified in giving further variations as seemed appropriate. In
particular, most (but not all) of Ehresmann’s definitions were based on categories,
while we felt that this already put in more structure than was strictly necessary.
Without going into further detail, I will describe the definition as appears in [Barr &
Wells, 1985].

Ehresmann’s students have continued his work; however they virtually always
publish in the pseudo-journal Diagrammes which is hardly ever distributed outside
of France. As a result, they spend the rest of their time engaging in nasty priority
disputes with the rest of the world, going so far as to make accusations of plagiarism
against those who could have had no opportunity to see their work. For example,
the seminal work of Makkai and Paré included the proof that sketchable is the same
as accessible. This was basically anticipated by the Ehresmann student C. Lair. I
cannot give citations as I have seen it only once and there would be no point since
you have no access to it. Anyway, see [Makkai & Paré, 1990]. Let me make it clear
that I am not impugning the quality of their work, only their failure to adequately
document it.

3.1 Graphs The very simplest kind of sketch is a graph. By a graph, I mean a
directed multigraph that is allowed to contain loops. Any category can be thought
of as a graph by just forgetting the composition. If G is a such a graph, a graph
morphism into a category C is just a graph morphism into that underlying graph.
This means it takes nodes to objects, arrows to arrows, and preserves domain and
codomain.

A model (in Set) of this simplest kind of sketch amounts to prescribing a set for
each node in the graph and a function between sets for each arrow in the graph. This
is what might be called a free multi-sorted linear theory (free because there are no
equations and linear because all operations are unary). Neither nullary, binary nor
any higher arity operation can be prescribed with this simplest kind of sketch, nor
are equations possible. The only familiar theory that can be described with this kind
of sketch is that of M -sets, where M and, even so, M must be free. For example, N
is a free monoid on one generator, so the category of N-sets is a model of this kind of
sketch. The graph has one node and one loop. An N-set is just a set equipped with
an endomorphism.

3.2 Commutative diagrams When the target graph of a diagram is the un-
derlying graph of a category some new possibilities arise, in particular the concept of

5

commutative diagram.
In this situation, we will not distinguish in notation between the category and its

underlying graph: if I is a graph and C is a category we will call a graph morphism
D: I −→ C a diagram in C with shape I. We will refer to I as the shape graph of
D.

We say that D is commutative (or commutes) provided for any nodes i and j
of I and any two paths

t1@@R

k1

i

s1���

l1 l2-
t2

k2
-s2

· · ·-

· · ·-

lm−2
-

kn−2
-

lm−1
-

tm−1

kn−1
-sn−1

tm���

j

sn@@R

from i to j in I, the two paths

Dt1@@R

Dk1

Di

Ds1���

Dl1 Dl2-
Dt2

Dk2
-Ds2

· · ·-

· · ·-

Dlm−2
-

Dkn−2
-

Dlm−1
-

Dtm−1

Dkn−1
-Dsn−1

Dtm���

Dj

Dsn@@R
(∗)

compose to the same arrow in C. This means that

Dsn ◦Dsn−1 ◦ . . . ◦Ds1 = Dtm ◦Dtm−1 ◦ . . . ◦Dt1

3.3 Much ado about nothing There is one subtlety to the definition of commu-
tative diagram: what happens if one of the numbers m or n in Diagram (∗) should
happen to be 0? If, say, m = 0, then we interpret the above equation to be meaningful
only if the nodes i and j are the same (you go nowhere on an empty path) and the
meaning in this case is that

Dsn ◦Dsn−1 ◦ . . . ◦Ds1 = idDi

(you do nothing on an empty path). In particular, a diagram D based on the graph

i
R

e

commutes if and only if D(e) is the identity arrow from D(i) to D(i).

6

Note, and note well, that both shape graphs

R
e

i i j-d

(a) (b)

have models that one might think to represent by the diagram

R
f

A

but the diagram based on (a) commutes if and only if f = idA, while the diagram
based on (b) commutes automatically (no two nodes have more than one path between
them so the commutativity condition is vacuous).

We will always picture diagrams so that distinct nodes of the shape graph are
represented by distinct (but possibly identically labeled) nodes in the picture. Thus
a diagram based on (b) in which d goes to f and i and j both go to A will be pictured
as

A
f−−→ A

In consequence, one can always deduce the shape graph of a diagram from the way
it is pictured, except of course for the actual names of the nodes and arrows of the
shape graph.

3.4 Graphs with diagrams The next simplest kind of sketch consists of a graph
with diagrams. A graph with diagrams is a pair S = (G,D) where G is a graph and
D is a set of diagrams (with various index graphs).

It does not make any sense to ask that a diagram in a graph commute, but it
does make sense in a category. Thus if S = (G,D) is a graph with diagrams, we
can define a model of S to be a model M of G such that for any D: I −→ G in D,
the composite diagram M ◦D commutes. As in a Lawvere theory, the commutation
of diagrams is a way of putting equations into the theory. For example, using a
graph with diagrams we can make a sketch whose models are the category of M -sets
for an arbitrary monoid M . The sketch will have one node and have an arrow for
each generator of the monoid. Whenever there is a relation among generators, say
x1x2 · · · xn = y1y2 · · · ym we put in a diagram as based on the graph I above with
Dsi = xn−i and Dtj = ym−j. There is some complication when one of the indices is
0. Suppose, for example, m = 0. We cannot simply take i = j for that will result
in many more loops than we want. The way to do is to replace the equation by two
diagrams, one saying that x1x2 . . . xn = e and the second saying that e = 1.

This kind of sketch is still linear and has very little expressive power since the
operations are limited to functions of one variable. Here is an example.

7

3.5 Example We now consider an example of a linear sketch which has diagrams.
Suppose we wanted to consider sets with permutations as structures. This would be a
u-structure (S, u) with u a bijection. We can force u to go to a bijection in Set-models
by requiring that it have an inverse. Thus the sketch P of sets with permutations
has as graph the graph G with one node e and two arrows u and v, together with this
diagram D:

e
u−−→←−−
v

e (1)

based on the shape graph

i
x−−→←−−
y

j (2)

A model M of this sketch in Set must have M(e) a set, M(u) and M(v) functions
from M(e) to itself (since D(i) = D(j) = e), and because Diagram (1) must go to a
commutative diagram, it must have

M(u) ◦M(v) = M(v) ◦M(u) = idM(e)

This says that M(u) and M(v) are inverses to each other, so that they are permuta-
tions. Note that a model in any category is an object of that category together with
an isomorphism of the object with itself and the inverse of that isomorphism.

3.6 Comparison with Ehresmann At this point, it becomes possible to discuss
how the sketches described here compare with Ehresmann’s notion. For the most
part, Ehresmann supposed that his sketches were based on categories, not graphs. It
is not hard to see that a category is actually equivalent, in the sense of having the
same models, to a graph with diagrams. For any category has an underlying graph,
in which you forget the composition. If you take for diagrams all the commutative
triangles (that is to say, all the instances of composition) and all the identity arrows
(that is to say all instances of identity) you get a graph with diagrams whose models
in any other category are obviously the functors. To go the other way, beginning with
any graph, there is the path category in which you formally compose any two arrows
whose domain and codomain match, including the empty paths that act as identities.
Composition is obvious and gives a category. The diagrams generate a congruence,
the least equivalence relation that makes all the diagrams commute and is compatible
with composition. The result is a category whose functors are just the models of the
original graph.

In fact, in at least one paper (which, unfortunately, I cannot find), Ehresmann
and Bastiani used a concept that is even more closely related to my sketches. They
defined something whose name I have forgotten, something like quasi-category, which
is a graph in which some subset of the composable paths have a given composition.
For example, assuming that dom(f) = cod(g) and dom(g) = cod(h), we might have

8

f ◦ g ◦h defined without, however, supposing that either f ◦ g or g ◦h is defined. On
the other hand, if, say, both f ◦ g and (f ◦ g) ◦h are defined, then it is assumed that
(f ◦ g) ◦h = f ◦ g ◦h. The notion seems rather awkward, but it is closely related to the
idea of a sketch with diagrams.

4 Product sketches

A diagram in a category is called a cone if it has a vertex, a node that has a unique
arrow to all other nodes and none to itself. If these are the only arrows in the graph,
it is called a discrete cone. If there are only finitely many nodes and arrows, it is
called a finite discrete cone. If I is a category, a cone L: I −→ C is called a limit
cone if it is a limit in the usual sense.

