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PREFACE 

The category of finite dimensional vector spaces over a field K has 

many interesting properties: It is a symmetric closed monoidal (hereafter 

known as autonomous) category which has an object K, with the property that 

the functor (-,K), internal Hom into K, induces an equivalence with its 

opposite category. Similar remarks apply to the category of finite 

dimensional (real or complex) banach spaces. We call such a category *-autonomous. 

Almost the same thing happens with finite abelian groups, except the "dualizing 

object", ~ /~ or ~/~ , is not an object of the category. In no case is the 

category involved complete, nor is there an obvious way of extending both the 

closed structure and the duality to any of the completions. In studying these 

phenomena, I came on a fairly general construction which allows you to begin 

with one of the above categories (and some similar ones) to embed it fully into 

a complete and cocomplete category which admits an autonomous structure and 

which, using the original dualizing object, is *-autonomous. 

In an appendix, my student Po-Hsiang Chu describes a construction which 

embeds any autonomous category into a *-autonomous category. The embedding 

described is not, however, full and is completely formal. 

The work described here was carried out during a sabbatical leave from 

McGill University, academic year 1975-76 mostly at the Forschungsinstitut f~r 

Mathematik der Eidgenossische Technische Hochschule, Z~rich. For shorter periods 

I was at Universitetet i Aarhus as well as l'Universite Catholique de Louvain 

(Louvain-la-Neuve) and I would like to thank all these institutions. I was 

partially supported during that year by a leave fellowshipfrom the Canada Council 

and received research grants from the National Research Council and the Mlnlstere 

de l'Edueation du Quebec. 

Preliminary versions of part of this material has been published in the 

five papers by me listed in the bibliography. The current version was presented 

in a series of lectures at McGill in the Winter Term, 1976. 
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CHAPTER I. PRELIMINARIES 

i. Symmetric Closed Monoidal Categories. 

(i.i) A symmetric closed monoidal category V consists of the following data. 

i) A category ~ ; 

ii) A functor (tensor) -®-:~x~ ÷ ~ ; 

iii) A functor (internal hom) V(-,-):~op x~ ÷ 

iv) An object I of ~ ; 

v) Natural Equivalences 

r = rV : V®I ÷ V 

= £V : I®V + V 

i = iV : (I,V) + V ; 

vi) Natural Equivalences 

a = a(V,V',V") : (V®V')®V" + V®(v'ev") 

p = p(V,V',V") : (V®V',V") + (V,(V',V")) ; 

vii) Natural equivalences 

s = s(V,V') : V®V' + V'®V 

t = t(V,V',V") : (V,(V',V")) + (V', (V,V")) ; 

viil) A natural transformation 

j = jV : I + (V,V) ; 

ix) Natural transformations 

c = c(VrV',V") : (V',V")®(V,V') + (V,V") 

d = d(V,V',V") : (V',V") + ((V,V'),(V,V")-) 

e = e(V,V',V") : (V,V') + ((V',V"),(V,V")) . 

(1.2) These data are subject to a great many axioms. The most important of these re- 

quires that Hom(V,V') ~ Hom(I, (V,V') in such a way that jV corresponds to the iden- 

tity on V and that the diagram 

Hom(I, (V',V")× Horn(I, (V,V'))~Hom(V',V") x Hom(V,V') 

1 
Hom (V, V" ) 

Hom (I®I, (V' ,V")®(V,V') ) • + Hom(I, (V,V")) 

commutes. Here the left hand arrow is just an instance of the functoriality of ® , 

the bottom arrow uses rI (which, one of the coherence rules states, = £I) and in- 

ternal composition while the upper arrow on the right is external composition. 

The remaining axioms are of two kinds. Some express the fact there is a great 

deal of redundancy among the data. For example <p> is an isomorphism 



Hom(V®V',V") + Hom(V, (V',V")) and one law says that 

< p((V',V"), (V,V'), (V, V"))>o (c(V,V',V")) = d(V,V',V") . Another expresses d 

similarly by means of p, c and s . Another expresses a in terms of p : 

((v®v')®v",-) ~ (v®v'(v",-)) ~ (v,(v',(v",-))) ~ (v,(v'®v",-)) ~ (v®(v®v"),-) . 

The other kind of axioms are the coherence axioms examplified by MacLane's fa- 

mous pentagonal axiom which expresses the commutativity of 

v®(v'®(v"®v"') ) ÷ (v®v')®(v"®v"' ) ÷( (v®v')®v")®v"' 

\ / 
V® ( (V' ®V" ) ®V'") ÷ (V® (V' ®V") ®V"' 

(1.3) A category A is enriched over V if there is a functor 

such that Hom(I,v(A,B)) is naturally equivalent to Hom(A,B) 

composition map 

V(-,-):AOPxA + V 

Also required is a 

V(B,C)®V_(A,B) + V(A,C) 

lying above the composition of morphisms in 

are tabulated in 1.5 of [ Eilenberg, Kelly] . 

A as well as many coherence axioms which 

A tensor 

-®-:VxA ÷ A 

is a functor such that -®A:~ + A is, for each A(A , left adjoint to ~(A,-) :A ÷ V . 

Provided A has, and ~(A,-) commutes with limits, this can usually be shown to exist 

by the adjoint functor theorem. Analogously it frequently happens that ~(-,A):A__ °p÷ 

has a right adjoint, denoted [-,A] :V Op + A (note the switch in variance) which deter- 

mines a bifunctor 

[-,A] :V °p x A + A 

called a cotensor. We have 

Hom(V,V(A,B)) ~ Hom(V®A,B) ~ Hom(A,[V,B] ) . 

(1.4) Let S be a set and n be a cardinal number. An n-ary operation on S is 

a function S n + S . If ~ = {~ } is a class graded by the cardinals n of sets 
n 

a model of or algebra for ~ is a set S equipped with an n-ary operation 
n 

wS:S n + S for each ~ A morphism f:S + T of models of ~ is a function 
n 

such that for all n , all ~ , the square 
n 

S n mS ~ S 

fn 1 I f 

T n ~T ~ T 

commutes. 

(1.5) among the elements in are assumed to be certain 
n ~. , iEn where realization 

1 



in any algebra is the projection to the ith coordinate. If (~i) , i£n is an mi-ary 

operation and w is an n-ary operation, then there is an m-ary operation, m = Zm. , 
i 

whose value on any algebra is the composite 

(wi) S n S m ~ ~.smi ~ ~ S 
1 

(1.6) The category of algebras and morphisms is called a variety. This notion can 

most readily be formalized by building a category whose objects are cardinals, whose 

maps include all the functions and such that 

m 
Hom (re,m) = 

n 

In particular m is the sum of that many copies of i. An algebra is a contravariant 

product preserving set valued functor and a morphism of algebras is a natural trans- 

formation between such functors. Details may be found in [ Lawvere] and [Linton] . 

(1.7) A full subcategory of a variety which is closed under subalgebras, products and 

quotients is again a variety. The category of a torsion free abelian groups is an 

example of a non-varietal full subcategory closed under subalgebras and products but 

not quotients. We define a quasi-variety to be a full subcategory of a variety closed 

under inverse limits. Notice that we are not requiring merely that it have these limits 

but that they be the limits in the variety. We define a semi-variety to be a full sub- 

category of a variety closed under products and equalizers and which contains the free 

algebras in the variety. 

(1.8) If V is a quasi-variety in a variety W we may consider W' the closure of 

V under quotients. It is a standard argument that a product of quotients is a quotient 

of the product and a subobject of a quotient is a quotient of a subobject so that W' 

is itself a variety. If FEW' is free in W' , it is a quotient of a VEV . Since 

F is free, the quotient map V ---+ F splits and hence F is a subobject of V and 

hence F£V . Thus V is a semi-variety in W' . Actually W' is unique since every 

object in W' is a quotient of an object in V . The same argument would show that 

the variety in which a semi-variety is embedded is also unique. Henceforth we will 

understand V to be a semi-variety, W a containing variety and that V contains 

the free algebras of W . = 

(1.9) Now suppose that the theory ~ is commutative. That means that for any n-ary 

operation w , m-ary operation ~ and algebra with underlying set S , the square 

n 
6d 

n 
S nxm ~ S mxn ~ S n 

S m ~ ~ S 

commutes. The isomorphism in the upper left is most easily described by thinking of 

w and ~ as acting on row vectors, S n×m and S mxn as nxm and mxn matrices 

respectively and the isomorphism as transpose. The implication of the commutability 

of this square is that ~ is a homomorphism with respect to ~ (or vice versa). 



If this holds for all 

on the underlying sets but is in fact a morphism in 

~,~ the result is that each operation is not merely a function 

q . 

is a variety for a commutative theory. If 

a family of morphisms V' --+ V and ~ an n-ary 

(fi) 
V' - ~ V n ~ V 

V' 

But since VE~ and 

long to V. 

W(W,V) ~ W(FT,V) ~ _W(FS,V) 

w(w,v) , ', v s 

is a quasi-variety, V T and V s and hence W(W,V) all be- 

(1.12) Whether or not the theory is commutative, it is possible that there is a sym- 

metric monoidal closed structure on the semi-variety V which differs from the stan- 

dard one. Here is the example which interests us. Let H be a group, K a field 

and V be the category of representations of H on K-vector spaces, otherwise known 

as ~ H]-modules. The theory of this variety is commutative according as H is, but 

regardless there is a closed symmetric monoidal structure. For ~(V',V) take the set 

of K-linear maps with ~ action (xf) (v') = xf(x-lv ') for x~H, f:V'--+ V and v'£V ~ . 

For V'®V we take the tensor product over K with x(v~v') = xv®xv'. The unit object 

I is just K with each group element acting by the identity map. This is not the free 

object on one generator which means that the functor Hom(I,-) is not the usual under- 

lying set functor. 

(1.13) Suppose that V is a semi-variety and also a closed symmetric monoidal category. 

is again a morphism. This defines an operation ~(V',V) on Hom(V',V) and it is imme- 

diate that Hom(V',V) is again an algebra which we call V (V',V) It is easily seen 

that ~(V,-) preserves limits and, by the adjoint functor theorem, has an adjoint -®V . 

Finally let I be the free algebra on one generator. Then the required natural trans- 

formations and equivalences may easily be constructed to show that we have a symmetric 

monoidal closed category. This may be described as the canonical closed structure 

corresponding to a commutative theory. 

(i.ii) Even in case that ~ is only a semi-variety - but for a commutative theory - 

we can still make it into a closed category. In fact, let ~0 be the category of al- 

gebras for the theory. Then W has the standard structure as above and we will see 
--0 

that ~ is an exponential ideal. In fact, let V~ and W~ . Then W has a 

presentation as a coequalizer 

FS ~ FT--~ W 

where FS and FT are the free algebras on the sets 

observed in (1.7), belong to 

(i.i0) Suppose in addition that 

and V are algebras, (fi), ion 

operation, the composite 

S and T respectively, and, as 

. Then there is an equalizer 



The varietal structure gives an underlying functor <-> which is represented by the 

free algebra on one generator which we denote J . We wish to describe a coherence 

between the internal and external hom which will say that up to natural isomorphism 

Hom(V',V) c <V(V',V)> c Hom(<V'> , <V>) . 

and that these inclusions cohere with the unitary and associative maps for functions 

between sets. The existence of the requisite functions can be shown to follow from 

the hypothesis that J be a cocommutative coalgebra object in V . The first map is 

an injection provided the counit map is an epimorphism. What additional hypothesis is 

needed to force the second to be an injection is not clear. Nor does the question seem 

worth pursuing at this stage in the theory. The main point to keep in mind is that 

these objects come provided with underlying sets that are very much part of their struc- 

ture and that both the external hom and the elements of the internal hom are func- 

tions between those underlying sets and compare theway functions do. For later use, we 

call an element of < V(V',V) > a pseudomap from V '----+ V . 

(1.14) The fact that we are supposing that Hom(V,V') and <V(V,V') > are contained 

in Hom(<V>, <V'>) - and for future reference ~(A,B) c Hom(<~ I >, <IBI >) - makes for 

vast simplifications in our theory. Specifically, we will in the future, say things 

like,"There is a canonical map ~(A, (B,E))---+ ~(B, (A,E))." What this means will of 

course depend on the exact statement. But in all cases it means that at the underlying 

set level it comes down to a well-known canonical map, in this case the transposition 

between a map <IAI >--+ Hom(< IBI>, <IEI > ) and a map <IBI > --+ Hom(<iAI >, <IEI > ) . 

In these notes, this will be understood without further mention. The alternative is to 

make the statements - not to mention the proofs - of most of the propositions unbearably 

awkward. An added advantage is that all coherence questions vanish. This is not the 

reason for adopting a rigid grounding functor (that is basically to be able to apply 

(2.5) below and to make sense of the idea of a convergence uniformity) but as long as 

we seem to be stuck with one, we may as well take advantage of it. 

(1.15) Example. Here is the example which we will continue throughout the chapters 

devoted to the theory. Let K be a (commutative) field and V denote the category 

of vector spaces over K. Then V is already a variety. It has the nullary O, unary 

and binary operations and equations required to define an abelian group as well as a 

unary operation, multiplication by I , for each lcK . It is well known to be a closed 

category. In fact, the theory is commutative. If V and V' are vector spaces and 

f,g : V--+ V' are maps, f+f' : V~+ V' is defined by (f+f') (v) = f(v)+f' (v) . Si- 

milarly, for l£K , (If) (v) = lf(v) defines the operation of ~ on Hom(V,V') . The 

unit object for this hom is K and the tensor product is the usual one. 

2. Uniform Spaces. 

(2.1) Let S be a set. Let u = (S 8) be a cover of S, that is a collection of sub- 

sets of S whose union is S . For xES, let u*(x) = U{UEU Ix~u }. Let u* ={u*(x) Ix~S}. 



If u and v are covers, we say that u refines v if for x6v~v there is a u~u 

such that x£ucv . Then a uniform structure on S is a collection U of covers such 

that u£U implies the existence of a v~U such that v* refines u . Such a v is 

called a star refinement of U. A pair (S,U) consisting of a set S and a uniform 

structure U on S will be called a uniform spa~e. The covers in U are called uni- 

form covers. 

If (SI,U_I) and ($2,U_2) are uniform spaces a map f:S 1 ~ S 2 is called uniform 

if for all ~2£U2 there is ~I£UI which refines f-l(u_2) . A uniform str~cture 

on S is called separated if for x~y in S there is a u£U such that no set in 

contains both x and y . From now on we will suppose all uniform spaces are separated. 

For a thorough discussion of uniform spaces including the relation between the defini- 

tion given here and that given by entourages, see [ Isbell] , especially problem 8 of 

chapter I and pp. 28-29 of X = (S,U) is a uniform space, write S = IXl for the 

underlying set. 

(2.2) If (S,~) is a uniform space, there is associated a topological space (S,T) 

with the same point set. Take as a neighbourhood base at x all the sets u*(x) where 

u~U . This topology is called the uniform topology. Every uniform map induces a con- 

tinuous one on the associated topological spaces but not conversely. In particular two 

distinct uniform structures may induce the same topology. For instance, as topological 

spaces, R ~ (-i,i) . As uniform spaces they are inequivalent since the former is com- 

plete (see below) but the latter is not. 