What is the usual sense? There is an obvious notion of morphism of diagrams
that is essentially the same as natural transformation, since nowhere is composition
in the domain category used in the definition of natural transformation. The base
of a cone is the diagram without the vertex (which is evidently unique, being the
target of no arrow). Among all diagrams with the same base, the limit diagram is
the final one. We say “the” limit since although not unique it is unique up to a
unique isomorphism.

A product sketch S = (G,D,L), where G is a graph, D is a set of diagrams in G
and L is a set of discrete cones in G. A model of S is a model of (G,D) that has the
additional property of taking every cone in L to a limit cone. A discrete limit cone is
just a product cone, so these are really products. The product sketch is called finite if
everything in sight is: the graph is finite; there are finitely many diagrams; the index
graph of each one is finite, meaning it has a finite number of nodes and arrows; the
number of cones is finite; and each one is based on a finite graph.

Already finite product sketches have a good deal of expressive power. We will
illustrate this by describing a sketch whose models are semigroups. We begin with
a graph that has three nodes, which we name s, s × s and s × s × s. It should
be emphasized that these names, while suggestive, have no actual significance. A
diagram in a graph can neither commute nor be a limit. Similar remarks apply to
the arrows that we are going to label as though they were product projections.

The arrows in the graph are:

s s s

s× s

π1

�
�
��	 ?

κ π2

@
@
@@R

s s s

s× s× s

π1

�
�

��	 ?

π2 π3

@
@
@@R

(a) (b)

9

s× s s× s

s× s× s

〈π1, π2〉
�
�

��	

〈π2, π3〉
@
@
@@R

s× s s× s

s× s× s

s× κ
�

�
��	

κ× s
@
@
@@R

(c) (d)

We have given the graph in four pictures, but it is just one graph with three nodes
and ten arrows. Note that there are two arrows labeled π1 and two labeled π2. This is
overloaded terminology, used by long convention. For example, the arrows named π1

and π2 are necessarily different because their domains and codomains are different.

4.1 Before giving the details of the diagrams and cones, we pause to explain the
intent of this example. Up till now, we have described a graph. What is a model of
this graph in the category Set? We need sets we call S = M(s), S2 = M(s× s) and
S3 = M(s×s×s). For the moment, the exponents are simply superscripts. In addition
we require functions M(πi):S

2 −→ S, i = 1, 2, M(πi):S
3 −→ S, i = 1, 2, 3, M(κ):S2

−→ S and M(s × κ) and M(κ × s) from S3 to S2. So far, this is nothing familiar,
but if we now suppose, as suggested by the notation, that S2 and S3 are actually
the cartesian square and cube of S and if we make certain subsidiary assumptions
given by diagrams to be described later, these data cause S to be a semigroup whose
multiplication map is given by M(κ):S × S −→ S.

The subsidiary hypotheses are

(i) The various M(πi) are indeed the projections suggested by the notation.

(ii) M(〈π1, π2〉) = 〈M(π1),M(π2)〉 and similarly for 〈π2, π3〉.
(iii) M(κ × s):S × S × S −→ S × S is the unique function (guaranteed by the

specification for products) for which the diagram

S S × S�
M(π1)

S × S S × S × S�M〈π1, π2〉

?

M(κ)

?
S-

M(π2)

M(π3)

@
@
@
@@R

M(κ× s)

commutes. This diagram merely expresses the fact that M(κ×s) = M(κ)× idS,
which we need to get associativity (in Diagram (d) below).

(iv) There is a similar diagram to express the fact that M(s× κ) = idS ×M(κ).

10

(v) Finally, if we want a semigroup, we must express the associative law of the
multiplication. This is done by saying that the diagram

S × S S-
M(κ)

S × S × S S × S-M(s× κ)

?

M(κ× s)
?

M(κ)

commutes.

4.2 Our task will be to express these requirements in our sketch. This is done as
follows. We let D consist of the following diagrams:

s s× s�
π1

s-π2

s× s× s

π1

�
�
�

��	 ?

〈π1, π2〉 π2

@
@
@
@@R

s s× s�
π1

s-π2

s× s× s

π2

�
�

�
��	 ?

〈π2, π3〉 π3

@
@
@
@@R

(a) (b)

s s× s�
π1

s× s s× s× s�〈π1, π2〉

?

κ

?
s-π2

π3

@
@
@@R

κ× s

s�π1

π1

�
�

��	

s× κ

s× s s-π2

s× s× s s× s-〈π2, π3〉

? ?

κ

(c) (d)

s× s s-κ

s× s× s s× s-s× κ

?

κ× s
?

κ

(e)

These five diagrams have (e) as their main statement; (c) and (d) are needed to define
arrows which occur in (e), and (a) and (b) are needed to define arrows which occur in
(c) and (d). This construction is reminiscent of the way you construct progressively
higher level procedures in a programming language, culminating in the procedure
which actually does what you want.

11

4.3 The set L of cones consists of the following:

s s

s× s

π1

�
�
��	

π2

@
@
@@R

s s s

s× s× s

π1

�
�

��	 ?

π2 π3

@
@
@@R

(a) (b)

Then we say that the model M of S is a model of the sketch if all the diagrams in D
become commutative diagrams when M is applied and if all the cones in L become
product cones.

With some more arrows, cones and diagrams, this sketch can be progressively
modified to become a sketch for monoids, then groups, then commutative groups and
then rings. I will introduce some notational conventions that make it easier.

It is not hard to see that product sketches have exactly the expressive of equational
theories, at least if the graph is allowed to be large. The Lawvere theories correspond
to a special (and not very natural) class of finite sketches that have cones that force
each object in a model to be a finite product of a single one.

4.4 The sketch for natural numbers Just about the simplest product sketch
is the one for natural numbers. It has two sorts, called 1 and n, two arrows ζ: 1 −→ n
and σ:n −→ n, and just one cone with 1 as its vertex and empty base. A model M
of this sketch consists of a set N = M(n) with a chosen element z = M(ζ) ∈ N and
an endomorphism s = M(σ):N −→ N . Such data do not constitute a set of natural
numbers (for example, s could be the identity map, or a constant), but rather it is
the initial model, to be described later, that is the usual natural numbers.

4.5 Sketches for arrays and records It is not hard to give sketches that
describe arrays and records in some programming language, such as Pascal. For the
former, we take two sorts d and a and for an integer m (the size of the array), we
take the cone, along with its associated elements as the arrows

d d d

a

π1

�
�
��	 ?

πi πm
@
@
@@R

· · · · · ·
The idea is that this is a sketch for m-ary arrays of datatype d. It is just the bones of
such a sketch; to put flesh on it, you have to also sketch the datatype. For example,

12

suppose we add to this sketch, the sketch for natural numbers just described, together
with one cone:

n

d
?

A cone of this shape in a category is a limit cone iff the arrow is an isomorphism. So
putting in this cone has the effect of identifying d with n. Of course, we could have
given them the same identifier, but it is more systematic to do it this way.

The sketch for records is quite similar. Now we have sorts d1, d2, . . . , dk and a
sort r. There is one cone:

d1 di dm

r

π1

�
�
��	 ?

πi πm
@
@
@@R

· · · · · ·
Again, this is only the bones of a sketch and the di have to be given additional
structure in order to acquire meat.

Many other data structures do not have product sketches because they have un-
derflow conditions for which sum sketches will be required. (There is another point;
all real-world datatypes also have overflow conditions, which can also be represented
by sum theories. Whether you want to build that in to your sketch involves a trade-off
of realism vs. analyzability.)

5 Limit sketches

Limit sketches are just like product sketches except that the cones are no longer
required to be discrete. So a limit sketch takes the form S = (G,D,L) where G is a
graph, D is a set of diagrams, and L is a set of cones.

Here is a limit sketch for categories. First I will show that the category of categories
is not the category of models of any equational theory. An equational theory, even
multi-sorted, has the property that any coequalizer is surjective on each sort and
conversely. To see this, consider a typical operation ω: s1 × s2 × · · · sn −→ s. We
pretend it is finitary, but modulo the axiom of choice, nothing depends on that. Now
suppose that f :M −→ N is a morphism of models. If it is not surjective, define a new
model K by letting Ks be the image of Ms −→ Ns. Given an operation as above, we

13

have the diagram

Ms Ns1 × · · · ×Nsn

Ms1 × · · · ×Msn Ks1 × · · · ×Ksn--

?
Mω

?

?

Ks Ns--
?? ?

Nω

whose diagonal fill-in gives an arrow Ks1×Ks2×· · ·×Ksn −→ Ks that gives the value
of the operation at K. The commutativity of each of the squares when the diagonal is
filled in shows that both M −→ K and K −→ N are morphisms. One shows even more
easily that any quotient (or any subobject) of a model of the operations satisfies all
the equations that they do. Now a regular epi cannot be factored in such a way that
the second factor is monic, so any regular epi must already be surjective. Conversely,
if f :M −→ N is surjective, then on each set it is the coequalizer of its kernel pair. In
other words, on each node s, we have that

Ms×NsMs −→−→Ms
fs−−−→ Ns

is a coeqalizer. But then, given any map g:M −→ K that has equal composite with
M ×N M −→M , we get, for each node s an arrow hs:Ns −→ Ks such that

Ms Ns-fs

Ks
?

gs hs
�
�

��	

14

commutes for each s. Now for an operation ω: s1×· · ·×sn −→ s, we have the diagram

Ms1 × · · · ×Msn Ns1 × · · · ×Nsn--fs1 × · · · × fsn

Ks1 × · · · ×Ksn

gs1 × · · · × gsn

@
@
@
@
@
@
@
@
@
@
@
@
@R

hs1 × · · · × hsn

�
�

�
�

�
�
�

�
�

�
�

�
�	

Ms Ns--fs

Ks

gs
@
@
@@R

hs
�

�
��	

6
Kω

Mω

HHHHHHHj
Nω

��������

The upper and southwest squares commute because f and g are morphisms and the
inner and outer triangle commute by definition of h. An easy diagram chase shows
that the southeast square commutes when preceded by fs1 × · · · × fsn, which is
epic and can be cancelled. Thus we conclude that h is a homomorphism. It follows
that the various underlying set functors (one for each sort) preserve regular epis.
Since they are well known to preserve all limits and since a pullback in Set of a
regular epimorphism is a regular epimorphism, it further follows that a pullback in
any equational category of a regular epi is regular epic. (Categories that satisfy that
condition are called regular). Thus to show that a category is not equational, it
suffices to show it is not regular.

But being regular is not sufficient. The category of torsion-free abelian groups is
regular, but not equational. The reason in that case is that there is an equivalence
relation that is not effective—the kernel pair of some arrow—not possible in an
equational category. For example, the equivalence relation on Z of being congruent
modulo 2 is not the kernel pair of any arrow to a torsion-free group. Regularity,
effective equivalence relations, and the existence of a projective generating set are
necessary and sufficient in order that a cocomplete category be equational. The set
of projective generators can be taken as the set of sorts.

Now for Cat, we simply observe that the coequalizer of the two maps 1 −→−→ 2
is the category we call N that has a single object and the natural numbers as the
monoid of endomorphisms of that object. The reason is that if we begin with the
single arrow f : · −→ · and identify the domain and codomain of f , we are now able to
form the composites f ◦ f , f ◦ f ◦ f , . . . , and these are all different. The reason they
are all different is that we have a sequence

1 −→−→ 2 −→ N

15

and therefore that coequalizer, whatever it is, has to be able to have a functor to N,
which is possible only if there are no equations. Thus the arrow 2 −→ N is a regular
epimorphism. Now it certainly does not look surjective, but we have to eliminate the
possibility that there is some peculiar underlying functor that makes it so. Instead,
we will show that it is not pullback stable. Let 2N denote the subcategory of N that
consists of only the even powers of f . It is evident that

2 N-

2 2N-

? ?

is a pullback (2 is the discrete category with 2 objects) and that the arrow 2 −→ 2N
is not a regular epi. In fact a quotient of a discrete category is discrete.

The crucial thing about a category is that composition is only partially defined.
The good thing is that you can explicitly describe the domain of the partial operation,
the set of composable pairs, in terms of operations that are globally defined. This
led Peter Freyd to define the notion of an essentially algebraic theory (sometimes
“algebraic” is used as a synonym for “equational”) as one with total and partial
operations, stratified in such a way that the tier 0 operations are globally defined and
the domains of tier n operations can be defined equationally in terms of operations of
tiers n−1 and lower. One could make up artificial examples, but there does not seem
to be any real need to go beyond tier 1 and, in any case, limit theories encompass
them all, while making the stratification unnecessary.

A sketch for categories could be made with four sorts, o, a, a×o a, and a×o a×o a.
The notation suggests that these should be viewed as standing for objects, arrows,
composable pairs of arrows, and composable triples of arrows, respectively. There
are arrows γ, δ: a −→ o, ι: o −→ a, κ: a ×o a −→ a, as well as various “housekeeping”
arrows, such as π1, π2, π3: a×o a×o a −→ a, κ×o a: a×o a×o a −→ a×o a, and so on.
We also require an arrow we will call γι, whose purpose will become apparent. There
are diagrams There are a number of routine diagrams, but the most important are

a×o a a-κ

a×o a×o a a×o a-κ× a

?

a× κ
?

κ

o a-ι o
-γ
-

δ

R
γι

16

There are two cones:

a o-
δ

a�
γ

a×o a

p1

�
�
��	 ?

p2

@
@
@@R

o a�
γ o-

δ

a×o a×o a
�
�

��	 ?

p2

@
@
@@R

p1

���������

p3

HHHHHHHHj
a -

δ
a�

γ

Since the case of torsion free abelian groups was mentioned, it is interesting to
see what a sketch for that theory might look like. Begin with a sketch for abelian
groups that has a node a representing the group and an arrow α representing the
addition. Then for each positive integer n, let there be a node an and for each
non-negative integer, let there be an arrow µn: a −→ a, an arrow θn: an −→ a, and an
arrow ϕn: an −→ a1. finally, we arrow a×µn: a× a −→ a×a, and 〈id, id〉: a −→ a×a.
We need diagrams to make 〈id, id〉 and a × µn be what they appear to be and we
need a diagram

a a× a�
µ

a a× a-〈id× id〉

?

µn

?

a× µn

and, the crucial diagram

a1 a-
θ1

an

ϕn
�
�

��	

θn

@
@
@@R

(∗)

For each positive integer n, let there be a cone

a a

an

θn

�
�

��	

@
@
@@R-µn
-

µ0

The interpretation of all this is that θn is interpreted as the inclusion of the
equalizer of multiplication by n and 0. Thus it is the set of elements annihilated

17

by n. The existence of ϕn and the commutation of (∗) means that any elemented
annihilated by n is already annihilated by 1, that is, is 0.

5.1 A sketch for binary trees Here we include a sketch for binary trees. The
problem with binary trees is that while you may normally follow the left or right
branch, there is also an empty tree. One way of dealing with this will be given after
we introduce sum sketches. It is also possible by introducing a boolean test. If you
actually wanted to implement this sketch, it is not clear that the implementations of
the two would differ much, if at all.

We have the following basic nodes in the sketch: 1, t, t+, b, n. These should
be thought of as representing the types of binary trees, nonempty binary trees, the
Boolean algebra 2 and the natural numbers, respectively. We have the following
operations:

empty: 1 −→ t empty?: t −→ b incl: t+ −→ t
val: t+ −→ n left: t+ −→ t right: t+ −→ t
zero: 1 −→ n succ:n −→ n true: 1 −→ b
and: b× b −→ b not: b −→ b

The intended meaning of these operations is as follows: the constant empty〈〉 is
the empty tree; empty? is the test for whether a tree is the empty tree; incl is the
inclusion of the set of nonempty trees in the set of trees; val(T) is the datum stored at
the root of the nonempty tree T ; left(T) and right(T) are the right and left branches
(possibly empty) of the nonempty tree T , respectively. The remaining operations are
the standard operations appropriate to the natural numbers and the Boolean algebra
2.