(2.3) If (S,U) is a uniform space and S' is a subset of S , there is a natural 

uniformity induced on S' Namely the collection of all uPS' for u~ucU . The uni- 

form topology for the induced uniformity on S' is the same as that induced by the 

uniform topology on S . 

We say that the uniform space (Sl, U_l) is complete if for every uniform space 

(S,U), every topologically dense subset S'cS and every function f':S'--~ S 1 which is 

uniform in the induced uniformity, there is a uniform f:S --~ S 1 whose restriction to 

S' is f' 

(2.4) It is shown in [ Isbell] , chapter II how every uniform space can be embedded 

(i.e. has the induced uniformity) as a dense subset of a complete space and that this 

embedding is unique up to a unique isomorphism. We denote this completion of (S,U) 

by (S,U)~ or just by S t if U is understood. 

(2.5) Lemma. Suppose 

fl 

(SI,U_I) ~ ($2, ~) 

f2 
(TI,V._ l) ~ (T2,V 2) 

is a commutative diagram of uniform spaces such that fl is the inclusion of a dense 



subset, equipped with the induced uniformity, f2 is an isomorphism of underlying sets 

and ~i has a basis consisting of sets whose image under f2 is closed in the uniform 

topology of ~2 " Then there is a unique map ($2,U2)--+ (TI,V_I) making both trian- 

gles commute. 

Proof. Although I have tried to make these notes largely self-contained, this argument 

requires more than a passing acquaintance with the theory of uniform spaces to be under- 

stood. For this I refer to [Isbell] . Otherwise, it can best be appreciated by ima- 

gining the spaces to be metric and replacing Cauchy nets by Cauchy sequences, n 

We may suppose without loss of generality that T 1 = T 2 = T and f2 is the iden- 

tity map which means that ~i is a refinement of ~2 " Then given that h is uniform 

with respect to ~2 we must show it is with respect to ~i " Suppose now that s~S 2 

and {s } is a Cauchy net in S 1 which converges to s . Then {hs } converges to 

hs . Since g is uniform, {gs } is a Cauchy net with respect to ~i " Now let ~iE~l . 

There is ~{C~l such that ~* refines ~i and by the hypothesis we may also suppose 

v that the sets in v I are closed in the uniform topology determined by ~2 " There is a 

set Vev_{ and an index 8 such that ya8 implies gs £V (that is just from the de- 

finition of Cauchy net). Now {gsy},YaB is again a Cauchy net in ~2 and converges, 

in the uniform topology of ~2 to hs . Since V is closed in that topology and every 

gs ~V , it follows that hsEV as well. Thus Vc~*(hs). Hence for all y>B,gs £v{*(hs). 

Thus in every ~i cover of T the net is eventually in one of the neighbourhoods of 

hs and thus converges to hs . 

This does not quite show that h is uniform to ~i but we may argue as follows. 

The map g has a uniform extension to g~:(S2,U2)---+ (T,VI) constructed by choosing 

for each s£S 2 a Cauchy net {s } of elements of S 1 which converges to it. Then 

as above {gs } is Cauchy in (T,V_I) and converges to a unique point, g~(s), of (T,VI)~. 

But we have just shown that all such points already lie in T . 

(2.6) A metric space (M,~) is a uniform space in a natural way. In fact the covers 

by e-spheres, e>0 determine a uniformity called the metric uniformity. It follows 

from [ Isbell] , 1.14 that for any uniform space X = (S,~) and any u_EU there is a 

metric space (M,~) and a uniform map f:X--~ (M,~) such that the inverse image of 

the 1-spheres refines u . Such an f is called a pseudometric for X . If u ranges 

over a basis of U a corresponding collection of f is called a basis of pseudometrics 

for X . 

(2.7) Suppose (S,~) and (T,~) are uniform spaces and F is a set of functions 

S--+ T . We say that F is an equiuniform set if for all v~V there is a single 

u£U which refines f-l(~) for all f~F . It is easy to see that every finite set of 

uniform functions is an equiuniform set. 

(2.8) If, on the other hand, S is a set and (T,[) is a uniform space, a collection 

of sets of functions S --~ T determines a uniformity U on S such that the sets 

in ~ are equiuniform. This is most readily described in terms of a basis d of 

pseudometrics for V . Let 



F(s,F,d) = {s' [d(fs,fs') < 1 for all f6F} 

for scS,F~,dEd . Then the sets 

{F (s,F,d)Is~S} 

are a cover of S which determine a uniform structure as F and d vary. A basis of 

pseudometrics for this structure is given by the functions d-F where (d.F) (s,s') = 

sup{d(fs,fs') If~F} . 

(2.9) We can instead suppose given a collection ~ of subsets of S and a set F of 

functions S--+ T . In that case we can think of Z as a collection of sets of func- 

tions F---+ T . Then the discussion above describes a uniform structure on F . We 

will call a uniformity so described a convergence uniformity. A special case is ~ = {S} 

in which case F has the uniformity of uniform convergence on all of S that is con- 

sidered in [ Isbell] , Chapter III. 

(2.10) If X---+ y is an injective uniform map we say it is embedding provided that 

X is uniformly isomorphic to its image when that image is given the induced uniformity. 

We note the obvious fact that the category of uniform spaces has a factorization system 

consisting of surjections and embeddings as the epimorphic and monomorphic parts, re- 

spectively. In particular, the embeddings possess the usual properties of invariance 

under composition and left cancellation (see [ Kelly] ). 

(2.11) If {X } is a collection of uniform spaces, every pseudometric on X = HX is 

majorized by a pseudometric constructed as follows. Let i=l, ... , n be a finite num- 

ber of indices and Pi:X---~ X i be the corresponding projective map. Let d. be a 
l 

pseudometric in X. and let 

d(x,y) = sup(dl(PlX,ply),d2(P2x,P2 y) ..... dn(PnX,pny)) . 

In the sequel we will write d = sup{di(Pi,Pi)} . It is easy to show that the unifor- 

mity defined by the pseudometrics so defined is the coarsest for which the projections 

are uniform. 

(2.12) Proposition. Let {X } be a collection of uniform spaces and X have the 

discrete uniformity. Then any map HX----+ X factors through a finite product. 

Proof. X has a uniform cover by singletons. The inverse image of that cover is re- 

quired to be a uniform cover of the product. A uniform cover of a product is refined 

by a cover of the following form. Let 1 .... ,n be a finite number of indices, ~i ..... ~n 

be covers in the corresponding space. Then the collection of all sets KV where 

V £u , ~=l,...,n and V = X otherwise determines a cover. That f takes every such 

set into a single point implies, in particular, that if x = x' except for ~=l,...,n, 

then f((x )) = f((x' )), or, in other words, that f factors through ~X ----~ XlX...xX n- 

(2.13) Notes on uniform spaces. There are really three definitions of uniform spaces. 

The first is by the uniform covers, given here. The second is by families of seminorms 

and the third by entourages (see [Kelley], Chapter VI). The first is the most intuiti- 

vely geometric as well as the most useful for things like topological groups where each 



neighborhood of 1 gives rise to the cover gotten by translating that neighborhood all 

over the group. This automatically defines a uniformity - the continuity of multipli- 

cation is equivalent to the existence of star refinements - called the canonical uni- 

formity. A group homomorphism is continuous iff it is uniform. Thus there is no dis- 

tinction in that case between topological and uniform notions. The definition by pseudo- 

norms seems the most useful in these notes. The definition by entourages is probably 

most useful in connection with compactness arguments. A compact Hausdorff space has a 

canonical - and unique - ~iformity for which the entourages are all neighborhoods of 

the diagonal. Every map to another uniform space is continuous iff it is uniform. At 

any rate there is no "best" definition. It is important that all three are equivalent. 

3. Uniform Space Objects 

(3.1) Let V be a semivariety with underlying set functor <->. By a preuniform struc- 

ture on an object V~V we mean a uniform structure on <V> such that all the opera- 

tions are uniform when the powers of <V> are equipped with the product uniformity. 

(see [ Isbell] , Chapter II.) 

If V is a preuniform object in V let <V> denote the underlying uniform space 

and ~I denote the underlying discrete object of V . Both I< V> I and <IV I > are 

the same underlying set of V . 

(3.2) If V has a preuniform structure U , we say that V is completable (in V) 

provided the uniform completion of V also lies in V . To explain this more clearly, 

consider the case that V is a variety. Then V is dense in V~ (we omit the < > ) 

and it is readily seen that for any n , V n is dense in (V~)n . For any n-ary ope- 

ration ~ , the map V n ~-q~ V ~ V~ has, then, an extension to a map V ~n ~ V~ 

Any equation required to be satisfied by an algebra of V is satisfied when restricted 

to the dense subset V . But an equation is satisfied exactly when two maps are equal 

and two uniform maps which agree on a dense subset are equal. In the general case, 

what is at issue is that V~ belong to the semi-variety V 

(3.3) Now suppose that V is closed (by which we understnad that the situation is 

that exposed in section i, in particular that we have a symmetric monoidal structure). 

We say that V is admissible provided for all preunif0rm objects V' , there is a sub- 

object Un~(V',V) of ~(V',V) such that 

< UnV(V',V) >---+ Un(<V'>, <V> ) 

<V (IV' I , IVI)>--+ Hom(<IV'l>,l<V>l ) 

is a pullback. Here, of course, Un(<V'>, <V> ) is the set of uniform maps between 

these sets. 

(3.4) If the theory of the semi-variety V is the commutative theory T h and 

has the induced closed monoidal structure, it is easy to see that Un ~ V'> <V>)NHOm(V',V) 

-- :V n is a Th-algebra. For ~V = ~ + V is an operation which we have supposed to be 
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uniform, then for any collection f.:V'--~ 
1 

V' (fi) ÷ 

V, i£n , of uniform morphisms, the composite 

V n ~ ~ V 

is also a uniform morphism. But this is e(f ), the Th operation in V(V',V) . 

Thus the admissibility of V comes down to whether or not that particular _Th--algebra 

belongs to V 

(3.5) Even when Th is not necessarily commutative and V has some ad hoc closed 

monoidal structure, there is at most one candidate for Un ~(V',V) For suppose V 0 

and V 1 are two subobjects of an object V 2 such that < V 0> = < V i> as subobjects 

of <V2> . Then both inclusions VoNV 1 ~ V O and Vo~VI ---+ V 1 become equalities 

at the underlying set. Since the underlying set functor reflects isomorphisms it fol- 

lows that V O = VoNV 1 = V 1 . Thus the subobject Un ~(V',V) is unique, provided it 

exists. 

(3.6) We say that V is a uniform object if it is a preuniform object, if it is ad- 

missible, completable and its completion is adimissible. We let Un V denote the ca- 

tegory of uniform V objects, with < Un V(-,-)> as the hom. From the definition it 

follows that a morphism is simply one which is both a morphism in V and uniform on 

the underlying sets. 

(3.7) If ~ is the category of all the algebras for a commutative theory with the 

natural closed monoidal structure thereby induced, then as observed in (3.4) every pre- 

uniform structure is admissible and as observed in (3.2) every preuniform structure is 

completable. Thus there is, in that case no distinction between preuniform and uniform. 

Even in that case, it is not true, unless the theory is finitary, that every object in 

becomes a uniform object when equipped with the discrete uniformity. In fact, it 

follows from 2.12 that a map from a product of discrete spares to a discrete space is 

uniform iff it is a function of only finitely many coordinates. 

(3.8) Let {U } be a collection of uniform objects. Let U = KU equipped with the 

product uniformity - the coarsest for which the projections are uniform. I claim that 

U is a uniform object. To see this, let V be a preuniform object. Then since 

is a pullback, for each 

products, so is 

<UnV(V,U )> 1 Un(<V> , < U > ) 

<V( IVI, I u I) > > Hom(< IVl> ,<I U I>) 

i and both I-I , <- > and the hom functors commute with 

<KV(V,U ) > , Un(<V>,<HU > ) 

<V( ~ I,I KU I) > ..... Hom(<l VI>, <IHU 1 > 

which shows that U is admissible. Moreover U is dense in U 

dense in HU ~ and the latter is complete so that U~ = HU ~ and 

Evidently U~ is admissible being a product of admissible objects. 

U is the product of the U 

from which U is 

U is completable. 

It is evident that 
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(3.9) Now let U' I U" be two maps of uniform objects and U be their equalizer, 

given the structure as a subspace of U'. Exactly the same argument as above suffices 

to show that U is admissible. To show that it is completable is, however, another 

matter entirely. It is easy to see that U ~ is a subobject of U'~ but there does 

not seem to be any obvious reason that it is a regular subobject. If we supposed that 

was a quasi-v~riety - closed under products and subobjects - that would settle it. 

BUt in the one example we have in which ~ is not a variety - that of Banaeh spaces 

(see IV. 3.) - ~ is not a quasi-variety either. What happens there is that any closed 

subobject of a uniform object is a uniform object. Thus the appropriate hypothesis at 

this point is unclear for want of examples and we leave it as an open question. 

(3.10) Proposition. The underlying functor I I : UnV---+ V creates products. Pro- 

vided the completion of an equalizer is an admissible pre-uniform object of ~ , the 

functor creates limits. If W is the category of all algebras, this condition is sa- 

tisfied provided ~ is closed in W under all subobjects or at least if the W ob- 

ject underlying a closed UnW subobject of an object in UnV belongs to V . 

This last condition means that if U~UnV , and <U '> c <U> is a closed subspace 

of the uniform space with I U'I ~ W , then I U' Ic V . 

In the sequel, we will simply suppose that the conclusion of this proposition is 

automatically satisfied. 

(3.11) Let V£~ and U~Un~ . We let [V, U] denote ~(V, IU I) equipped with the coar- 

sest uniformity for which the map evaluation at v: [ V,U] --+ U is uniform for each v£V. 

Equivalently we require that 

<V> 
< [V,U] > ~ <U> 

be a uniform embedding. Then IV,U] is certainly a preuniform object. Now I claim that 

<V(V,UnV(U',U))> ~ U n(<U'>, <[V,U ] >) 

<V(IU'I ,I IV,U] I ) > , Hom(< ~' I>, <HV,U]> ) 

is a pullback. We begin with the fact that 

< UnV(U' ,U)> ---+ Un(<U'> ,< U> ) 

t 
< V( IU'I,IUI > ' Horn(< IU' I>, < lUl >) 

is a pullback in S . Applying Hom(<V %-) we see that 

Hom(<V> ,<UnV(U',U)>) Hom(<V>, Un(<U'> ,<U> )) 

Hom(<V> , < V( IU 'I ,IUI > ) Hom(<V> , Hom(<IU'l> ,<IUJ>)) 

is as well. Now since <V> is discrete 
<V> 

Hom(<V> , Un(<U'>,<U>) ~ Un(<U'>,<U > ) 

and 
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Hom(<V> , Hom(<IU' I>,<] U I> )) ~ Hom(< ]U' I>,<I U< V> I>). 

since by 

< V(V,UnV(U' ,U))> > Hom(<V>,< UnV(U',U)>) 

< V(V,V( I U'I ,IU I >---+ Hom( <V>,V( IU '] ,[UI )) 

is a pullback, it follows that so is 

< ~(V,UnV(U,U))>--+ Un(<U'><u<V>>) 

< V >  
<V(V,V( [U'~}UI)> ' gom(<lU' I>, < ~U I> ) . 