We require that

t n t

t+

left
�
�
��	 ?

val right
@
@
@@R

and

1 t

t+

�
�

��	
incl

@
@
@@R

b

not ◦ true
@
@
@@R

empty?
�

�
��	

(3)

18

be cones and that

1 t-
empty

true
@
@
@@R

b
?

empty?

be a diagram.
In the cone (3), there should be an arrow from the vertex to the node b. It will

appear in a model as either of the two (necessarily equal) composites. Since its value
is forced, it is customary to omit it from the cone; however, there actually does have
to be such an arrow there to complete the cone (and the sketch). In omitting it,
we have conformed to the standard convention of showing explicitly only what it is
necessary to show.

The existence of the first cone says that every nonempty tree can be represented
uniquely as a triplet

(left(T), val(T), right(T))

The fact that (3) is a cone requires that in a model M , M(t+) be exactly the subset
of M(t) of those elements which evaluate to false under M(empty?).

5.2 Comparison with logical language Logical language has no trouble ex-
pressing product theories, using multi-sorted signatures, although the notation is
somewhat awkward. The equations can be expressed using derived operations. It can
handle some limit theories, for example the torsion-free abelian groups, using univer-
sal Horn clauses, for example, nx = 0 ⇒ x = 0. But it would be quite awkward to
express the theory of categories in logical language. It cannot be done using universal
Horn clauses. The only way I know would be to begin with a relational language and
express composition as a ternary relation, with universal Horn clauses to say it is a
partial function and say what its domain is. However, relational theories are a much
wider class of theories than limit theories, so this is an unwelcome step. Of course,
you can express more theories this way, but there is less that you can say about each
one.

5.3 Notational conventions We have been informally using some notational
conventions by which most of the cones and diagrams in the sketch for semigroups
above become uneccessary to specify explicitly. It would be possible to formalize
them in such a way that they become part of the language, but I have refrained from
doing so. The reason is that the main point of sketch is to replace the idea of a formal
language by a category-based notion and reintroducing a formal language seems like
a backward step. These notational conventions have the effect not of reducing the
number of cones and diagrams, but rather of making them implicit in the notation,

19

so they do not have to be spelled out in detail, but the underlying formalism remains
the sketch.

Whenever a node in a sketch is called s × t, it is assumed that there are nodes
called s and t and a cone

s t

s× t

p1

�
�

��	

p2

@
@
@@R

This can be generalized to more than two factors in an obvious way (even infinitely
many). We may also write s2, s3, . . . for s× s, s× s× s, . . . , if it seems appropriate.
A node called 1 is accompanied by a cone with vertex 1 and empty base. If s× t and
u×v are nodes then an arrow f×g: s× t −→ u×v implies the existence of arrows f : s
−→ u and g: t −→ v and the following diagram (this could obviously be broken into
two, but the definition of commutative is sufficiently broad as to allow this diagram).

u u× v�
p1

s s× t�p1

?

f

?

f × g

v-p2

t-
p2

?

g

An arrow 〈f, g〉: s −→ u × v implies the existence of arrows f : s −→ u and g: s −→ v
and a commutative diagram

u u× v�
f

v-g

s

p1

�
�

��	 ?

〈f, g〉 p2

@
@
@@R

Finally, calling a node 1, implies that it is the vertex of a cone whose base is empty.
In a similar way, writing a node as s ×u t implies the existence of a cone of the

form

s u�
f

t-g

s×u t

p
�

�
��	 ?

q
@
@
@@R

in which f and g are already given arrows.
Later, we will add other notational conventions.

20

6 Sketches with cocones

The most expressive kind of sketch we will consider adds a set of cocones. So a sketch
with cocones consists of S = (G,D,L, C), where (G,D,L) is a limit sketch and C is
a class of cocones (the dual of cones) in G. A model of this sketch is a model of the
limit sketch that further takes all the cocones in C to colimit cocones. This concept is
really too general and the main interest is in certain special cases, in which the class
of cocones allowed is limited.

6.1 Regular sketches A ring R, not necessarily commutative, is called regular
(in the sense of von Neumann) (since there is at least one other notion of regu-
larity, at least for commutative rings), if for each x ∈ R there is a y ∈ R for which
xyx = x. One way of making this into a categorical statement is as follows. Call such
an element y a quasi-inverse of x. Should x happen to be invertible, then y is unique
and is the inverse, but in general, there are many choices for y and no natural one.
Given R, let U ⊆ R×R be the set of pairs of elements (x, y) for which xyx = x. We
can define U by an equalizer

U −→ R×R
p1−−→−−→ R

in which p1 is the first projection and the lower map, a derived operation, takes (x, y)

to xyx. Then the composite U −→ R × R p1−−→ R has as image the set of elements
that have at least one quasi-inverse. Thus R is regular iff that composite is surjective.
Assuming we know what we mean by surjective, this would allow us to state regularity
in any category that has the equalizer that defines U .

Now at this point, there is a problem, or rather a decision. There are at least three
distinct categorial concepts that reduce to surjection in the case of sets. They are
epimorphism, regular epimorphism, and split epimorphism (having a right inverse). It
is not clear how to put the last one into the language of sketches (except by putting the
right inverse into the sketch, which would then make the choice of right inverse part
of the structure of a model, to be respected by homomorphisms, not what is wanted).
The first choice can be sketched readily enough, but being an epimorphism is not a
very good condition in a general category. On the other hand, regular epimorphisms
are generally well-behaved and it is easy to describe them in the language of sketches.
In fact, f is a regular epimorphism (in a category with suitable limits) iff there is a
cone

· ·-
f

·�
f

·

d0
�
�
��	

d1
@
@
@@R

21

and a cocone

· ·

·

@
@
@@R

f
�
�
��	

-d0

-
d1

The first says that d0 and d1 are the kernet pair of f and the second that f is the
coequalizer of d0 and d1. The reason this works is that in any category that has a
kernel pair of f , the arrow f is a regular epimorphism iff it is a coequalizer of its
kernel pair.

In general, regular sketches are used to translate the logical existential quantifier
into sketch language.

6.2 Sum sketches A sketch S = (G,D,L, C) is called a sum sketch if the
cocones are discrete. Here is a sketch whose models in the category of sets is fields.
We know that the category of fields cannot be sketched by a limit sketch since the
category is not complete. On the other hand, there is a problem with the simple
sketch I will now describe, which I will explain later.

6.3 Fields, take 1 The simplest way to describe a field is to say that it is a
three sort theory, the first sort being that of the ring, the second being that of the
multiplicative group of non-zero elements and third consisting of the 0 element alone.
So we begin with a graph with nodes f , i, and z. We will need additional nodes such
as f × f , f × f × f to express the fact that f is a ring. (Normally, we would also
need f 0, to describe the additive and multiplicative units, but z can play that role).
Similarly, we need i× i and i× i× i and all the data needed to make i a commutative
group. A map ι: i −→ f is needed and diagrams to say that that map preserves the
multiplicative structure. The map ζ: z −→ f will already have been given to be the
zero element of the additive group. Finally, we need a single discrete cocone:

i z

f

ι
@
@
@@R

ζ
�
�

��	

to express the fact that every element is either 0 or invertible.

6.4 Fields, take 2 There are a couple of problems with this sketch. It is too
set-theoretic. In intuitionistic logic, the various ways one might choose to express the
axioms of a field are not equivalent. One can say, where Inv(x) = ∃y, xy = 1

22

1. ∀x, x = 0 ∨ Inv(x);

2. ∀x,¬x = 0⇒ Inv(x);

3. ∀x,¬Inv(x)⇒ x = 0;

and these are all different in intuitionisitic logic.
In a conversation, René Guitart, an Ehresmann student who has spent much of

his career working on sketches, pointed out to me another objection. One of the
nice features of limit sketches, in particular product sketches, is that the models
in the category of topological spaces is just the category of topological models as
traditionally understood. But if the simple sketch for fields is modeled in topological
spaces, the fact that the field is the disjoint union of the invertible elements and
0 forces 0 to be isolated and then so is every element since topological groups are
homogeneous. So a different approach is needed if we want to get non-discrete fields.
It should be understood that we know what topological fields are; the point is to use
this knowledge to gain insight and perhaps come up with the “right” definition of
field. I no longer recall if the sketch I am about to give is the same as the one Guitart
showed me, but it probably is and I give him full credit.