Un V(U',U) c V(U',U) is a pseudomap, then f£ < V(V,V(U,U))> < 

f is a pseudomap U '---+ ~(V,U) = I[V,U] I • Since it also deter- 

<V> < V> 

If f:V --+ 

(U' ,V_(V,U))> so 

mines a uniform map < U'> --+ <U > ~ < U> it gives a uniform pseudomap U' 

--+ [V, U] . That is, the image of the upper map in the last square lies in Un(<U'>, 

<[ V,U] >) In a similar way the image of the lower map lies in Hom(< ~' I>, < I[V,U] 1 > ) 

which gives the desired result. 

(3.12) This not only shows that [ V,U ] is admissible but gives the desired adjunction 

for a cotensor Un ~(U',[V,U] ) ~ V(V,Un V(U',U)) . However, we still have to show that 

[V,U] is completable and that its completion is admissible. First we consider the case 

that U is complete. Then for U' dense in U" , we know (essentially because we have 

assumed it) that 

Un V(U",U) ---+ Un V(U',U) 

is an isomorphism. Applying ~(V,-) we see that 

V(V, UnV__(U" ,U) ) ---+ V(V,UnV(U' ,U) ) 

or 

UnV(U",[V,U] ----+ UnV(U',[V,U] ) 

is an isomorphism. This implies that [V,U] is complete as well. Now if U is arbi- 

trary we use the hypothesis of (3.10) to infer that the closure of [V,U] in [V,U~]is 

an admissible preuniform V--object as well. To see that we need only observe that [V,U] 

is uniformized as a subobject of [ V,U~] . More generally, we have the following 

(3.13) Proposition. Let U be embedded in U' . Then [V,U] is embedded in [V,U' ] . 

Proof. In the square 

<[ V,U] > ---+ <U> 

<[ V,U] > ----~ <U'> 

< V >  

< V >  

the upper and right hand map are embeddings. Thus the composite and therefore the left 

hand map is one as well. 

(3.14) One more hypothesis will have to be made. When ~(I,-) represents the under- 
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lying set functor, there is no difference between maps and pseudomaps. The fact that 

the operations in the theory are uniform implies that the uniform limit of maps is a 

map. More specifically, if AI---+ A 2 is a dense embedding and B is complete, any 

map A 1 , B extends to a map A 2 ~ B . Now we must suppose the same to hold for 

pseudomaps. It follows immediately that there is a canonical map A(A,B) ---+ A(A ,B ). 

(3.15) Example. If V is the category of vector spaces, it is a variety with a com- 

mutative theory. Thus the category UnV is simply the category of preuniform objects 

in V . Moreover, according to the remarks on groups in (2.12) a uniform object is the 

same as a topological vecotr space over the discrete field K . This is the same as a 

topological group which is simultaneously a vector space such that all ~calar multipli- 

cations are continuous. 

4. *-Autonomous Cateqories 

(4.1) From here on, we revive an old name due to Linton and call a symmetric monoidal 

closed category autonomous. By a *-autonomous category is meant 

(i) An autonomous category G; 

(ii) A closed functor (_), : ~ op __+ ~; 

(iii) An equivalence d = dG : G--+ G** . 

This is subject to one axiom, that the diagram 

G(G,G') ~ G(G'*,G*) 

G(G**,G'**) 

whose horizontal and vertical arrow are the actions of (-)* on the internal hom, com- 

mute. 

(4.2) An immediate result is: the horizontal arrow is a split mono and the vertical 

one a split epi. But the latter is an instance of the former and thus is also a split 

mono which implies that both are isomorphisms. 

(4.3) In fact, far less data than that is required to have a *-autonomous category. 

Suppose we have a monoidal category G with unit I and tensor product ~ equipped 

with a functor G °p ~ G which is full and faithful and such that there is natural 

equivalence Hom(GI~G2,G~)---~ Hom(G~(G2®G3)*) . In that case, define ~(G',G) = (G~G*)*. 

Let T = I* . Then we see that there is a i-i consequence between maps GAG'---+ T and 

G' ~ (G®I)* ~ G* . Since the tensor is syrmaetric, there is similarly a correspon- 

dence between maps G'~G--~ T and G'---+ G* . 

respondence between G '--~ G* and G--+ G'* 

have correspondences G ---+ G' 

G'*---+ G* 

G ---+ G'** 

and by the Yoneda lemma G' ~ G'** 

Putting these together gives a cor- 

Since (-)* is full and faithful we 
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Next define G(G',G) = (G'~G*)* . 

G 1 

G2~G ~ 

G~G 2 

which demonstrates that 

There is a 1-1 correspondence between maps 

G(G 2,G 3) = ~G2~G ~) * 

' (G2~G 1 ) * 

G2~G 1 ~ G 3 

GI~G 2 ~ G 3 

G(G2,-) is left adjoint to -eG It follows from 
2 

[Eilen- 

then be- 

Similarly, 

Hom(G',G*) ~ Hom(G',~(I,G*)) 

Hom(G,G(I,G'*)) 

Hom(G,G'*) . 

Comparing these, we see that G* = G(G,T) . Also, Hom(G',G*) ~ Hom(G,G'*) which to- 

gether with Hom(G',G) ~ Hom(G*,G'*) implies that (-)* is an equivalence. In fact, we 

have Hom(G',G) ~ Hom(G*,G'*) ~ Hom(G',G**) while evidently Hom(G*,G'*) = Hom(G'**,G**) 

and by the Yoneda lemma G' ~ G'** 

(4.5) Since G* ~ ~(G,T) the internal composite gives a natural transformation 

(G',G) ~ (G*,G'*) 

which followedby the isomorphism above gives a map (G',G)---+ (G',G**) . It follows 

from coherence that the diagram 

G(G',G) + G(G*,G'*) 

"~G (G' ,G**) 

commutes. Since the vertical and diagonal maps are isomorphisms, so is the horizontal 

berg-Kelly] , II.3 especially the material following proposition 3.1, that G 

comes autonomous with this definition of hom. The equivalence of G(G',G) and ~(G*,G'*) 

is immediate. Note that this is independent of whether or not (-)* is a monoidal func- 

tor. That seems to be more or less equivalent to I* ~ I , which holds in all the exam- 

ples but one. Thus the data at the beginning of this section suffice to determine a 

*-autonomous category. 

(4.4) On the other hand suppose that the category ~ , internal hom functor G(-,-), 

unit object I together with required natural transformations and equivalences constitute 

a symmetric closed category. Suppose also that there is a full faithful functor (-)*: 

G °p---+ ~ and an equivalence Hom(GI,~(G2,G~)) ~ Hom(G3,G(G2,G{)) . As before, let 

T = I* . Then there is an equivalence 

Hom(G',~(G,T)) ~ Hom(I,G(G,G'*)) 

Hom(G,G'*) . 
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one which means that (-)* is internally full and faithful. Now we define G'®G=G(G',G*)*. 

We see that there are natural i-i correspondences between maps 

GI®G 2 ~ G 3 

~(GI,G~)* ---+ G 3 

G~ ~ ~CG1,G~I 

G I --'+ G(G~,G~) ~ ~(G2,G3) . 

Here we have freely used the equivalence between G and G** . That we have a *-auto- 

nonomous category now follows from [ Eilenberg-Kelly ] , 1.3 . 

(4.6) The main purpose in these notes is to begin with a good deal less than a *-auto- 

nonomous category and construct one. This leads us to define the notion of a pre-*-auto- 

nomous situation. This consists of a category ~ , two full subcategories ~ and D , 

an equivalence of categories 

(-)* : C °p > D , 

a functor (-,-) : Cj p x D--+ D and an object I£~. These are subject to the axioms 

of a *-autonomous category insofar as they make sense. In particular, we suppose that 

(i) (I,D) D; 

(ii) Horn(I, (C,D)) ~ Hom(C,D); 

(iii) (CI, (C2,C~)) ~ (C3, (C2,C~)) ; 

(iv) Hom(C*,C') ~ Hom(C'*,C) 

These are subject to certain coherence conditions which will be introduced as needed. 

(4.7) Since (-)* is an equivalence, it has, up to a natural isomorphism, an inverse 

functor which we temporarily denote (-) #:D °P--+ C . Then ~iii) above may be rewritten 

(C,D) ~ (D#,C *) which, by (ii) implies that Hom(C,D) ~ Hom(D#,C *) . Similarly (iv) 

may be rewritten Hom(D,C) ~ Hom(C*,D #) . Should it happen that D also belongs to C 

we have, since (-)* is an equivalence, that 

Hom(D,D) ~ Hom(D*,D #) 

and 

Hom(D,D) ~ Hom(D#,D *) 

The coherences alluded to above would require that if 

and g I > 8(g) describes 

Hom (C,D) 

f 

% 
> Hom (D#, C * ) 

~(f) describes the map 

Hom(D,C) , (C*,D #) 

then for C f > D g > C' ~(f)8(g) (gf)* while for D g + C f D' , = ) , 

8(g)e(f) = (fg)# Thus corresponding to 

1 1 1 
D -~ D ~ D ~ D 
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we have 

D* 8(1) ~ D # e(1) ) D* ~(i) ) D # 

and ~(i)8(i) = i* = 1 while 8(1)e(1) = i# = 1 so that D* ~ D# . Henceforth we can 

identify D* and D# by this isomorphism. Thus (-)* and (-)# agree on CnD and 

we may think of them as determining a single functor 

(-)* : (CuD) Op ~ OlD 

that interchanges C and 

(4.8) If we let C 2 = I 

O . 

in (3.6.iii), we get 

(CI, (I,C~)) ~ (C3, (I,C[)) . 

or, in view of (3.6.i), (CI,C;) ~ (C3,C~) . If we let C 3 

If we let I* = T , this may be summarized as, 

Proposition. For C,C'EC , 

C* ~ (C,T) 

(C',C*) % (C,C'*) 

= I , we get (Cl,I*) ~ C[ . 

(4.9) Proposition. Let A,BEC UD. Then 

Hom(A,B) ~ Hom(B*,A*) 

Proof. If A,Be~ or A,BeD this is just the duality while the other two follow as 

observed in 4.7. 

The naturality of these morphisms is clear, one of the unstated coherence hypotheses 

is that for f£Hom(A,B),f ~ f* : B*-~ A* is an involution. 

(4.10) We wish to discuss a condition under which 4.6(iv) follows from the remaining 

hypotheses. Suppose for every object C~ there is a family of maps {m~:C~ D~} , 

D~cD :C --~ D} C ~C which collectively have the and for every D~ a family {e w w ' ~ -- 

properties of a factorization system. Namely suppose that every pair of families {fw: 

Cw-+ C} and {g~ : D~ D~} such that every diagram 

C - -  e~ }  ~ D 

C ~ D~ 

commutes determines a unique map h:D -+ C such that m~h = g$ for all ~ and h.e =f 

~or all ~. 

(4.11) Supposing this to be the case, let a suitable family {C~ D~} be called a 

D-representation of C and the dual notion {C --+ D} a C-generation of D . If 

{C--+ D~} is a D-r~presentation so is any larger family. In particular so is the fa- 

mily {C~ D~} u{C--+C*}w ' where {C--+ C * } w  is a _C-generati°n" Thus we may suppose 

every C has a D--representation which dualizes to a C--generation. Similarly every 

D~_D has a C--generation which dualizes to a D--representation. Now fixing a map h:D-+C, 

a D-representation of C and a C-generation Of C both assumed to dualize properly 
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we begin with the diagram e 
C > D 

C ) D~ 

in which fw is defined as ~ew and similarly g~ = m~.h . Dualizing and using 3.9 

we g e t  

D* > C* 

~ e*  ~ 
D* ~ C* 

w h i c h  t h e n  h a s  a u n i q u e  f i l l - i n  w h i c h  we n a t u r a l l y  d e n o t e  b y  h*  . The  n a t u r a l i t y  o f  

h ~+ h* and the fact that it is an involution follow readily from the s~ne properties 

of the C~, f , g~ and m~ . 

( 4 . 1 2 )  T h e o r e m .  U n d e r  t h e  h y p o t h e s e s  o f  4 . 6 ( i ) ,  ( i i ) ,  ( i i i )  a n d  ( 4 . 1 0 )  we h a v e  a d u a l i t y  

Hom(A,B) Hom(B*,A*) for A,B£~UD. Thus we have a pre *-autonomous situation. 

(4.13) If we suppose that A is a V category, we can ask that 

V-functor and that the equivalence be that of V-enriched home, 

!(c,,c) ~ Z(c*,c,*) . 

(-)* : C + D be a 

In addition, we can suppose that the isomorphism of (4.6.ii) be V--enriched, 

V(I, (C,D)) ~ V(C,D) 

In that case, we come to the notion of a V_-enriched pre-*~autonomous situation. In that 

case the maps used in the C--generation and D--representation in the paragraphs may,if ne- 

cessary, be replaced by pseudomaps. 

(4.13) The V-enriched versions of (4.8) and (4.9) go through without change. In order 

to derive the analogue of (4.12) we must modify (4.10). This is done by ~gain supposing 

a family {C --+~ D} and {C-+ D~} . We observe that there is, for all ~,~, a commu- 

tative square, 

~(D,C) "~ ~(D,D~) 

_v(c~,c)--+ _v(c ,D~) . 

We may now require that ~(D,C) be the simultaneous equalizer of all those squares. 

That is, given any object V and commutative squares 

V > V (q,D~) 

V(C ,C)---+ V(C ,D~) 

one for each ~,$, there should exist a unique map V--~ V__(D,C) inducing those squares. 

Again argumenting the representing and generating families does not change the situa- 

tion so we may suppose they are invariant under dualization. Then V(D,D~) ~ V(D~,D*), 

V(C ,C) ~ V(C*,C~) and V__(C ,D~) ~ V(D$,C~) implies that V__(C*,D*) has the same uni- 
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versal mapping property as V(D,C) and hence they are isomorphic. 

(4.14) Example. On the category of vector spaces, there are at least two reasonable 

pre-*-autonomous situations. The first is to take C = D = finite dimensional vector 

spaces with the usual duality. This is, in fact, already a *-autonomous category but 

there is no reason not to extend the structure to a larger category. The second is to 

take D to be the category v , all spaces considered as having the discrete uniformity. 

For C-which must be equivalent to D °p- we take the category of linearly compact spaces. 

A linearly compact space is a vector space which is, first, topologized linearly. That 

means that the open sub (vector) spaces form a topological base at 0 . Since the quo- 

tient modulo such a subspace is discrete (when you indentify an open set to a point, 

that point becomes open), this is the same as saying it is a subspace of a product of 

discrete spaces. A linearly topologized space is linearly compact if every collection 

of closed linear subvarities (a linear subvariety in V is a set of the form v + V' 

where v is a point and V' a subspace of V) with the finite intersection property 

has a non-empty intersection. Lefschetz defined the notion and proved all the elemen- 

tary properties. Linearly compact spaces are closed under products, separated quotients 

and closed subspaces. A continuous linear transformation from a linearly compact to a 

separated space is closed. Lefschetz also showed that every such space is isomorphic 

(topologically) to a space of the form K s for a set S . Here since K is linearly 

compact, so is K S . As well he showed that the continuous linear maps K S ÷ K T are 

naturally equivalent to the linear T.K + S.K which is the statement of the duality. 

Here S.K and T.K stand for the direct sum of an S-fold, respectively a T-fold of co- 

pies of K . See [Lefschetz] pp.78-82 for details. To get the required (-,-):c°PxD + D 

simply take the set of continuing linear maps with the usual vector space structure 

and, of course, the discrete topology. 

One observation that may be helpful in thinking about linearly compact spaces is 

that if K is finite then linear compactness is equivalent to ordinary topological com- 

pactness. Then linear compactness may be tought of as the transfer of the notion of 

compactness from finite fields to arbitrary ones. 



CHAPTER II. EXTENSIONS OF STRUCTURE 

i. The Setting. 

(1.1) The main goal in these notes is to convert a pre-,-autonomous situation into a 

*-autonomous category. That is, given a V--category A equipped with subcategories 

and D which determine an enriched pre-,-autonomous situation, we wish to find a full 

subcategory G c A which contains ~ and D and can be equipped with a *-autonomous 

structure extending the given structure on C and D . 

(1.2) The right degree of abstraction has probably not been reached here. For the pur- 

pose of extending the structure on C and D , I have found it expedient to suppose 

that A is a category of uniform objects in a closed category V which is a semi- 

variety. 

In this chapter, then, V is such a category, UnV the category of uniform 

objects, ~ and D are full subcategories equipped with a V--enriched duality (-)*:c°P---+D,_ _ 

an object IcC and a functor (-,-):C__ °p x D--+ D which give a V-enriched pre-*-auto- 

nomous situation. We made the following additional hypotheses: That every object of 

and for every V{V, D6D every object of the form [V,D ] can be embedded in a product of 

objects in D . We now let A denote the full subcategory of UnV consisting of all 

uniform V__-objects which can be embedded in a product of objects of ~ . Given A£A , 

a family {A--+ D~} of maps - or even of pseudomaps - with each D~D is called a D__- 

representation of A . 

(1.3) Pro~sition. The inclusion of A--+ UnV has a left adjoint. 

Proof. It is clear from the definition of A as the full subcategory of objects which 

have an embedding into a product in D that A is itself invariant under products and 

subobjects and hence under limits. Thus we need only verify the solution set condition. 

But if we have U£UnV , A~A and a map U---~ A , the image has cardinality ~ that of 

U and moreover lies in A . Thus all the algebras of A whose cardinality do not 

exceed that of U and all possible maps of U to such algebras constitute a solution 

set. 

(1.4) For A£A consider the diagram 

!(-,A) 

AoP G > 

[-,~] 

T 
V 

(Un!) °p 

+ I !(-'A) 

V 

with ~ inclusion, ~ the adjoint above and T and ~ are the identity. With the 

variance exhibited, [-,A] is left adjoint to V(-,A). The adjunction 6 I ~ gives 

V(U,A) ~ ~(~U,A) which is the commutativity required to apply [Barr,73], Theorem 3 and 
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conclude that the image of [-,A] lies in A . This is clearly the cotensor. Thus 

is a cotensored V--category. 

(1.5) It is easy to see that we get a factorization system on A by taking E to be 

the surjections and M the embeddings (with the induced uniformity). Suppose now we 

have a surjection A'----+ A and an embedding B--+ B'. We want to claim that 

V(A, B) -----~ V(A' ,B) 

1 ! 
V_(A,B')---* Z(A' ,B') 

is a pullback. This is so iff for every V~V the functor Hom(V,-) applied to the 

above square is a pullback in S . Using the eotensor adjointness, we get a commuta- 

tive square 

Hom(A,[V,B])-----+ Hom(A',[V,B]) 

1 1 
Hom(A,[V,B']) ~ Hom(A' , [V,B'])  

which we need to know is a pullback. According to (I.3.13) when B is a subspace of 

B' , [V,B] is a subspace of [V,B'] so that we have a diagonal fill-in in any commuta- 

tive square 

AI - - . - - ~  A 

Iv, B l - - . [ v ,  B' ] 

which is exactly what is required. Thus the category A ,.the subcategories ~ and 

D and the remaining structure fulfill all the conditions of 1.4. 

(1.6) Example. Let ~ be the category of vector spaces over the field K . Wel con- 

sider two possibilities for the pair C, D . For the first we take C = D = finite 

dimensional vector spaces (with the discrete topology). Then every CeC is a power 

of K and hence has a D--representation. Since the spaces in ~ have linear topolo- 

gies so does anything with a D- representation. Not every linearly topologized space 

has a D-representation however. In fact, if A is embedded in KD and every D 6D 

then every open subspace contains a finite intersection of the kernels of maps A-+ D , 

that is, the kernel of A-~ D ix ... x D~n. The latter product is finite dimensional, 

so that the kernel -- and with it every open subspace -- is cofinite dimensional. In 

particular this is not true of any infinite dimensional discrete space and no such space 

belongs to A . It is easy to see that a space does have a D_-representation iff it has 

the following property which is a linear analogue to the property of a uniform space 

being totally bounded. Namely, we say that a space A is linearly totally bounded iff 

for every open subspace BoA, there is a finite number of elements a I, ..., a n such 
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that A is in the linear span of B and al, ..., a . Of course this is just a re- 
n 

wording of the hypothesis that A/B is finite dimensional. The analogy is hightened 

by the following fact. 

Proposition. A separated linearly topologized space is linearly totally bounded iff 

its uniform completion is linearly compact. 

Proof. If A is linearly totally bounded, then every open subspace A cA is cofinite 

dimensional. Thus A/A is finite dimensional. The maps A-+ A/A combine to give 

a map A--+ ~A/A which I claim is an embedding. In fact its kernel is NA = 0 be- 

cause A is separated. Any neighborhood of 0 contains an open sub(vector) space A@ 

which is the inverse image of the subset of HA/A consisting of 0 in the ~ coordi- 

nate and A/A in all others. This is evidently open and shows that A is embedded 

in the product. The closure of A is then a closed subspace of a product of linearly 

compact spaces and hence is linearly compact. 

To see the converse first suppose that A is linearly compact. Then for any 

open subspace A0cA , A/A 0 is discrete and also linearly compact and hence finite di- 

mensional (see [Lefschetz]). Now if BoA any neighborhood U of 0 in B is the 

form U = BAY where V is a neighborhood of 0 in A . Then V contains an open 

subspace A 0 whence U DB 0 = BNA 0 . This shows that B is linearly topologized and 

also that B/B 0 is finite dimensional since it maps injectively to A/A 0 . 

The other choice for C and D is to take D to be the discrete spaces and 

the linearly compact ones. Then a space has a D-representation iff it is linearly 

topologized. For as noted earlier that is equivalent to being a subspace of a product 

of discrete spaces, i.e. to having a D--representation. Thus in that case A consists 

of the linearly topologized spaces. 

2. Extension of the Duality. 

(2.1) The first task is to extend the duality on CUD to all of A or at least to 

a large full subcategory. Let A£A. We are trying to define a dual of A , which we 

temporarily designate A #. If we have a map C-+ A there should be one A #-+ C* . 

If we wish to have the duality be V__-enriched this means V(C,A)--* ~(A#,C *) which means 

that corresponding to each pseudomap C-+ A we require a pseudomap A~ C* . More- 

over, we will eventually want to extend the internal hom as well in such a way that the 

dual of A is its internal hom into T . This requires that ~#I ~ ~(A,T) Accor- 

dingly we define A # to be the object V(A,T) equipped with the coarsest uniformity 

such that corresponding to each C~ and each element ~(C,A), the corresponding ele- 

ment of V(IA # I , Ic* I) under V(C,A) ~ V(V(A,T),V(C,T)) is uniform. Another way 

to describe this uniformity is to say that we equip V(A,T) with the coarsest unifor- 

mity such that 

A # , [ V(C,A) ,C* ] 

is uniform for all C~C . Since A # can have only a set of uniform covers, only a 
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set of C need be used from any one A . By taking C = I 

cluded among the objects of C used) we get 

A # ~ [Z(I,A),I*] =[ IAl, T] 

(which may always be in- 

among these maps. 

injections 

This map is an injection since the underlying map in V factors as 

IA#1 = V(A,T)---+ V(IAI,ITI) ~ I[ IAI ,T] I - 

Thus there is a family {C } such that A # is embedded in a product K[V(C ,A),C~] . 

(2.2) This means that to map B---+ A # , we require two things. First, we need a map 

IBI ) V(A,T) . Second we need B--+ [V(C,A),C*] , for each C6C such that 

I BI ~ V_(A,T) 

l[v(c,A),c* ] I --- v(v(c,A) ,V(C,T) ) 

commutes, the right hand map being composition. This is equivalent to maps ~(C,A) ÷ 

~(B,C*) such that 

V(C,A) ~ V(B,C*) 

V (V (A,T) ,V(C, T) ) 

commutes. 

(2.3) Thus to map C *-+ C # for CeC we need first < C*> ~ < C#> . But each is 

i s o m o r p h i c  t o  ~ ( C , T )  s o  we c a n  t a k e  t h e  c o m p o s i t e  o f  t h e  c a n o n i c a l  i s o m o r p h i s m s .  T h e  

second datum required is a map ~(C',C)~ V(C*,C'*) for which we take the duality iso- 

morphism. The required coherence is trivial. On the other hand among the candidates 

for C we may take C itself so that the identity gives a map 

c#--+ [ v(c,c) ,c* l 

which c o m p o s e d  w i t h  t h e  u n i t  I - -+  ~ ( C , C )  g i v e s  C # - +  C* . T h u s  C* N C # 

(2.4) Now let DeD . We know that there is a C-generating family {C --~ D} such that 

D* is isomorphic to a subobject of HC* . Since D#---+ I[ [V(C ,D),C~] is a map, we 

may follow each with the name I---+ V(C ,D)_ of the corresponding maps C~---+ D to 

get D ~---~ " ~C* , and hence D # ~ D* . To go the other way, we require for all C£C 

V (C, D*) ---+ V (D,C*) 

for which we take the duality isomorphism. 
# . # 

We have now established that () is an extension of () and will henceforth 

write A* instead of A # . We now turn to the functionality of this operation. 
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(2.5) Proposition. For any C£C , composition of maps gives a map 

Proof. This is the same as a map 

!(C,A)----+ V(A*,C*). 

A* ~ [ V(C,A) ,C* ] 

which we have. 

Corollary. For any A,B£A , composition of maps gives a map 

Proof. We require a map 

V(B,A)---~ V(A*,B*) 

A* ~ [ V(B,A) ,B* ] 

We certainly have a map 

V_(A,T)~ V(V(B,A),V(B,T)) . 

Moreover, for any C6C we have 

A* -~ [ Z(c,A) ,c*] 

--~ [ V(B,A)~V(C,B) ,C* ] 

[ V(B,A) ,[ V(C,B) ,C* ] ] 

and hence there is the required map A*--+ [ V(B,A),B*] . Note that this argument uses 

the fact that IV,-] preserves embeddings. 

(2.6) This shows that (-)* : A --+ A is a V-functor. There is nothing to guarantee 

that it is an equivalence and it is in fact unlikely that it is always so. 

Since IeC , composition gives a map 

A*---+ [V(I,A),T] 

IAI = !(I,A)---+ !(A*,T) = >** I 

and the best you can usually hope for is that the above map I A!--+ I A** I be an iso- 

morphism. It is always a monomorphism. For there is a D-representation {A---+ D } 

which gives {A**--+ D**~ ~ D~} . Thus we have IAI ~ I A**I --+ ~ I D I is a monomor- 

phism and hence the first map is. 

(2.7) Let A A denote the subobject of A** such that IAA I is the image of IAI 

in IA** I but such that A A has the induced uniformity. There is no question of 

AA£A since AAcA ** . We have I AAI ~ I AI by the inverse of the above inclusion. 

Let {A---+ D } be a D-representation of A . Then each A--+ D gives A**----~D**~ D 

so that we have A A---+ A is uniform. We say that A is prereflexive if AA--~ A is 

an isomorphism, quasireflexive if A A = A** and reflexive if both of these hold. 

(2.8) The condition that A be quasireflexive is equivalent to the assertion that 

~(I,A) ~ !(A*,I*) 

or that every pseudomap A*--+ T is represented by evaluation at an element -- neces- 

sarily unique -- of A . 
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(2.9) Proposition. Suppose 

(i) T is cosmall in A (see proof); 

(ii) T is injective in the V--category ~ with respect to the class of 

embeddings; 

(iii) ~ is closed under finite sums and D under finite products and these 

have the universal mapping properties for pseudomaps as well as maps. 

Then every pseudomap f : A*---+ T is represented by evaluation at an element of A . 

Proof. We can find a family of pseudomaps {C--+ A} such that the horizontal arrow 

in the diagram 

A* ~ EC* 

T 

is an embedding. Then we have a map f# : ~C* - > T which extends f . The hypothesis 

that T be cosmall means that such a map factors through a product of finitely many, 

say C[ x ... x C*n " Since _D is closed under finite products this is also their pro- 

duct in ~ . Since C 1 + C 2 + ... + Cn{ ~ , that is their sum in ~ . Since (-)* : 

_ _ (C 1 Cn)* * x ... x C* so we have C °p--+ D is an equivalence, + "'" + ~ C1 n 

A* > ~C* 

i S 
T c (CI+...+C)* 

From duality for C it follows that the lower pseudomap is represented by an 

x(C 1 + ... + C n The image of that element under the pseudomap C 1 + ... + Cn---+ A 

whose components are the ones given originally is easily seen. to represent f . 

Further discussion of the duality is postponed till the next section. 

(2.10) Example. In the example of vector spaces, the hypotheses of (2.10) are satis- 

fied for both possible choices of C and D , in fact for any choice for which the 

spaces are linearly topologized. For if B is embedded in A and B---+ K is a con- 

tinous linear map, its kernel must be an open subspace B 0 c B . Then as we showed in 

1.6, B 0 = A 0 NB where A 0 is an open subspace in A . Since B/B0---+ A/A 0 is an in- 

jection and both are discrete, the former is embedded in the latter. Then we have a 

diagram 

B ----+ B/B 0 ~ K 

I I 
A ~ A/A 0 

and then ordinary vector space theory provides the required A/A0----+ K , continous since 

A/A 0 is discrete. 
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3. Extension of the Internal HDm 

(3.1) As with the duality, we wish to extend the functor (-,-) : C °p × D ÷ D to a 

functor denoted 

~(-,-) : A_ Op × A ÷ A . 

Although we are for convenience using notation suggesting this is an internal hom, it 

is not in general. It is not generally symmetric, does not always have an adjoint and 

when it does, the tensor is not always associative. Chapter III is devoted to finding 

a nice subcategory on which it is well-behaved. 

(3.2) To begin with we require ~(A,B) I = ~(A,B), the V--valued hom. Second we will 

give it the coarsest uniformity such that the pseudomap A(A,B) + (C,D) is uniform 

for every pseudomap C ÷ A and every pseudomap B ÷ D . More abstractly, we require 

that A(A,B) have the weak uniformity determined by all CeC, D(D and A(A,B)---+ 

[V(C,A)® V(B,D), (C,D)]. This makes sense for the underlying map in V is 

V(A,B) --+ V(V(C,A)®~(B,D),V(C,D)) 

which is the transpose under adjunction to composition 

V(C,A) ®V(A, B) ®Z(B, D) --+ ~(C,D) 

Since there is an epimorphic family {f~ : C~--+ A) and a monomorphic family {g~ : B ÷ 

D~) , there is a monomorphism 

V(A,B)--+ ~!(C , D~) . 