We begin with sorts f and i as above. We give f the operations and equations to
be a commutative ring and u the operations and equations to be a commutative group.
We then add sorts f̄ and ı̄ along with z and build the sketch as above, replacing f be
f̄ and i by ı̄ so that f̄ = ı̄ + z. To this we add operations f̄ −→ f , ī −→ i, and i −→ f
along with equations that make the first a ring homomorphism, the second a group
homomorphism and the third a homomorphism of the group into the multiplicative
monoid of the ring. Finally, we add cones and cocones that force the arrows f̄ −→ f
and ı̄ −→ i to be both monic and epic. This is done as follows for monics; epics are
dual. An arrow u:A −→ B is monic if and only if there is pullback square

A B-u

A A-
g

?

g

?

u

(and then g is forced to be an isomorphism). Thus we can put in a cone

f̄ f̄-
β

f�
β

f̄

�
�
��	 ?

@
@
@@R

23

Dually, we can force a map to be an epimorphism in a model.
Since epimorphisms in Top are surjective and monomorphisms are injective, a

model of the resultant sketch will give a discrete field in bijective correspondence
with a topological ring and that is the same as a topological field. Nonetheless the
situation is not entirely satisfactory since in many categories bijections do not really
correspond to anything interesting. Still this does give the right sketch in both sets
and topological spaces.

6.5 Binary trees, again Here is a another sketch for binary trees that uses sums
instead of the boolean test used above to distinguish the empty tree from the rest.
Although this tree differs a lot from the sketch considered above (in this one, there
can be only one empty tree; in the other one the set of empty trees in a model is
arbitrary and can even be empty), they do have the same initial model (see below).
Also it is not clear that an actual implementation would be that different. In any
implementation, there would have to be a way of knowing if a tree were empty or not
and this would presumably involve, implicitly or explicitly, some sort of boolean test
or flag (which is just one way of doing the test quickly).

The sketch will have sorts 1, t, s, d. Informally, t stands for tree, s for nonempty
tree and d for datum. We have the following operations:

empty: 1 −→ t

incl: s −→ t

val: s −→ d

left: s −→ t

right: s −→ t

The intended meaning of these operations is as follows.
Empty〈〉 is the empty tree; incl is the inclusion of the set of nonempty trees in

the set of trees; val(S) is the datum stored at the root of S; left(S) and right(S) are
the right and left branches (possibly empty) of the nonempty tree S, respectively.

We require that

t d t

s

left

�
�

�
��	 ?

val right

@
@
@
@@R

24

be a cone and that
1 s

t

empty
@
@
@@R

incl
�
�

��	

be a cocone.
There are no diagrams.
The cocone says that every tree is either empty or nonempty. This cocone could

be alternatively expressed t = s+ {empty}. The cone says that every nonempty tree
can be represented uniquely as a triplet (left(S), val(S), right(S)) and that every such
triplet corresponds to a tree. Note that this implies that left, val and right become
coordinate projections in a model.

Using this, we can define subsidiary operations on trees. For example, we can
define an operation of left attachment, lat: t× s −→ s by letting

lat(T, (left(S), val(S), right(S))) = (T, val(S), right(S))

This can be done without elements: lat is defined in any model as the unique arrow
making the following diagram commute (note that the horizontal arrows are isomor-
phisms):

M(s) M(t)×M(d)×M(t)-
〈left, val, right〉

M(t)×M(s) M(t)×M(t)×M(d)×M(t)-M(t)× 〈left, val, right〉

?
lat

?

〈p1, p3, p4〉

In a similar way, we can define right attachment as well as the insertion of a datum
at the root node as operations definable in any tree. These operations are implicit
in the sketch in the sense that they occur as arrows in the theory generated by the
sketch and therefore are present in every model.

6.6 Proposition Supposing there is an initial algebra for the data type, then the
category of binary trees of that type has an initial algebra. If the data type has (up
to isomorphism) a unique initial algebra, then so does the corresponding category of
binary trees.

Proof. We construct the initial algebra recursively according to the rules:

(i) The empty set is a tree;

(ii) If Tl and Tr are trees and D is element of the initial term algebra for the data
type, then (Tl, D, Tr) is a nonempty tree;

25

(iii) Nothing else is a tree.

This is a model M0 defined by letting M0(s) be the set of nonempty trees, M0(t) =
M0(s)+{∅} and M0(d) be the initial model of the data type. Here ‘+’ denotes disjoint
union. It is clear how to define the operations of the sketch in such a way that this
becomes a model of the sketch.

Now let M be any model with the property that M(d) is a model for the data
type. Then there is a unique morphism f(d):M0(d) −→ M(d) that preserves all the
operations in the data type. We also define f(t){∅} to be the value of M(empty): 1
−→M(t). Finally, we define

f(s)((Tl, D, Tr)) = (f(t)(Tl), f(d)(D), f(t)(Tr))

where f(t) is defined recursively to agree with f(s) on nonempty trees. It is imme-
diately clear that this is a morphism of models and is unique. In particular, if the
data type has, up to isomorphism, only one initial model then M0 is also unique up
to isomorphism.

6.7 In Pascal textbooks a definition for a tree type typically looks like this:

type TreePtr = ˆTree;
Tree = record LeftTree, RightTree : TreePtr;

Datum : integer

end;

Note that from the point of view of the preceding sketch, this actually defines nonemp-
ty trees. The empty tree is referred to by a null pointer. This takes advantage of the
fact that in such languages defining a pointer to a type D actually defines a pointer
to what is in effect a variant record (union structure) which is either of type D or of
‘type’ null.

7 Term models

A model M of a sketch with constants is called a term model if for every node a of
the underlying graph, every element of M(a) is reachable by beginning with constants
and applying various operations (arrows of the sketch). The constants you begin with
do not have to be of type a, but the final operation will, of course, have to be one
that produces an element of type a. The significance of this condition from the
computational point of view is that elements that cannot be produced in this way
might as well not be there.

26

7.1 Example Let us consider models of the sketch described in 4.4. As mentioned
there, one model of this sketch in Set is the natural numbers with the successor
operation; the constant is 0. Other models are the integers and the integers modulo
a fixed number k (in both cases, take the successor of x to be x + 1). However, the
natural numbers are the unique (up to unique isomorphism) initial model.

To see this, suppose M is any other model. Let us use the same letter M to denote
M(n) since there are no other nodes (common practice when the sketch has only one
node). Also, let t = M(σ):M −→ M and m0 = M(ζ). We let N, succ and 0 denote
the values of these things in the natural numbers. To show that N is the initial model
we must define a natural transformation f : N −→M and show that it is the only one.

Define f as follows: let f(0) = m0, as required if f is to be an arrow between
linear sketches with constants. Then since f must commute with succ, we must have
that f(1) = t(m0), f(2) = t(t(m0)), and so on. This defines f inductively on the
whole of N. It is clearly unique and immediate to see that it is an arrow between
models.

7.2 Example The set of all integers is a model but not a term model of the
linear sketch of u-structures with one constant. For imagine you have a computer
that can store integers, but the only operation that can be carried out on them is
that of increment (successor). Suppose, further, that the only natural number whose
existence you are certain of is 0. Then you can certainly produce, in addition, 1, 2, . . .,
but no negative numbers. Therefore, they may as well not be there. You can get them
by, for example, adding a decrement operation, but as it stands they are inaccessible.
They are what J. Goguen and J. Meseguer have called ‘junk’.

7.3 Example The set Zk of natural numbers (mod k) is a term model of the
sketch of 4.4, but not an initial model. For example, there is no arrow from the
natural numbers (mod k) to the natural numbers. In the first, the successor of k − 1
is 0, while in the second it is nonzero. Thus no arrow could preserve successor
at that point. What has happened here is that the model satisfies an additional
equation k = 0 not required by the diagrams. This is an example of what Goguen
and Meseguer call ‘confusion’.

7.4 Construction of initial term models Linear sketches with constants
always have initial models. When the sketch is finite, an initial model can always be
constructed recursively as a term model. (‘Finite’ means finite number of nodes and
arrows.) We now give this construction.