This map factors 

V(A,B)--+ nZ(Z(c ,A)®!(B,D~) ,Z(C ,D~))-+ HV(I®I,! (Cm,D~)) ~ ]IV(Cw,D ~) 

where the second map is induced by the names of the f~ and g~ . Thus the first map 

is an injection as well. Hence for some (not necessarily the same) families {C ) and 

{D~} of objects of ~ and D respectively, A(A,B) is embedded in 

H[Z(Cm,A)~V(B,D~), (C ,D~)] 

(3.3) Proposition. If C~ and DED , A(C,D) is canonically isomorphic to (C,D) . 

Proof. Since (-,-) : C °p x D + D is assumed to be a V_-functor, there is for each 

D~D, a natural map 

v(c',c) ÷ V((C,D),(C',O)) 

which expresses the fact that (-,D) is a V-functor. 

C6C , a map 

Similarly, there is for each 

V(D,D') + V((C,D), (C,D')) . 

Each of these maps lies alone ordinary composition of functions. Putting these together 

and replacing C by C' in the second we get a map 

V(C' ,C)®V(D,D') ÷ V((C,D), (C',D))®!((C',D), (C' ,D')) ÷ !((C,D), (C',D')) , 

the second map being composition. By the cotensor adjunction, this gives a map, 
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for any C'c~ , D'£D . 

way we observe that 

(C,D) -+ [V(C',C)®V(D,D'), (C',D')] 

This implies that (C,D)--+ A(C,D) is uniform. To go the other 

A(C,D)--+ [V(C,C)~V(D,D), (C,D)] 

must be uniform. We may compose this with the map induced by names of the identity 

maps of C and D respectively to get A(C,D) ÷ [ I®I,(C~)] ~ (C,D), the latter isomor- 

phism coming from 

V(A,[ I,B]) ~ V(I,V(A,B)) ~ V(A,B) 

from which [ I,B] ~ B by the Yoneda lemma. This implies that A(C,D)-+ (C,D) 

uniform. It is easy to see that both of these maps lie over the identity map on 

V(C,D) . 

(3.4) Proposition. The bifunctor A(-,-) : A_ °p x A + A is (or lifts to) a V_-functor. 

Proof. We must show that there are natural maps 

V(A',A)--+ V(A(A,B),A__(A',B)) 

V(B,B')--+ V(A(A,B),A(A,B')) 

for all A,A',A,B'{A . We do the first, the second being similar. Then we require a 

map 

which means first a map 

by (I.3.13). 

(3.5) Proposition. 

(c ,D~)] 

A(A,B) ~ [ V_(A' ,A),A(A' ,B)] 

V(A,B)-+ V(V(A',A),V(A',B)) and second for all 

A(A,B)--+ [V(A',A),[ V_(C,A')eV(B,D), (C,D)]] 

The first is just composition and the second comes from 

A(A,B)--+ [V_(C,A)®V(B,D), (C,D)] 

-~ [V(A',A)eV(C,A')eV_(B,D), (C,D)] 

[ V(A',A),[V(C,A')~V(B,D), (C,D)]] 

Suppose A(A,B) is embedded in the product 

. Then there is a commutative diagram 

_A(A,B) + ~[V(C ,A),_ (Cm,B)] 

~[V(B,D~), (B,D~)]----+ K[V(C ,A)®V(BrD~), (Cm,D~)] 
e,~ 

is 

CE~, D£D , 

9[V(C ,A)®V(B, D ) , 

The upper map and left hand map are embeddings. 

Proof. From (3.4) we have a map for all ~, 

V(C ,A)--+ V(A(A,B),A(C ,B)) 

which transposes to 
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A(A,B)--~ [V(C ,A) ,A(C ,B)] 

and is the ~ component of a map 

A(A,B)--+ n[V(C ,A),A(C ,B)] 

Similarly, there are maps for all ~,~ 

V(B,D~)-+ Z(A(Cw,B), (C ,D~)) 

which transpose to 

A(C ,B)-~ [Z(B,D~),(C ,D~)] 

and using the fact that the cotensor is a V-functor, we get Cotensoring ~(C ,A) 

[Z(C , A) ,A(cm,B)] ---+ [!(Cm,A)®Z(B,D~), (Cw,D~)] 

This is the ~ component of a map to _ ~[~(C ,A)®V(B,D$), (C ,D~)] Finally the pro- 

duct over all ~ giv~ a map 

~[!(C ,A) ,A(C ,B)]--+ n [V(C ,A)®V(B,D~), (C ,D~)] 

This gives the one factorization and the other is analogous. The last property follows 

from cancellation properties of factorization systems. 

Corollary i. If C£C , A(C,B) is embedded in a product ~[V(B,D~),_ (C,D~)] ; if D£D, 

A(A,D) is embedded in a product H[V(C ,A), (C ,D)] . 

Corollary 2. For any A£A , A* ~ ~(A,T) . 

Corollary 3. There is a canonical isomorphism A(I,A) ~ A . 

Proof. By hypothesis, IAI = V(I,A) ~ I(I,A) I . For some family {D~} of objects of 

, A is canonically embedded in K[V(A,D~),_ D~] while (I,A) is canonically em- 

bedded in the isomorphic ~[V(A,D~), (I,D~)] . 

Corollary 4. There is a canonical map 

~(A,B)--~[ Im , B] 

Proof. We have, from (3.4), the canonical map 

Iil = Z(I,A) -+ V(A(A,B),~(I,B)) Z V(A(A,B),B) 

which has the transpose 

i(A,B) ---+ [ IAi ,B] 

(3.6) Proposition. Suppose A and B are reflexive. Then A(A,B) ~ A(B*,A*) 

Proof. Since (-)* is a V--functor, we have V(A,B)-+~*,A*)-+ V(A**,B**) an equiva- 

lence. The first is thus a split mono and the second a split epi. The second is an 

instance of the first and hence is also a split mono from which it follows that both 

are isomorphisms. Thus V(A,B) ~ V(B*,A*) . In particular we have V(C,A) ~ V(A*,C*) 

and ~(B,D) ~ ~(D*,B*) for Ce~ and D£D . Thus we have 

A(B*,A*)--+ [V(D*,B*)®!(A*,C*) , (D*,C*)] 

[ V(C,A)e!(B,D), (C,D)] 

so we have ~(B*,A*)-+ A(A,B) and similarly in the other direction. Note that (-)* 
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is not in general an 

the map 

A functor. In fact if B is quasi-reflexive and not reflexive, 

B ~ A(I,B) .--+ A(B*,T) = B** 

is not uniform. 

(3.7) Let CeC, De~ , S a subset of C and 

is the pseudometric defined on V(C,D) by 

d a pseudometric on D . Then (d,S) 

(d,S) (f,g) : sup {d(fx,gx) I x~S} . 

If ~ = }(C) is a collection of subsets of C then the collection of pseudometrics 

(d,S), S£~, d a pseudometrie on D , defines a pre-(i.e, not necessarily separated) 

uniformity on C , that of uniform convergence on the sets in % . If the union of the 

sets in # is dense in C (e.g, if $ includes all singletons) then this structure 

is separated. For if f ~ g there is an element of the dense union, hence an element 

x~S£~ such that fx # gx . Since D is separated there is a pseudometric d for 

which d(fx,gx) ~ 0 . We say that the uniform structure on the values of the functor 

(-,-) : C__ °p x D ÷ D is a convergence uniformity if there is given for each CE~ a 

family #(C) of subsets of C such that (C,D) has the structure of uniform conver- 

gence on the sets in %(C) and if, moreover, for every pseudomap f : C ÷ C' and 

S(#(C) there is an S'~(C') such that f(S)~S' . In practice, ~(C) usually con- 

sists of something like all compact sets or all finite sets or the like. The second 

requirement amounts to supposing that there is a natural transformation 

~(C,C') [--+ Hom(~(C),#(C')) 

which is something like a V-enrichment. 

there is a canonical 

At any rate it is enough to guarantee that 

~(C,C')----+ V((C',D), (C,D)) 

for any DeD . The similar 

V__(D,D' ) ---+ V_((C,D) , (C,D') ) 

for any CeC exists because the inverse image of a pseudometric is a pseudometric. 

(3.8) We now let # (A) denote the family of all subsets of A of the form SIU... 

US where for each i ~ l,...,n, S i is the image under same pseudomap C.-+ A of a 
n l 

set in ~(Ci) If a set {C --+ A} of pseudomaps with C £C is sufficient to ge- 

nerate ~(A) in this manner, we say that the family {C--+ A} generates A . 

Dually if {B ÷ D } is a collection of pseudomaps such that B is embedded in 

HD , then we say that the product represents B . 

(3.9) Proposition. Let A,B~ . Then A(A,B) has the uniformity of uniform conver- 

gence on ~(A) . If {C~-+ A} generates A and {B ÷ D~} represents B then 

{A(A,B)---+ (C , D~)} represents (A,B) . 

Proof. Let, momentarily, A#(A,B) denote V(A,B) equipped with the uniformity of 

uniform convergence on ~(A) . Then a basis of pseudometrics on A#(A,B) consists of 
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(d,S) , d a pseudometric on A , S£~(A) (see 3.7). Let S = SlO...US n , S i = (#fi) 

(Ti), Ti£~(Ci), fi£V(Ci,A) Also let d = sup{dj(gj,gj)} , gjcZ(B,D j) , j = 1 ..... m . 

Then it is easily seen that (d,S) = sup{(dj(gjfi,gjfi),Ti)} , i = 1 ..... n, j = i,..., 

m. But this is just the pseudometric induced bv the composite function 

A#(A,B) ÷ H(Ci,Dj) Thus A#(A,B) is embedded in 

H(C ,D~) But the uniformity on A(A,B) is such that any pseudomap A(A,B) ÷ K(C ,D~) 

is uniform when it is induced by elements of _V(C~,A) and _V(B,D~) . Thus it follows 

that the map A(A,B) ÷ A_#(A,B) is uniform. 

To go the other way, let d be a pseudometric on (A,B) . Then there is 

a finite set of pseudomaps,say fi : C. ÷ A, gi : B ÷ Di, i = l,...,n , sets Ti£#(A i) 
1 

and pseudometrics d i on D.i such that d ~ sup{(di(gifi,gifi),Ti)}, i = 1 ..... n . 

But t~(fi)Ti£~(A) and is thus already realized by a finite number of elements of the 

sets V(C ,A) and sets from ~(C ) . Similarly, the pseudometric sup(di(gi,gi)) on 

B must be majorized by the sup of pseudometrics arising from a finite number of 

pseudomaps B ÷ D~ . Thus every pseudometricon A(A,B) is a pseudometric on A__#(A,B) 

and so A__#(A,B) + A(A,B) is uniform. 

(3.10) We say that a map A'--+ A is dominating provided ~(A') maps onto #(A) It 

is clear that this is dual to an embedding. A family {C -+ A} generates A iff 

~C~ ÷ A dominates just as {B + D~} represents B iff B ÷ ~D~ is an embedding. 

Proposition. Suppose A'~-+ A is dominating and B ÷ B' is an embedding. Then each 

map in the square 

A(A,B) > A(A',B) 

l 1 
A(A,B') > A(A' ,B' ) 

is an embedding. 

Proof. Just repeat the previous argument. 

in that argument. 

Corollary. Suppose {A~---+ A} and {B --+ B~} 

~A---~ A is dominating and B ÷ ~B is an embedding. 

A(A,B)---+ ~A(A ,B) 

~A(A,B~)---+ ~A(A ,B~) 

is an embedding. 

No special property of C or D was used 

are families such that 

Then each map in the square 

(3.11) Proposition. Let {C~---+ A} and {C~ --~ B} dominate A and B , respectively, 

and {E--+ D E} represent E . Then A(A,A(B,E)) is embedded in K(C , (C~,D~)) . 

Proof. We know from (3.9) that ~(B,E) is embedded in H(C~,D~) so that {A(B,E)--~ 

(C~,D~)} represents it. A second application of (3.9) yields the result. 

We note that this implies that A(A,A(B,E)) is embedded in 

I[[A(C ,A)®A(C~,B)~A__(E,D E), (C , (C~,D~))] 
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By symmetry so is A(B,A(A,E)) . This does not imply that they are isomorphic but it 

does imply that any inclusion between V(A,A(B,E)) and V(B,A(A,E)) (each considered 

as a subobject of ~(IA~ IBI ,IEI ) under the isomorphism with V(IBI~IAI ,IEI)) auto- 

matically lifts to an inclusion between A(A,A(B,E)) and A(B,A(A,E)) . The best we 

can do now is (3.15). When we introduce completeness hypotheses in the next chapter, 

we will have better results• 

(3.12) Proposition. Suppose A,B,B'6A 

a canonical pullback 

and B --~ B' is an embedding. Then there is 

V(A,B)-- --+ V(A,B') 
I 

+ + 

V(IAI,]B[)-- + V(IAI,IB' l) 

Proof. An element of the pullback is a pseudomap A--+ B' 

torization IAI ~ IBI -+ IB'I . Since B is embedded in 

underlies a uniform A --+ B . 

Corollary i. There is a canonical pullback 

for which there is a fac- 

B' , the map IAI ~ IBI 

A(A,B) ) A(A,B') 

I 4 

[ I A I  , B ] -  - +  [ [AI , B ' ]  

Proof. The diagram in V which underlies this is a pullback so the actual pullback 

has the same underlying V--object as ~(A,B) with, possibly, a coarser uniformity. But 

it cannot be coarser than that induced by A(A,B') , else the induced map would not be 

uniform. But that means that the uniformity on the pullback is the same as that of 

~(A,B) and so they are isomorphic. 

Corollary 2. If { B ÷ B m} is a family such that B + ~B~ is an embedding, then 

V(A,B) .... --+ KV(A,B ) 

I , 
4, 4, 

Z(Im,[B!) ----+ nv(Im,IB I) 

is a pullback. 

We may put these together to conclude, 

Corollary 3. Under the hypotheses of Corollary 2, there is a canonical pullback, 

A(A,B)----+ KA(A,B m) 

+ + 

• [IA,,B] .... n[ Im,Bj 

(3.13) Proposition. Let A,B£A , C6~ . Then there is a canonical inclusion 
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A(A,A(C,B) c A(C,A(A,B)) . 

Proof. As noted in (3.11) it is sufficient to show that there is a canonical inclusion 

V(A,A(C,B)) c V(C,A(A,B)) 

dominate A and represent B , respectively. Then we 

Then from 

(B,E)) and if A(-,-) 

a natural equivalence 

Let us now suppose that this equivalence were valid. 

is to be a closed category structure this will have to lift to 

A(A®B,E) ~ A(A, (B,E)) 

Then for E = K , we get (A~B)* 

Let {C~ ÷ A} and {B + D~} 

know from 3.9 that the family {A(A,B)--+ (C ,D~)} represents ~(A,B) . 