Let S = (G,D, C) be a linear sketch with constants. We define a model I:S −→
Set recursively as the model constructed by the following requirements I–1 through
I–3. The elements of I(a) for a node a of G are congruence classes of terms of G
(composable strings of arrows, including constants, of G); [x] denotes the congruence

27

class of a term x by the congruence relation generated by the relation ∼ constructed
recursively in the model. By ‘congruence relation’, we mean congruence on the free
category generated by G. In particular, if (g, f) and (g′, f ′) are both composable pairs
and [f] = [f ′] and [g] = [g′], then [g ◦ f] = [g′ ◦ f ′].

I1. If a is a node of G and x is a constant of type a, then [x] ∈ I(a).

I2. If f : a −→ b is an arrow of G and [x] is an element of I(a), then [fx] ∈ I(b) and
I(f)[x] = [fx]. (Note that this constructs both an element and a value of the
function I(f) simultaneously.)

I3. If (f1, . . . , fm) and (g1, . . . , gk) are paths in a diagram in D, both going from a
node labeled a to a node labeled b, and [x] ∈ I(a), then

(If1 ◦ If2 ◦ . . . ◦ Ifm)[x] = (Ig1 ◦ Ig2 ◦ . . . ◦ Igk)[x]

in I(b).

7.5 By ‘the model constructed by’ these requirements, we mean that

1. no element is in I(a) except congruence classes of the terms constructed in I–1
and I–2, and

2. two terms are equivalent if and only if they are forced to be equivalent by the
congruence relation generated by I–3.

Requirement 1 means that the models have no elements not nameable in the
theory (‘no junk’) and 2 means that elements not provably the same are different (‘no
confusion’). It follows from requirement 2 that if [x] = [y] in I(a) and f : a −→ b is an
arrow of G, then [fx] = [fy] in I(b).

Note that the models in 7.3 have terms giving the same element which are not
forced to be equivalent by I–3.

7.6 Example Let us work out the initial term model of the sketch from 3.5 with
one constant called x added. Since the sketch has only one node, the model has only
one type. Thus in this case, there is only one set, call it S, and the arrows of the
sketch lead to functions from S to S.

Then S has elements in accordance with the following rules:

Mod1. There is an element [x] ∈ S.

Mod2. If [y] ∈ S, then there are elements [uy], [vy] ∈ S.

Mod3. If [y] = [z], then [uy] = [uz] and [vy] = [vz].

28

Mod4. For any [y] ∈ S, [uvy] = [vuy] = [y].

It is clear that the set of all ‘words’ [w1w2 . . . wkx], where each wi is either u or v,
satisfies the first two rules above. In order to satisfy all four, we have to impose the
equalities they force. In order to gain some insight into this, let us calculate some of
the elements of S.

We observe that there must be elements

[x0] = [x], [x1] = [ux], [x2] = [uux], . . . , [xn] = [uu · · · ux]︸ ︷︷ ︸
n copies

as well as elements we will denote

[x−1] = [vx], [x−2] = [vvx], · · · , [x−n] = [vv · · · vx]︸ ︷︷ ︸
n copies

We first explain why these elements exhaust S. We will not give a formal proof, but
let us see which element is represented by an element chosen more or less at random,
[y] = [uvuvuuvux]. Since [vux] = [x], we have that [y] = [uvuvuux] = [uvuvx2].
Since [uvx2] = [x2], it follows that [y] = [uvx2] and then [y] = [x2], by another
application of the same identity.

This kind of reasoning can be used to show that any application of u’s and v’s to
[x] gives the element [xk] where k is the number of u’s less the number of v’s.

In particular, [uxk] = [xk+1] and [vxk] = [xk−1] so the set {[xk] | −∞ < k < ∞}
is carried into itself by both u and v. It contains [x] = [x0] and so must be all of S.

There remains the question of all the [xk] being distinct; that is whether or not
there are any identities among the [xk]. There is a standard way of resolving this
question: if there is an equation among two combinations of arrows from the sketch,
that equation must hold in every model. Thus if the equation fails in any one model,
it cannot be a consequence of the identities in the sketch. In this case, there is an
easy model, namely the set Z of all integers. In the set Z, we let u act by addition of
the number 1 and v act by subtracting 1. Then any combination of actions by u and
v is just addition of k, the difference between the number of u’s and v’s (which may
be negative).

The discussion above suggests how to construct a bijection between S and Z which
is an isomorphism of models. We must choose an element to correspond to [x]. A
plausible, but by no means necessary, choice is to correspond [x] to 0. If we do that
then we must correspond [x1] = [ux] to [u0] = 1, [x2] = [uux] to [uu0] = 2 and so on
to correspond [xk] to k, for k > 0. For k < 0, the argument is similar, replacing u by
v, to show that we correspond [xk] to k in that case as well.

The isomorphism just constructed takes each [xk] to the integer k, which implies
that if k 6= k′, then [xk] 6= [xk′]. Thus S consists of precisely the distinct classes [xk],
one for each integer k ∈ Z.

29

7.7 Given the construction in 7.4 and any Set model M of the same sketch, the
unique homomorphism α: I −→M is constructed inductively as follows:

M1. If x is a constant of type a, then αa[x] = M(x).

M2. If f : a −→ b in G and [x] ∈ I(a), then αb([fx]) = M(f)([M(x)]).

It is a straightforward exercise to show that this is well defined and is a homo-
morphism of models. It is clearly the only possible one.

The construction in 7.4 can be seen as the least fixed point of an operator on
models of the sketch (without the constants) in the category of sets and partial
functions. To any such model M , the operator adjoins an element f(x) to M(b) for
any arrow f : a −→ b and any element x ∈ M(a) for which M(f)(x) is not defined.
It forces f(x) to be the same as some other element of M(b) if the diagrams force
that to happen (we leave the formal description of this to you). To get the model
for a particular set of constants, you start with the model obtained by applying only
I–1 (so that the sorts have only constants in them and all the arrows have empty
functions as models). The least fixed point of this operator is the model in 7.4, up
to isomorphism.

8 Initial term models for FP sketches

Just as in the case of a linear sketch with constants (see 7.4), a set-valued model of
an FP sketch is called a term model if each element of the value at each node is
forced to be there by the sketch. In the first instance, the node forced to be a terminal
object is forced to have a unique element. But then by applying various operations,
other elements are forced to exist. A term model has only those elements forced to
exist in this way. This is spelled out precisely below in 8.4.

8.1 Definition A model of an FP sketch in an arbitrary category C is called an
initial model or initial algebra if it has a unique homomorphism of models to each
other model. It is thus an initial object in the category of models of the sketch in C.

8.2 As with linear models with constants, an initial model of an FP sketch in
the category of sets is necessarily a term model. For let M0 be an initial model and
suppose it is not a term model. Then the typed set of elements that are reachable
beginning from the constants is certainly a model of the theory. It admits the con-
stants and is closed, by definition, under the operations. Thus there is a term model
M1 ⊆M0. (The same argument, by the way, shows that every model includes a least
submodel and that is a term model.)

Now we have an arrow (unique, actually) f :M0 −→M1 by the definition of initial
model. That arrow, composed with the inclusion, gives an arrow M0 −→ M0. But

30

there is just one arrow from M0 to itself, the identity (because M0 is an initial model).
Thus the composite must be the identity. But the image of f is included in M1, so
that M1 = M0, which means that M0 is a term model, as claimed.

8.3 Another property any initial model must have is: if t and u are two terms
definable starting with constants, then in an initial model M0, M0(t) = M0(u) if and
only if M(t) = M(u) in every model M . The nontrivial direction of that statement
follows from the observation that if M(t) 6= M(u) in some model, then necessarily
N(t) 6= N(u) in any model N for which there is a homomorphism N −→M .

This property is described by saying that initial models have ‘no confusion’. They
are in fact characterized up to isomorphism by having no junk and no confusion. This
terminology originated with J. Meseguer and J. Goguen.

8.4 Construction of initial models for finite FP sketches FP sketches
always have initial models. We now revise the construction of 7.4 to construct initial
models for finite FP sketches.

Let S = (G,D,L) be an FP sketch. In the construction of the initial model of
a linear sketch with constants, we constructed terms as strings of arrows of G. We
will now allow tuples of arrows in these strings. The set AS consisting of all arrows
of G, all tuples (of finite length) of such arrows and the cones C of L is called the
alphabet of the sketch S. The rules construct an initial model I recursively using
these data. The rules apply to each cone C in L of the form

a1 ai an

q

p1

�
�

��	 ?

pi pn
@
@
@@R

· · · · · ·
FP–1. If f : a −→ b is an arrow of G and [x] is an element of I(a), then [fx] ∈ I(b)

and I(f)[x] = [fx].