Corollary 2 above there is a canonical pullback 

V(C,A(A,B)) ----~ nZ(C , (C ,D~)) 

!(Icl ,~(A,B)) ~ ~!(lCl , (C ,D~)) 

and it is thus sufficient to find canonical maps V(A,A(C,B)) --+ V(C, (C ,D~)) for all 

~,~ and V(A,A(C,B))---+ ~( ICI , ~(A,B)) . The fact that they are canonical implies 

the commutation of the square. The first is the composite 

V(A,A(C,B)) ~ V(C , (C,D0)) ~ Z(C, (Cw,D~)) 

and the second the composite 

V(A,A(C,B))-+ Z(A,[ IcI ,B] ~ (IcI ,V(A,B)) 

where the first map comes from Corollary 4 of (3.5) and the second is the cotensor ad- 

junction. 

Corollary. A map A ÷ A(C,B) exchanges to a map C ÷ ~(A,B) . 

(3.14) Example. We again consider the category of topological vector spaces over the 

discrete field K . For both possible choices of C and D , the topology on a (C,D) 

is discrete which is that of uniform convergence on all of C . Thus #(C) consists 

of all subsets of C . When C = D = finite dimensional spaces, it will follow from 

the later development that the functor A(-,-) described in this section already gives 

a *-autonomous structure. What we will do here is to show that when C = linearly com- 

pact and D = discrete spaces, we do not get a closed category. For A fixed the func- 

tor V(A,-) = ~(A,-)I commutes with limits. Thus to show that A(A,-) commutes with 

limits, it is sufficient to show it has the right topology. But this follows from (3.9) 

It is now an easy application of the special adjoint functor theorem to show that 

~(A,-) has an adjoint which we will designate -~A . Since A(A,-) is a V--functor, 

the adjunction is strong which means there is a natural equivalence ~(A®B,E) = ~(A, 
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A(A,B*) . Let A = K T and B = K S with S and T infinite sets. Then (A,B*) 

~(KT,s'K) ~ (TxS)-K so that (A®B)** = K SxT . This implies, since every space is quasi- 

reflexive, that I A®BI ~ ~SxTI. Looking ahead, we will see in the next chapter the 

topology on A®B is coarser than that of (A®B)**, i.e. that (A®B)** ----+ A®B is con- 

tinuous (= uniform). Since every map from a linearly compact space is closed, this is 

an isomorphism and so A®B ~ K SxT . The algebraic tensor product of IAI and I BI 
n 

consists of those functions SxT--+ K which have the form (s,t) [ => i~Ifi(s)gi(t) , 

fi[K S, gf~K T which, when S and T are infinite, is not all of K S×T . Now let E be 

the algebraic tensor product equipped with the topology induced by K SxT. The identity 

map 

IKSI® IKTI , IE 

transposes to a map 

IK S I --'+ V( IKTI ,IE! 

On the other hand, the isomorphism 

KS®K T > K SxT 

constructed above on the hypothesis that ~ was a closed category transposes to a ca- 

nonical map KS___+ A(K T, KSxT) 

which gives 

~Sl__~ v(KT ' K SxT) . 

From (3.12) we get a map 

IKSI --+ ~(KT,E) . 

Since ~(KT,E) is embedded in A(K T, K S×T ) the above map K S ) A(K T, K SxT) 

as a map 

KS---~ A(K T, E) 

factors 

which transposes to 

KS®K ~---+ E . 

Since KS®K T ~ K SxT this implies that E ~ K SxT which is, as noted above, false. 

A(-,-) does not give an internal hom. 

Thus 

(3.15) The counterexample suggests its own resolution. The problem arises out of the 

necessity of the tensor product of two objects of C to lie in C . This suggests at 

first that we stick to the full subcategory of A consisting of complete objects. For 

in that case we would be forced to use a completed tensor product. Since, as is more- 

or-less obvious, the E constructed above is the actual tensor product, its completion 

is KS×T£~ as required. However, this leads to another diffficulty. We cannot be 

sure that the dual of a complete object is complete. It could be completed only by 

discontinuous (or non-uniform) maps which is obviously undesirable and would cause 

other difficulties as well. This problem is solved by using a modified notion of com- 

pleteness which does not get in the way as much with the duality. 
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i. Completeness. 

(i.i) We suppose henceforth that the objects of C as well as these of D are complete 

in their uniformity. From this it follows that if A is embedded in ~D~ , then the 

closure of A in that embedding is also complete and is, in fact, the uniform completion 

A~ of A . The hypotheses of 1.3.10 suffice to guarantee that A~ is admissible so it 

belongs to UnV and then evidently to A . 

In addition we suppose that if A~A is a proper closed subobject of a C6~ then 

the induced map C *~--+ A* (or equivalently V(C,T)---+ V(A,T)) is not injective. 

(1.2) Since a completeable object is densely embedded in its completion, it is suffi- 

cient, in deciding whether every diagram 

l -+ B 2 

A 

in which B 1 ) B 2 is a dense embedding can be completed to a commutative diagram by a 

map B~--÷ A . TO see this take B 1 = A , B 2 = A~ and the map between them the inclu- 

sion. Take the identity for the vertical map. If there is a retraction A~----+ A which 

is the identity on A , the maps A--+ A ~ A~ and the identity on A~ agree on A . 

Since A is dense in A~ , they are equal and the inclusion of A--+ A~ is an isomor- 

phism. 

Later in these notes we will have occasion to consider weaker notions of complete- 

ness gotten by restricting the class of BI--+ B 2 for which a fill-in is required. Let 

us suppose that ~ is a class of dense embeddings. We say that an object A is ~ - 

complete if for every pseudomap m : BI- ~ B 2 in ~ and every f : B~---+ A , there is 

a g : B2---+ A (necessarily unique since the embedding is dense) such that gm = f . 

The main point of this generality follows. 

(1.3) Proposition. Suppose A is ~ - complete and A A has a convergence uniformity 

(see (II.3.7)). Then A A is ~ - complete. 

Proof. We have that I AAI ~ IAI is an isomorphism in V . We may thus identify the 

elements of A i as these of A . The obvious thing to do here is to use (I.2.5). To 

do that we have to show that there is a basis of uniform covers of A A by sets closed 

in A . If d is the set of pseudometrics on T , then a basic uniform cover of A A is 

{F(a,d,S) I aeA } 

where S6~(A*), ded , aeA and F(a,d,S) = {b I d(~a,~b) < 1 for all ~£S} . Th~s 

is refined by the uniform cover 

{F#(a,d,S) [ aeA} , where 

F#(a,d,S) = {b I d(~a,~b) ~ ½ , for all ~eS} 

= ~ {b ] d(~a~b) ~ %} 
~eS 



34 

which is an intersection of closed sets and therefore closed. To see that observe that 

{b I d(~a,~b) S %} is the inverse image of [ 0, %] under the map 

A ~  T (~a,ld) T×T d ~ 

Moreover F#(a,d,S) is refined by F(a,2d,S) and is thus a uniform cover. 

(1.4) Given a class ~ of dense embeddings and an object A~A , let ~A denote the 

intersection of all ~ - complete sabobjects of A~ which contain A . We wish to show 

that a map (respectively pseudomap) f : A---* B induces a map (respectively pseudomap) 

~A---* ~B . It does induce such a function A ~ ÷ B~ so that we have a commutative 

square 

A ~  ~A ~. A~ 

f 

B----+ ~A-----+ B 

and what we need is a fill-in the middle. For this it is clearly s~fficient to show 

that f~ -I(~B) is a b-complete subobject of A~ for it certainly contains A and 

~A . So let El----+__ E 2 belong to ~ and g : E 1 ~ f~ -I(~B) be a map. hence First 

observe that g possesses a unique extension h : E 2 ~ A~ since A~ is complete and 

E 1 is densely embedded in E . In addition there is a pseudomap k : E~--*~B which 
2 

fg . Restricted to the dense subset E 1 both k and f~k extend f~g and extends 

hence are equal everywhere. Since k takes values on ~B, so does f~h which means 

the image of h lies in f (~B) Thus we have proved, 

(1.5) Proposition. The object function A I ~ ~A extends to a V-functor on A . 

(1.6) We let ~ A denote the full subcategory which is the image of ~ . The inclusion 

~A----* A has a left adjoint which we find convenient to also denote by ~ . The inclu- 

sion is V--full and faithful and hence the adjointness is V--enriched. If A~A , then 

by the same argument used in (II.l.4), [V,A] ~A for any V~V . 

(1.7) We now suppose that ~ is a given class of dense embeddings. Unless there is 

specific mention to the contrary, ~ is taken to be the class of dense embeddings 

A--~ C for which Ce~ . In one example, however (see (IV.4)ff.) this class does not 

satisfy hypothesis v) below. We suppose the following 

i) Every dense embedding A---+ C with C£C belongs to ~ ; 

ii) If A---+ B belongs to ~ , then B is embedded in an object of ~ ; 

iii) If A---* B belongs to ~ , then B* is complete; 

iv) If A--+ B belongs to ~ , then B is prereflexive; 

v) Every ~-complete object is quasi-reflexive. 

We note that should ~ be stable under the formation of closed subobjects - it 

usually is - then ~-completeness for any class ~ satisfying the above is equivalent 
# 

to ~ -completeness for the class ~# of dense embeddings A----~ C with C~C. For if 

A + B ~ and B is embedded in C6C, then the closure of A in C is its uniform 

completion A~ . The possibility of extending a map defined on A to all of A t cer- 

tainly implies the possibility of extending it to B . 
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A* (1.8) We say that A is ~-,-complete provided is ~complete. 

(1.9) ProlDosition. Let A be ~-complete. Then 6A = ({A*)* is {-complete, ~-*- 

complete and reflexive. Moreover there is a canonical bijection ~A---+ A , meaning that 

6A has the same underlying V--object with a possibly finer uniformity. 

Proof. The inclusion A*---+ ~A* induces 6A = (~A*)*---~ A** . Since A*---~ ~A* is a 

dense inclusion and TeD is complete, the induced map ~(~A*,T)---+ ~(A*,T) is an iso- 

morphism. That is, 16A I ~ -> ~**I - Since A is ~-complete, it is by hypothesis quasi- 

reflexive which means that A** = A A and so A**----+ A exists and is bijective. Thus 

there is a canonical bijecti0n @A--+ A . Now let BI~ B 2 belong to 6 and BI-+~A 

be given. We get, by composition 

B 1 ---+ A 

B2----+ A 

since A is ~-complete, 

is assumed complete, since B 2 

A* ----+ B* 
2 

~A* ÷ B 2 

B2** ~ 6A 

B 2 > 6A 

** It is since B 2 is assumed prereflexive meaning there is a canonical map B2----+ B 2 . 

easy to check that the restriction to B 1 is the given map B 1 -> 6A . This shows that 

~A* is ~-complete. Since ~A* is ~-complete, it is evidently quasi-reflexive. Thus 

(~A)* = (~A*)** = (~A*) A ) ~A* which upon dualizing gives the canonical map 

~A----+ (6A)** 

and shows that ~A is pre-reflexive. As it also is ~-complete, hence quasi-reflexive 

it is reflexive. Finally, ~A* is {-complete, hence so is (~A*) A = ({A*)** = (6A)* 

so that ~A is ~-*-complete. 

(I.i0) Proposition. Let p be a class of dense inclusions and B be p- complete. 

Then for any C£C , A(C,B) is p-complete. 

Proof. Let {B-+ D } be a D-representation of B . Then 

representation of A(C,B) (see II.3.10, Corollary). For any 

V(E,A(C,B)) ~ ~V(E, (C,D)) 

1 I 
V(E,[ICI ,B] ) , ~V(E,[ ICl ,D~) 

is a pullback (see II.3.12,Corollary 1 and apply V(E,-)) . If 

it induces isomorphisms V(E2,(C,D ~))---+ V(EI, (C,D)) , 

V(E2,[ ICl ,B]) ~ V( Icl ,V(E2,B)) 

---- V(ICl,V(EI,B)) ---- V(EI,[Ic~B] ) , 

{~(C,B)--~ (C,D)} 

EeA the diagram 

is aD- 

E 1 > E 2 belongs to ~, 
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!(E2,[ ]C] ,D ]) ~ !([C],V(E2,D )) 

Z(]C] ,!(EI,D ))~ ~(Eli[C [ ,D )) , 

since (C,D) B and D are all p - complete. But then three of the four vertices 

are the same whether E = E 1 or E = E 2 and hence so is the fourth (the pullback). 

Corollary. Let A be reflexive and ~-,-complete. Then for any D~D , A(A,D) is ~- 

complete. 

Proof. Dualize and use (II.3.6). 

(1.11) Theorem. Let A be reflexive and 

(A,B) is ~-complete. 

Proof. Proceed exactly as in the proof of 

back is 

V (E,A (A, B) ) 

l 
V_(E,[ IAI ,B] ) 

~-*-complete and B ~-complete. 

(1.10) except replace C by A . 

~V(E,A(A,D )) 

1 
> ~V(E,[ IAI,D]) 

Then A 

The pull- 

with the above corollary providing the necessary ~-completeness of ~(A,D ). 

(1.12) Example. We returnonce more to the example of vector spaces. When ~ and 

are the finite dimensional spaces, topologized discretely, then the spaces are certain- 

ly complete. The definition of ~-completeness requires that we begin with a subspace 

of a space in ~ - necessarily finite dimensional - and a dense subspace - necessarily 

the whole thing. Thus the required map extension property is trivially satisfied and 

every space is ~-comPlete. As well, then, is every space ~-,-complete. The situa- 

tion is quite different when D consists of discrete, and C of linearly compact spa- 

ces. Those of D are evidently complete as are those of C which are products of dis- 

crete spaces. Not every space is ~-complete. Any dense proper subspace of a linearly 

compact space cannot be ~-complete. For example the subspace of K S , S infinite, 

consisting of the elements of the S-fold direct sum is not ~-complete. If we call 

that space V , we have 

S.K---+ V---+ K s 

with the first map bijective and the second a dense embedding. Dualization gives 

S.K--~ V*---+K S 

The first map being the dual of a dense embedding is a bijection and the second is evi- 

dently dense. We know it is dense as soon as we know that V does not contain any in- 

finite dimensional linear compact subspaces. For then all the C-+ V are with C dis- 

crete and factor through S.K , whence (S.K)* and V* are embedded in the sum space. 

This is presumably always true but certainly is if S and K are both countably in- 

finite. For any infinite dimensional linearly compact space, being a power of K , is 

uncountable while S-K is countable. Thus in that case V* ~ V and so V** ~ V . The 

former isomorphism is induced by the standard inner product and hence the latter one is 
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induced by the canonical map. This shows that V is not ~-,-complete either, but that 

V is reflexive. If V is closed in W , W/V is a separated linearly topologized space 

and hence has continuous functionals. Thus there are non-zero functionals on W which 

vanish on V , confirming the hypothesis made in (i.i). 

2. Definition and Elementary Properties of G . 

(2.1) It will be a standing hypothesis in this chapter that ~-complete ob- 

jects are quasireflexive. The demonstrations of this fact in the various examples seem 

quite different - save for the cases in which (II.2.8) is satisfied - and do not seem to 

have any common generalization. It is clear that the hypotheses of (II.2.8) are not al- 

ways satisfied. 

(2.2) We let ~ denote the full subcategory of A consisting of objects which are re- 

flexive, ~-complete and ~-*-complete. It follows from hypotheses wehave made that 

both ~ and D are subcategories of ~ . Also G is complete and cocomplete. In 

fact Un~ is complete, essentially by hypothesis (see (I.3.10)) and cocomplete by the 

adjoint functor theorem. A being reflexive is also complete and cocomplete as is ~A. 

The last step follows from the next proposition. 

(2.3) Proposition. The inclusion G--+ ~A has a right adjoint A ~ 6A . 

Proof. That 6A belongs to G follows from (1.9). Now if G£G and G + A is a map, 

we have A*---+ G* and with G* ~-complete, we have 

Uniqueness follows from the fact that the maps 

first because A* is densely embedded in ~A* 

plete, hence quasi-reflexive. 

(2.4) Let CI,C2£ ~ . The identity map 

(Cl,C ~) ~ (Cl,C ~) 

transposes , by the corollary of II.3.13 to a map 

C 1 ' ( (C1,C~),C ~) ~ (C2, (C1,C~)*) • 

Applying [-I we get a map in V 

~1 I---+ ! ( c 2 ,  (Cl ,C~)*)----+ ! ( Ic21 ,1(C l ,C~)*  I) 

ICll ~ ]c21"-"~ I (c1 ,c~)*  I . 

Let T(CI,C2) denote the image of that map as an embedded subobject of (CI,C~)* 

(2.5) Proposition. For any CI,C2£ ~ , T(CI,C 2) is dense in (CI,C~)* 

Proof. (CI,C~) lies in D so its dual is in ~ . By the hypothesis made in (i.I) 

if T(CI,C 2) is not dense, its closure is proper and the induced map 

!(CI,C~) > !(T(CI,C 2),T) 

is not injective. But the map 

!(Cl,C~) > !(T (CI,C2) ,T)~ i( IC 1 I® Ic21, ITL) 

~A *---+ G* whence G ~ G**--+(~A*) *. 

(~A*)*---+ A**---+ A are bijective, the 

and the second because A is ~-com- 
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can also be factored as 

V(Cl,C ~) . . . .  v(ICll, Ic~l) 

V(IC II,V(C2,T))---+ V(]C l ),V_( IC 2 ), )T))) 

v(Ic ll~Ic 21, ITI) , 

each term of which is injective. Since the first factor of an injection is an injection, 

the result follows. 

(2.6) Proposition. Let CI, C2eC . For any AEA there is a canonical map 

V(CI,A(C2,A))-~ V( ~(CI,C 2) I ,IAI ) 

Proof. Let {A--~ Din} be a D-representation_ of A . Since IT(CI,C 2) [ is a regular 

image of ~i ~ [C2[, there is a pullback 

V_( IT (CI,C 2 ) I,~I )----+ HV_( IT (CI,C2)] , ) O )) 

t 1 
v( ~Cl~ Ic21, IAI ) ..... nv(~cz;~Ic21, I D) ) 

Then map 

Also map 

V_(CI,A(C2,A)) ~ HV(Cl, (C2,D m)) 

-~ ~v(c 1. (D~,C{~---- ~V(D~, (Cl,C ?) 

--~ nv((Cl,C~)*,D ~) ~ ~V( I(Cz,C~)* (,ID 

-~ ~Z( I~(Cl,C2)l, I<I) 

Z(Cl,#(c2 ,A) ) ---+ Z(~ l I, Z(c2,A) ) 

.... Z(IcII,Z(I¢21,1 m )) ~ ~(Ic I l~ Ic2;,lal ) 

Since each of these maps is canonical, they give the same map to 

hence the map required. 

(2.7) Pr__~gsition. 

Proof. Let {A---~ D } 

We map 

]]V_(ICII®IC21 ,~3 I) and 

Let C I, C2~C_, A£A . Then there is a canonical map 

V(CI,A(C2,A) )---~ V(T (CI,C 2) ,A) 

be a D__-representation of A . By (If. 3.12), there is a pullback 

V(T (CI,C2),A)----~ RV(y (CI,C2),D) 

1 l 
V(I T (C I,C2)I ,I AI )--~[[V_(I r (CI,C 2) [ ,[DJ ) 

V(CI,A(C2,A)) ~ I[V(CI, (C2,D)) 

--- ~v(c l,{D~,c~) ~V(D~,{Cl,C~)) 

KV((C1,C~)*,D )---~ ZV(T(C I,C2),D ) 
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while (2.6) provides V(CI,A(C2,A))---~ V(IT(CI,C2)I,IAI) fromwhich we have the required 

map. 

Corollary. If, in addition, A is ~-complete, there is a canonical map 

V(C I,A(C 2,A) )---+ V( (C I,C~)* ,A)) 

(2.8) Proposition. Let CI,C2E~A . Then the canonical map 

V(CI,A(C2,6A)) ~ V(CI,A(C2,A)) 

is an isomorphism. 

Proof. The inverse of the canonical map is the composite 

Z(CI,A(C2,A)) ~ !((CI,C~)*,A) 

--~ !(A*, (Cl,C~)) ~ !(~A*, (Cl,C~)) 

!(CI,A(~A*,C~)) ÷ Z(CI,A(C2,~A)) 

where the next to last map is the V-morphism underlying the map of II.3.13. 

(2.9) Proposition. Let 

is an isomorphism. 

Proof. Let {C ) G} 

Cc~, GeG, A6~ . Then the canonical map 

V(C,A(G~A)) .7 V(C,A(G,A)) 

be a C--representation of G . Then there is a pullback 

V(C,A(G,6A)) ~ HV(C,A(C ,~A)) 

1 1 
V(ICI,V(G,6A)) ) HV(ICI,V(C ,~A)) 
. . . .  ¢0 

We map 

V(C,A(G,A)) , HV(C,A(C ,A)) ~ nV(C,A(C ,~A)) 

as established in (2.8). Also we have 

V(C,A(G,A)) ~ V(ICI ,V(G,A)) ~ V(ICI,V(G,6A)) 

This gives the required map. 

(2.10) Proposition. Let C£C, DeD and 

A(G, (C,D)) ~ A(C,A(G,D)) 

is an isomorphism. 

Proof. As observed in (II.3.11) it is sufficient to show that 

V(G, (C,D))---+ V (C,A (G,D)) 

is an isomorphism. The inverse of the canonical map is given by 

V(C,A(G,D))---+ V(C,A(D*,G*))---+V_((C,D)*,G*) ~ V(G, (C,D)) 

the second map coming from the corollary to (2.7). 

(2.11) Proposition. 

G~G . Then the canonical map of (II.3.13) 

Let A,B~A, GeG . Then there is a canonical map 
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A (A,A (G,B)) ~ A (G,A (A,B)) 

Proof. As observed in (II.3.11) it is sufficient to have a canonical map 

V (A,A (G, B) ) ~ V (G,A (A, B)) 

Let {C----~ A} and {B---~ D } be a C-domination and D-representation, respectively. 

Then there is a pullback 

We have a canonical map 

V(G,A(A,B)) > KV(G, (C ,D )) 

V(IGI ,V (A, B) )---~ KV([GI,V(C ,D )) . 

V(A,A(G,B)) ~ EV(C ,A(G,D~)) ~ EV(G, (C ,D~)) 

by (2.10). As well we have 

V(A,A(G,B))----~ V(A,[I GI, B ] ) ~ V(IGI,V(A,B)) 

induced by the embedding A(G,B)----+ [ IGI,B] 

Corollary i. Let AeA, G, H6G . Then there is a canonical isomorphism 

A(G,A(H,A)) ~ A (H,A(G,A)) 

Corollary 2. Let A£~A, C£~, G~G . Then the canonical map 

is an isomorphism. 

(2.12) Proposition. 

is an isomorphism. 

Proof. Replace C 

V (G,A (C,6A)) ~ V (G,A (C,A)) 

Let Ae~A , G, H£G . Then the natural map 

V (H,A (G, 6A) ) ~ V (H,A (G,A)) 

by H everywhere in the proof of (2.9). The necessary isomorphism 

V(H,A(C,~A)) ~ V(H,A(C~,A)) 

is established in corollary 2 above. 

Corollary. A map H---+ A(G,~A) is equivalent to a map 

Proof. Apply Hom(I,-) to the above. 

(2.13) Proposition. Let A,B,E£~A . 

V (A,A (B,E)) 

Proof. We have 

H--~ A(G,A) . 

Then there is a canonical map 

V(6A,6A(~B,6E)) 

V (A,A (B,E)) ~ V (A,A (6B, E) ) 

V (6B,A_ (A,E))--+ V_(6B,A,(6 A, E) ) 

V(~B,A(~A,6E))---~ V(~A,A(6B,6E)) 

V(~A, ~A (~B, 6E) ) 
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Here the first and third arrow are induced by back adjunctions, the second and fourth 

from 2.11, the fifth from 2.12 and the last isomorphism is the one given by the ad- 

junction. 

Corollary. Under the same hypotheses a map A--+ A(B,E) gives a map 

Proof. Apply Hom(I,-) to the above. 

6A--~ ~A (6B,6E) . 

3. The Closed Monoidal Structure on G 

(3.1) Let G,HcG . Since by (i.ii), 

= 6A(G,H) . Note that since 6A---+ A 

[G(G,H) I ~ V(G,H) . 

explains the principal advantage of using ~-completeness instead of completeness. No 

non-uniform maps need be added to hom object to make it ~-complete. 

(3.2) Proposition. Let G,H~G . Then there is an evaluation map G-~ A(A(G,H),H) . 

Proof. By (2.11) there is a canonical map 

A(A(G,H),A(G,H)) ~ A(G,A(A(G,H),H)) . 

The required map is, of course, the image of the identity. 

(3.3) Proposition. Let G,H,K6G . Then composition of morphisms determines a canoni- 

cal map 

A(G,H) ~ A(A(H,i),A(G,K)) 

Proof. From the discussion following (II.3.11) it follows that there is a single A£A 

into which both A (G,A (A (H, K), K) ) and A (A (H, K) ,A (G,K)) may be embedded. Moreover, 

A(G,H) is ~-complete, 6A(G,H)~G . We define G(G,H) 

is bijective for all Ae~A, it follows that 

is a pullback. Now the preceding proposition provides a map 

n ~ A_(A (H,~) ,K) 

to which we may apply the functor A(G,-) to get 

A(G,H) ~ A(G,A(A(H,K),K))---~ A , 

which is an element of V(A(G,H),A) . From (II.3.4), we have a map 

V(G, H)----+ V(A(H,K),A(G,K) ) 

which expresses the fact that A(-,K) is a V--functor. This is a canonical element of 

V_(V(G,H) ,V_(A(G,H) ,A(G, K) ) ) 

and both being canonical give the same element of V (V (G,H), I AI) Thus we get an 

element of V(A(G,H),A(A(G,H),A(G,K))) . Since the elements we began with were maps 

and Hom(I,-) commutes with pullbacks, this element too is a map 

V (A (G,H) ,A) 

V(V(G,H), ]AI) 

from (II.3. 12 ) it follows that 

V (A (G,H) ,A (A (H,K) ,A(G, K) ) ) 

V(V(G, H) ,V(A(H,K) ,A(G,K) ) ) 

In particular every element of G (G,H) is a uniform pseudomap. This 
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(3.4) Proposition. 

A (G, H)---~ A (A (G, H) ,A(G,K) ) 

Let G,H,K£G . Then composition gives maps 

G(G,H) > G(G(H,K),G(G,K)) 

G(H,K) ~ G (G (G, H) ,G(G,K) ) 

Proof. The first comes by applying the corollary of (2.11) to the above. The second 

comes from transposing G(G,H)---~ G(G(H,K),G(G,K))---+ (G(H,K),G(G,K)) to get 

G(H,K)---+ A(G(G,H),G(G,K)) and applying ~ once more. 

(3.5) Theorem G is ,-autonomous. 

Proof. Since I£C, I£G . If GeG , G* ~ (G,I)£G and hence G* = G(G,I) If 

G---+ G(H,K*) , then we have G~ G(H,K*)~ G(K,H*) and K~ G(G,H*) ~ G(H,G*) . 

Then by I°4.4 we have all the data required. 

4. StuJmary of the Hypotheses. 

(4.1) The hypotheses used in this construction are rather complicated. In addition 

they are scattered all over the preceding three chapters, being introduced as needed. 

Thus it seems useful to collect in one place a summary of these hypotheses and a refe- 

rence to a fuller exposition of each. It is understood that these are the assumptions 

under which (3.4) is proved. In some cases more restrictive forms of these hypotheses 

are stated that are satisfied in some of the examples. This will be mentioned in the 

examples. 

(4.2) The hypotheses are 

(i) V is an autonomous (i.e. closed, symmetric, monoidal) category (see 

(I.l.l), (I.i.2)) . 

(ii) V is a semi-variety; that is a full subcategory of a variety closed under 

projective limits and containing all the free algebras (see (I.i.4) - 

(I.i.8)) and that the hypothesis of (I.3.10) is satisfied. 

(iii) The subcategories C and D of Un V (see (I.3)) have the structure of 

a pre-*-autonomous situation (see 1.4.6.) and that every C~C has a D-- 

representation (see (II.l.2)); moreover the uniformity on the objects 

(C,D) is a convergence uniformity (see (II.3.7)) • 

(iv) Every ~-complete object (see (III.l.4) and (III.l.7)) is prereflexive 

(see (II.2.7) also (II.2.9)). 

(v) For every C~C and every closed proper subobject A---~ C , the map 

C*--~ A* is not injective; equivalently C*---+ A w injective iff A is 

dense in C (see(iII.l.l)). 

(vi) Every object in C and every object of D is complete. 



CHAPTER ZV~ EXAMPLES. 

Before getting into examples we need to know that for any ring R, the category 

Top Mod R of topological R-modules is equivalent to Un Mod R of uniform R-modules. 

In fact, let A be a topological module. If M is a neighborhood of 0 in 

A , let u(M) = {a+M I a£A} . The collection of all u(M) as M ranges over all 

neighborhoods of 0 , is a uniformity. For if N-N c M , I claim u(N) is a star re- 

finement of u(M) . To see that, suppose b£~*(a,N) . Then 

b£~c+N I a~c+N} 

which means there is a c~A with aec+N , bEc+N so that b-aE N-N c M or b~a+M . 

Next I claim that subtraction is uniform. In fact, if N-N c M , the image under sub- 

traction of ~(N) x u(N) refines ~(M) . That scalar multiplication is uniform is a 

special case of the fact that a continuous map between topological modules induces a 

uniform one. In fact if f : A'----+ A is continuous, and M a neighborhood of 0 in 

A then f-l(~(M)) = u(f-l(M)) . 

To go the other way, just use the standard functor from uniform spaces to topo- 

logical spaces described in 1.2. Since that functor preserves products ([ Isbell ] , 

1.8, p.17), the uniformity of the operations implies their continuity. It is clear 

that the uniform topology of a uniform group constructed from a topological group is 

the original topology. To go the other way, we must show that every uniform cover in 

a uniform group is refined by cover by translates of a neighborhood of 0 . So let G 

be a uniform group and let u be a uniform cover. By the uniformity of addition there 

is a uniform cover ~ such that VI,V 2 6 ~ implies there is a U£u with VI+V 2 c U. 

There is a neighborhood M of 0 in ~ . (Let M contain st(0,w__) for some star 

In particular for refinement of v.) Then for all V~v , V+M is in some set in u . 

aEV , a+M is in some set in u and so 

refines u . 