FP–2. If (f1, . . . , fm) and (g1, . . . , gk) are paths in a diagram in D, both going from
a node labeled a to a node labeled b, and [x] ∈ I(a), then

(If1 ◦ If2 ◦ . . . ◦ Ifm)[x] = (Ig1 ◦ Ig2 ◦ . . . ◦ Igk)[x]

in I(b).

FP–3. If for i = 1, . . . , n, [xi] is an element in I(ai), then [C(x1, . . . , xn)] is an
element of I(q). (Note that C(x1, . . . , xn) is a string consisting of the cone C
followed by a tuple of arrows.) In particular, if n = 0, there is a single element
[C()] in the empty product.

31

FP–4. If for i = 1, . . . , n, [xi] and [yi] are elements in I(ai) for which [xi] = [yi],
i = 1, . . . , n, then

[C(x1, . . . , xn)] = [C(y1, . . . , yn)]

FP–5. For i = 1, . . . , n, we require

[piC(x1, . . . , xn)] = [xi]

FP–6. For x ∈ I(q), we require

[x] = [C(p1x, . . . , pnx)]

Thus FP–3 forces the vertex of the cone to contain an element representing each
tuple of elements in the factors a1,. . . ,an, and FP–5 forces the pi to be the coordinate
projections. Because it applies to empty cones, FP–3 subsumes I–1 of 7.4, which has
no direct counterpart here. Observe that it follows from FP–1 and FP–5 that

I(pi)[C(x1, . . . , xn)] = [xi]

for each i. FP–4 may be regarded as an extension of the definition of ‘congruence
relation’ to cover the case of tuples.

8.5 Examples If M is the initial term model for an FP sketch S, then for each
sort g of the graph G of the sketch, M(g) contains just those elements forced to
be there by applying operations to constants. Indeed, up to isomorphism of models
the elements are the formal applications of operations to constants, identifying those
which the diagrams force to be the same.

Thus for the sketch in 4.4, in the intial model M , the value M(1) must be a
singleton set, and M(ζ) applied to that single element is an element of M(n) which
we may call 0. If we denote M(n) by N and M(σ) by s: N −→ N, then the elements
of N are just 0, s(0), s(s(0)), s(s(s(0))), and so on. These can be identified as the
natural numbers, starting at zero.

From this point of view, 4.4 is a simple data type description, and the initial model
is then the set of possible values of that type.

Wells and Barr [1984] describe a class of FP sketches whose initial models are
all context free grammars. Many other data types have been described using initial
models using signatures and equations rather than FP sketches.

8.6 Free algebras Let S be a sketch with set S of nodes. An S-indexed set is a
set X together with a typing function τ :X −→ S. Our point of view is that the nodes
of the sketch represent types and that X is a set of typed constants. If τ :X −→ S
and τ ′:X ′ −→ S are sets typed by the same sketch S, then a function f :X −→ X ′ is

32

a typed function if τ = τ ′ ◦ f . Sets typed by S and typed functions form the slice
category Set/S.

A particular example of a typed set is any model M of S in Set for which M(c)
and M(d) have no elements in common for distinct nodes c and d. Any model is
isomorphic to such a model, obtained by taking the disjoint union of the values of
M at the different nodes of S. A model is thus a family of sets, indexed by S, but
we can as well think of it as a single set (the union) typed by S. In any case, the
underlying (family of) set(s) of a model is an object of the slice category Set/S.

Now given an S-indexed set X, let SX be the sketch constructed by adding to
the graph of S a set of arrows x: 1 −→ s for each element x ∈ X of type s. These
are in addition to any constants of type S already given in the sketch. An initial
model of SX , if one exists, is called the free algebra generated by the typed set X.
We use the definite article because, although not unique, it is unique up to a unique
isomorphism that preserves the set X for the same reason that initial algebras are
always unique.

The following theorem gives the main existence result.

8.7 Theorem Let S be an FP sketch. Then for any set X typed by the set of
nodes of S, there is a free algebra generated by X.

Let SX denote the sketch S augmented by X as a set of constants. This is still
an FP sketch and as such has an initial model. It is not hard to see that this is a free
model of S with X as generators. An accessible proof of this fact is in [Barr, 1986].
The free algebra on X is denoted F (X).

8.8 Theorem Let S be an FP sketch, X a typed set and M a model of S in sets.
Then any typed function f :X −→ M has a unique extension to an arrow between
models F (X) −→M .

8.9 Example Let us see how our definition of free model allows us to discover
that the free semigroup on a one element set is isomorphic to the semigroup (N+,+).

Let the set be {a}. Thus we must construct the initial term model I of the sketch

for semigroups with one arrow 1
a−−→ s added; let us denote this sketch by Sa. We

write c(x, y) as xy. It follows that I(s) must have elements [a], [a][a], [a][a][a], and so
on. Let us call them simply a, a2, a3, . . . an, Now (N+,+) is a model M of Sa with
M(s) = N+, M(c) = + and M(a) = 0. (N is also a model of Sa in other ways, but
this is the way in which it is free on one generator.) Therefore by initiality there must
be a unique homomorphism h: I(s) −→ (N+,+) that takes a to 0. Then h necessarily
takes an to n for each n ∈ N+. Since aman = am+n, there is also a homomorphism
k: (N+,+) −→ I(s) that takes n to an. It follows that h is an isomorphism with inverse
k.

33

Note that it follows from this that there are no elements of I(s) other than those
of the form an. It is instructive to think about how you would prove this by a direct
analysis of the sketch Sa.

9 Term algebras for FD sketches

A complication arises in trying to extend the construction of initial term algebras to
FD sketches. As we see from the examples of natural numbers and fields, an operation
taking values in the vertex of a discrete cocone forces us to choose in which summand
the result of any operation shall be. The choice, in general, leads to nonisomorphic
term models which are nevertheless initial in a more general sense which we will make
precise.

9.1 Dæmons How to make the choice? Clearly there is no systematic way.
One way of dealing with the problem is to take all choices, or at least to explore
all choices. In the example in of fields, not all choices are possible; once 2 6= 0, it
followed that also 4 6= 0. (Recall that in that example, saying that something is zero
is saying that it is in one of two summands.)

More generally, suppose we have an FD sketch and there is an operation s: a −→ b
and a cocone expressing b = b1 + b2 + . . .+ bn. If we are building a model M of this
sketch and we have an element x ∈ M(a), then M(s)(x) ∈ M(b), which means that
we must have a unique i between 1 and n for which M(s)(x) ∈M(bi). (For simplicity,
this notation assumes that M(b) is the actual union of the M(bi).)

Now it may happen that there is some equation that forces it to be in one rather
than another summand, but in general there is no such indication. For example, the
result of a push operation on a stack may or may not be an overflow, depending on
the capacity of the machine or other considerations. Which one it is determines the
particular term model we construct and it is these choices that determine which term
model we will get.

Our solution is basically to try all possible sequences of choices; some such se-
quences will result in a model and others will abort. Thus as we explore all choices,
some will eventually lead to a model; some will not. The theoretical tool we use to
carry out this choice we call a dæmon. Just as a Maxwell Dæmon chooses, for each
molecule of a gas, whether it goes into one chamber or another, our dæmon chooses,
for each term of a model, which summand it goes into. The following description
spells this out precisely.

9.2 Definition Let S be an FD sketch and suppose the maximum number of
nodes in the base of any cocone is κ. A dæmon for S is a function d from the set of
all strings in the alphabet AS (see 8.4) of the underlying FP sketch (in other words,
forget the cocones) to the initial segment {1. . κ} of the positive integers.

34

9.3 We will use a dæmon this way. We assume that the nodes in the base of each
cocone of S are indexed by 1, 2, . . . , k where k ≤ κ is the number of nodes in that
cocone. In constructing an initial algebra, if a string w must be in a sort which is
the vertex of a cocone (hence in the model it must be the disjoint union of no more
than κ sorts), we will choose to put it in the D(w)th summand. If D(w) > k, the
construction aborts. We will make this formal.

9.4 Construction of initial term models for FD sketches This construction
includes the processes in 7.4 and 8.4; we repeat them here modified to include the
effects of a dæmon D. The alphabet is the same as in 8.4.

If a node b is the vertex of a cocone with k = k(b) summands, the summands will be
systematically denoted b1, . . . , bk and the inclusion arrows ui: bi −→ b for i = 1, . . . , k.
If b is not the vertex of a cocone, then we take k(b) = 1, b1 = b and u1 = idb. We
denote the congruence relation by ∼ and the congruence class containing the element
x by [x]. Rules FD–1 through FD–3 refer to a cone C in L of the form:

a1 ai an

q

p1

�
�

��	 ?

pi pn
@
@
@@R

· · · · · ·
FD–1. If ui: ai −→ a is an inclusion in a cocone and [x] ∈ I(ai), then [uix] ∈ I(a)

and I(ui)[x] = [uix]. (Thus we ignore the wishes of the dæmon in this case.)

FD–2. Suppose f : a −→ b in G and [x] ∈ I(a). Let j = D(fx) (we ask the dæmon
what to do). If j > k(b), the construction aborts. Otherwise, we let [fx] ∈ I(bj)
and I(f)[x] = [ujfx].

FD–3. For i = 1, . . . , n, let [xi] be a term in I(ai). Let

j = D(C(x1, . . . , xn))

If j > k(q), the construction aborts. If not, put [C(x1, . . . , xn)] in I(qj).

FD–4. If for i = 1, . . . , n, [xi] and [yi] are elements in I(ai) for which [xi] = [yi],
i = 1, . . . , n, then

[C(x1, . . . , xn)] = [C(y1, . . . , yn)]

FD–5. For i = 1, . . . , n, I(pi)([C(x1, . . . , xn)]) = [xi].

FD–6. For x ∈ I(q),
[x] = [C(p1x, . . . , pnx)]

35

FD–7. If 〈f1, . . . , fm〉 and 〈g1, . . . , gk〉 are paths in a diagram in D, both going from
a node labeled a to a node labeled b, and [x] ∈ I(a), then

(If1 ◦ If2 ◦ . . . ◦ Ifm)[x] = (Ig1 ◦ Ig2 ◦ . . . ◦ Igk)[x]

in I(b). If
D(f1f2 . . . fmx) 6= D(g1 . . . gkx)

(causing (If1 ◦ If2 ◦ . . . ◦ Ifm)[x] and (Ig1 ◦ Ig2 ◦ . . . ◦ Igk)[x] to be in two different
summands of I(b)), then the construction aborts.

This construction gives a term model if it does not abort. It is an initial model
for only part of the category of models, however. In order to make this precise, we
define a category to be connected if it is not possible to write it as a union of two
proper subcategories with the property that there are no arrows between the objects
in the one subcategory and the objects of the other subcategory. A connected
component is a maximal connected set. It is readily seen that any category is a
disjoint union of connected components. For example, in the category of fields, the
connected components are determined by the characteristics. Two fields of the same
characteristic may not have any arrows between them in either direction, but they
are both the target of a unique arrow from the prime field of that characteristic. The
next theorem says that that is typical behavior for the category of models of an FS
theory.

9.5 Proposition For each dæmon for which the construction in FD–1 to FD–6
does not abort, the construction is a recursive definition of a model I of S. Each such
model is the initial model of a connected component of the category of models of S,
and there is a dæmon giving the initial model for each connected component.

We will not prove this theorem here. However, we will indicate how each model
determines a dæmon which produces the initial model for its component. Let M
be a model of an FD sketch S. Every string w which determines an element of a
sort I(a) in a term model as constructed above corresponds to an element of M(a).
That element must be in a unique summand of a; if it is the ith summand, then
define D(w) = i. On strings not used in the construction of the term models, define
D(w) = 1, not that it matters.

Our definition of dæmon shows that one can attempt a construction of an initial
model without already knowing models. In concrete cases, of course, it will often be
possible to characterize which choices give initial models and which do not.

9.6 Confusion maybe, junk no Goguen’s slogan, ‘No junk, no confusion’ is
only half true of the initial models for FD theories. The ‘No junk’ half of the slogan
expresses exactly what we mean when we say that every element is reachable. There

36

are no extraneous elements. ‘No confusion’ means no relations except those forced by
the equations in the theory. As we will show by example it may happen that some
initial models have confusion and others not. Later we give an example of a sketch
that has more than one unconfused initial model and one that has no unconfused
initial (or noninitial) model.

If there is just one unconfused initial model, that one may be thought of as a
‘generic’ model. The others remain nonetheless interesting. In fact, it is likely that
the generic model is the one that cannot be accurately modeled on a real machine.

9.7 Example A typical example of a sketch with many initial models is the
sketch for natural numbers with overflow. The generic model is easily seen to be the
one in 7.3 in which the overflow state is empty. The models with overflow in 9.7
are all initial algebras for some component of the category of models, but they have
confusion, since nothing in the sketch implies that the successor of any element can
be the same element. None of these models have junk.

The modular arithmetic models of 7.3 are not initial models; in fact they are all
in the same component as the natural numbers since the remainder map (modN) is
a morphism of models. They also have no junk.

9.8 Example Here is a simple sketch with no generic model. It has two initial
models, each satisfying an equation the other one does not. There are five nodes
a = b + c, d and 1. There is one constant x of type d, and a single operation s: d
−→ a. The initial models have one element – the constant – of type d. One of the
initial models has an element of type b and the other an element of type c.

By modifying this example, we can get forced confusion. Add constants y and z
of type b and c, respectively, and cones forcing b and c to be terminal. Now there are
two initial models, one in which s(x) = y and another in which s(x) = z. Since there
is a model in which s(x) 6= y, there can be no equation that forces s(x) = y and there
is similarly no equation that forces s(x) = z. But one or the other equation must
hold in any model.

9.9 Example It is well known and proved in abstract algebra texts that the initial
fields are (a) the rational numbers and (b) the integers mod p for each prime p. (The
word for initial model in these texts is ‘prime field’.) A field is in the component of
the integers mod p if and only if 1 + 1 + . . . + 1 (sum of p 1’s) is zero. These fields
have confusion. Otherwise the field is in the component of the rational numbers,
which have no confusion (nor junk). Duval and Reynaud show how to implement
simultaneous computation in the initial algebras for a finite discrete sketch for fields.

The real numbers and the complex numbers form fields with the usual operations.
The irrational real numbers constitute junk.

37

References

M. Barr and C. Wells (1985), Toposes, Triples and Theories. Springer-Verlag, Berlin,
Heidelberg, New York.

M. Barr (1986), Models of sketches. Cahiers de Topologie et Géométrie Différentielle
Catégorique, 27, 93–107.

M. Barr and C. Wells (1995), Category Theory for Computing Science. Prentice-Hall
International, second ed.

A. Bastiani (1973), Sketched structures and completions, Cahiers de Topologie et
Géométrie Différentielle, 14, 158–160.

A. Bastiani and C. Ehresmann (1972), Categories of sketched structures. Cahiers
de Topologie et Géométrie Différentielle, 13, 104–213.

C. Ehresmann (1968), Esquisses et types des structures algébriques. Bul. Inst.
Polit. Iaşi, XIV.

C. Ehresmann, (1969). Construction de structures libres, In Category Theory,
Homology Theory and their Applications II, P. Hilton, editor, Lecture Notes in
Mathematics 92

F. E. J. Linton (1966), Some aspects of equational categories. Proceedings of
the Conference on Categorical Algebra at La Jolla. Springer-Verlag, Berlin,
Heidelberg, New York.

F. E. J. Linton (1969a), An outline of functorial semantics, Lecture Notes in
Mathematics 80, 7-52.

F. E. J. Linton (1969b), Applied functorial semantics, Lecture Notes in Mathematics
80, 53-74.

M. Makkai and R. Paré (1990), Accessible Categories: the Foundations of Categor-
ical Model Theory, Contemporary Mathematics 104. American Mathematical
Society.

C. Wells and M. Barr (1988), The formal description of data types using sketches.
In Mathematical Foundations of Programming Language Semantics, M. Main,
A. Melton, M. Mislove, and D. Schmidt, editors, Lecture Notes in Computer
Science 298

38