{a+M I a£A} 

1. Vector Spaces. 

(i.i) The theory for topological vector spaces over a discrete field has been expli- 

cated completely in the earlier Chapters. However, for special choices of K , it is 

clear that other choices for C and D will result in different theories. In what 

follows we take K = ~ or K = • , always with the usual topology. 

(1.2) Let ~ be the subcategory of Top V consisting of finite and countable powers 

K S of K and D be the category of finite and countable direct sums S.K topolo- 

gized with locally convex sum topology (explained below). The duality C °p---~ D as 

well as its inverse D °p > C is just the hom into K , topologized by uniform con- 

vergence on compact sets. 

(1.3) In fact a compact set in K S has compact projection on every coordinate. Thus 

for s£S the projection on the s coordinate is contained in the closed disc A(rs) 
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of radius r s Hence every compact set is a subset of K A(r ) 
s£S 

a continuous linear map K s ~ ~ K is represented by an element (Xs) 

formula 

It is evident that 

of S-K by the 

Then the neighborhood 

(x s) (Ys) = ZXsY s • 

{(x s) I (xs)nA(r s) < I} = {(x s) I ~IXsrsl < i} 

can be easily described as follows. Let A°(i/rs ) c K denote the open disc of radius 

i/r s (or all of K where r = 0) and F{A°(i/rs ) I seS} the subset of S-K consi- 
s 

sting of all elements (IsXs) such that Xs6A°(i/rs ) and Zllsl = 1 . In other words 
o o 

FA (i/rs) is the convex circled hull of the images of the A (i/r s) in the sum. Then 

if lYsi < r s we have ~ilsXsYsl < Zilsl = 1 . On the other hand suppose (Zs)£S-K 

is a sequence for which (ys)~KA(rs) implies l~YsZsl < 1 . Then choose for each s~S 

an element Ys~K of absolute value r s such that YsZs is real and positive. Then 

ZysZ s = r < 1 . Let Is = rsZs/r . We have Zllsl = ~IrsZsi/r = ZYsZs/r = i. If now 

x s = Zs/X s , we have IXsl = rlZsl/rslZsi = r/r s < i/r s . This shows that (KS) * 

S-K . 

* K S (1.3) To go the other way, we first observe that algebraically (S.K) ~ . The 

only question is the topology. The product topology on K S is that of pointwise con- 

vergence. We begin with, 

Proposition. Every compact set in S'K is in a finite dimensional subspace. 

Proof. Suppose Z is a compact subset of S.K and suppose for countably many s, say 

s = 1,2,3,...,n,... there is a point (x (n)) 6 Z with x n # 0 . Let p = (ps) be 
s (n) 

the seminorm on S.K such that Pn(X) = nix/x n I • Then since Pn is a continuous 

seminorm on K , p = (pn) is a continuous seminorm on S-K (this is standard result 

on topological vector spaces) and p(x (n)) a n . Thus p is unbounded on Z which 
s 

contradicts its compactness. 

(1.4) Now a compact set in S'K is a compact set in some finite dimensional subspaee. 

In fact it is contained in a space S0-K for some finite subset S O c S . Just take 

S O as the set of all elements of S necessary to express a basis for this finite di- 

mensional subspace. A compact set in S0-K is contained in a set of the form 

A~ = {~{~sS I s~s 0} I ~l~sl ~ ~} 

where 1 is a fixed positive real number. Now if ~ is a linear functional and 

~(s) < ~/I , ~llsl < I implies 

l~(~ss) l = IZ~s~(S) l 

< Z l~s l~ /Z  

_< 

so that the basic neighborhood of 0 

{~I~(A~) < ~} ~ {~l~(s) < c/~ , s~s 0} , 

which shows that (S.K) has the topology of pointwise convergence and hence is K S . 
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(1.5) The hypotheses of III.4.2, parts (i) and (ii) do not depend on the choice of C 

and D and thus are still satisfied. For the third part, we let, for C~C , D{D ,(C,D) 

denote the space of continuous maps C---~ D topologized by uniform convergence on com- 

pact subsets of C . 

Proposition. Let C = K S and D = P.K . Then 

(C,D) ~ (SxP)-K . 

Proof. Let ti-li : p.K---+ ~ be the norm defined by 

ll(Xp)il = % Ixpl . 

which is defined since there are only finitely many non-zero x Let f : KS----+ P-K 
P 

be a continuous linear map. For seS , let f denote the restriction of f to the 
s 

s coordinate (all other coordinates 0) and for peP, let f denote the p coordi- 
sp 

nate of that restriction. If f ~ 0 for infinitely many s, an x £K can be chosen 
s s 

so that for at least one peP , fsp(Xs) = 1 . If XseKS denotes the element with x s 

in coordinate s and 0 in all others the net of finite sums of x converges in the 
s 

product topology to the element x = (x s) . Thus the net of finite sums of f(Xs) must 

also converge. But exactly as in convergence of ordinary infinite series this net can 

converge only if for every seminorm p and every £ > 0 , it is the case that P(Xs)<£ 

with at most finitely many exceptions. (The proof is the same, the finite partial sums 

cannot be a Cauchy net otherwise.) 

Thus only finitely many f are non-zero. Now f : K---~ P.K is determined by 
s s 

fs(1) which involves finitely many peP . Thus in all only finitely many fsp ~ 0 . 

This shows that algebraically 

(KS,p.K) ~ (SxP)-K . 

As for the topology, we have seen already that every compact set in K S is con- 

tained in a set of the form KA(rs) where r s is a non-negative real number. A basic 

neighborhood of 0 in P-K is the set F~°(tp) where t is a positive real number 
P 

or ~ If f : K S. > P-K has components f the f : K---+ K can be identified 
sp sp 

with elements of K . We have that 

iff 

f(HA(rs) ) c FA°(tp) 

(*) ~ fsp rs/tp < 1 . 
s,p 

The reason is that (~fsprs I peP) 
s 

and 

must be able to be written as (lptp) with IpeK 

~I~pI < 1 , 

which is easily seen to be equivalent to the condition (*) 

(,) is equivalent to 

Similarly the condition 

o 
(fsp) £ FA (tp/r s) 
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o 

which is an open set in (S×P)-K . To go the other way, let FA (Usp) be an open set 

in (SxP)-K . That this is open in the function space topology is an easy consequence 

of the following. 

(1.6) Lemma. Let f be a function from ~ x~ - or a subset thereof - to the positive 

reals. Then there are functions g : ~---+ R , h : ~--+ ~ such that 

f(i,j) ~ g(i)h(j) 

whenever (i,j) is in the domain of f . 

Proof. By letting f(i,j) = 1 wherever f was hitherto undefined, we can suppose 

f : ~ x~---+ R + . Let 

g(n) = h(n) = inf{l,f(i,j) I i ~ n, j ~ n} . 

Then if, e.g., i -< j, we have 

1 >- g(i) 

f(i,j) -> h(j) 

f(i,j) -> g(i)h(j) 

Note: It is the failure of this lemma to hold for uncountable index sets that forces 

the restriction to finite and countable index sets. 

(1.7) Now then, given an open set FA°(Usp) in (S×P)-K , Usp is a function on an 

index set S×P where each of S and P is either finite or countable. By the lemma 

we can find two sequences (rs) and (tp) such that 

-> r Usp stp 

This means that 

FA°(Usp) D FA°(rstp) 

and the latter is the set of doubly indexed sequences f = (fsp) such that 

f(~A(i/tp)) ~ FA°(rs ) 

and hence is a neighborhood of 0 in the function space. 

(1.8) This decribes the bifunctor 

C °p × D--~ D 

which together with the duality between C and D describes a pre-,-autonomous situ- 

ation. 

That every object in ~ has a D--representation is evident and the uniformity on 

the function space (C,D) is, by definition, a convergence uniformity. 

(1.9) Proposition. The hypotheses and hence the conclusion of II.2.9 are satisfied 

(with T = K) . 

Proof. The argument we used to show that any map K S ~ K is zero except for fini- 

tely many factors can be repeated to show that K is cosmall. Evidently any space in 

is a topological vector space so that the injectivity of K follows from the Hahn- 

Banach theorem. The third hypothesis is evident. 
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(i.i0) If A---~ B is a proper closed embedding in A and b~A , A+Kb/A ~ K which 

means that there is a non-zero map A+Kb---~ K which is zero on A . The injectivity 

of K allows an extension of this to all of B . Thus B*---~ A* is not injective. 

It is evident that objects in ~ are complete. For the completeness of D , 

see [Schaefer] , II.6.2. 

Thus the hypotheses required for our construction are satisfied. 

The theory can also be worked out with C = D = the category of finite sums 

(or products) of copies of K , equipped with the usual topology. The required de- 

tails can be readily inferred from the above. 

(i.ii) Here is another interesting of a category of topological vector spaces. Again 

K stands for R or • . A sequence (ri) of elements of K is said to be rapidly 

decreasing if for all n , lim inr = 0 . Since it is then also true that lim in+2ri=0 
l 

is easily seen to imply tha% ÷~ ~ inlril = 0 . A sequence (s i) is said to be slowly 

growing if for some n , Isil S i n for all sufficiently large i . Clearly for every 

rapidly decreasing r = (ri) and every slowly increasing s = (s i) , the dot product 

r-s = ~ ris i is absolutely convergent. We let D be the space of rapidly decreasing 

sequences,topologized by the seminorms Pn(r) = ~ inlri ] and C the space of slowly 

growing sequences topologized by uniform convergence on compact sets in D under the 

above pairing. Next I claim that C is the dual of D . First observe that the fi- 

nite sequences are dense in D . For if Pn is the seminorm above and r = (ri)6D , 

we know that lim i n+2 .n+2 66/ 2 r. = 0 which means that for some m , i > m l r i < 

or that I ~ i nr. I < £ • Thus r is approximated by the finite sequence which agrees 
m+l 1 

with the first m terms of r and is 0 thereafter. Then a functional on D is de- 

termined by its value on the finite sequences which means it is determined by a se- 

quence (si) by the formula r i I ~ Z ris i. If, in fact,s i is not slowly growing, we 

i j For having can choose a sequence i(1) < i(2) < i(3) < ... such that si(j) > . 

,. i j+l chosen i(1) ..,i(j) we know that s. ~ is not satisfied for all sufficiently 
l 

large i so there are arbitrarily large i for which it fails. Let i(j+l) be the 

-i 
first one of these larger than i(j) Then let r. = s• when i = i(j) and 0 

.-n-~ 1 
otherwise. Then ~ r.s. diverges while r. < 1 for all i > i(n+l) implies 

ii 1 

inri < i -I---~ 0 as i--+ ~ This contradiction establishes that (si)£C - 

(i.12) There is a certain class of spaces first isolated for study by Grothendieck 

called nuclear spaces. The usual definition is rather opaque but for our purpose the fol ' 

lowed characterization of nuclear spaces conjectured by Grothendieck and established 

by T. and Y. Komura is more useful. Namely, a space is nuclear iff it is a subspace 

of a cartesian power of D . See [Pietsch] especially ii.i.i for details. The topo- 

logy on D is determined by a sequence of pseudo-norms and it is easily seen to be 

complete so that is a complete metric space, i.e. a Fr4chet or F-space. Its dual C , 

with the bounded convergence topology, is a complete nuclear DF-space and both C and 

D are reflexive (in particular C has the topology of bounded convergence on D). See 

[Schaefer] II.7.1, corollary II.81; II.7.2., corollary 2; IV.5.6 and its first corollary; 

IV.6.1; IV.9.6.. Next I claim that Hom(C,D) , equipped with the topology of uniform 

convergence on bounded sets, is isomorphic to D . In fact if f : C --+ D is contin- 
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uous, then it is continuous followed by each coordinate projection. So let f. be 
3 

the composite C---+ D---+ ~ , the second map projection on the jth coordinate. Then 

f. is a linear functional on C and hence represented by a sequence (r..) which 
3 13 

for each j is rapidly decreasing. In order that for each (si)EC , the values 

s.r.. E D it is necessary and sufficient that the latter be a sequence rapidly de- 
i 13 

creasing in j . Although in principle this must be done for all (s i) it is clearly 

sufficient to consider the test sequences (i n ) . Thus (rij) represents a map iff 

.n.m 
for all n,m, we have lim i 3 r . = 0 . Clearly it is sufficient to restrict to 

13 
m = n . To show the isomorphism with D we use the usual method of rearranging a 

double sequence into a sequence. So let k(i,j) be the rearranging function. Since 

k = k(i,j) -< (i+j) 2 , knlrk I < (i+j)2nlrij] - < i2n'2nlr3 ij I ~ 0 as k---+ ~ . Con- 

.n.n 2n 
versely, i < k(i,j) and j < k(i,j) so i ] r.. < k r k + 0 as i---~ ~ or as j ÷~. 

13 
Thus the underlying vector space of Hom(C,D) is isomorphic to D . As for the topo- 

logy, it follows from reflexivity that the polars of fundamental sequence of neighbor- 

hoods of 0 in D form a fundamental sequence of bounded sets in C . (See [ Schaefer] 

Chapter IV, especially 5.2 in conjunction with the corollary of II.7.1.) What this 

means is the sets in C defined by Isil < i n form a fundamental system of bounded 

sets in C . An f represented by (r..) takes the set into the neighborhood 
13 

{(tj) I Pm(tj) < ~} iff ~ inj TM Irij I < £ . Thus the topology on Hom(C,D) is deter- 

mined by these seminorms which are, as seen above, equivalent to the ones on D under 

the isomorphism. 

(1.13) Let C be the full subcategory whose objects are finite direct sums of copies 

of K and C and D the full subcategory whose objects are finite direct sums 

(=products) of copies of K and D . We define the internal hom functor (-,-):c°PxD 

--+ D so that (K,K) = K and (~C~,~ D ) = H~, (C~,D), the index sets being finite. 

The Hahn-Banach theorem implies that R is injective. It is also cosmall. In fact 

if f : ~A~---+ K is a functional, let f~ = flA~ • Unless f~ = 0 there is an a~A~_ - 

with f(a~) = 1 . If this happens infinitely often let a = (a~) with a~ = 0 whenever 

f~ = 0 . The elements with a~ in finitely many coordinates and 0 in the remaining 

converge, in the product topology, to a . The value of f at such an element is the 

number of non-zero coordinates. Since this grows without bound, f(a) cannot be de- 

fined. Thus f~ = 0 with only finitely many exceptions. If now a = (a~)£HA~ has 

f~(a~) = 0 for all a , the same limit argument shows that f(a) = 0 . Thus f fac- 

tors through the projection on the finite product of those A~ - for which f~ ~ 0 . 

Hence the conditions of II.2.8 are satisfied. The condition (V) of III.4.2. is satis- 

fied by exactly the same argument as in the preceding example (see i.i0) . Hence all 

the hypotheses required for our main construction are satisfied. The category A con- 

sists, by the above mentioned result of T. and Y. Komura of exactly the nuclear spaces. 

As for ~-complete spaces, we can examine one of its consequences fairly concretely here. 

The space C consists of slowly growing sequences. The subspace F of finite sequen- 

ces is dense. In fact, if not there would be a non-zero linear functional on C/c£ (F) 

which means ~£D , ~ ~ 0 but ~ IF = 0 . But ~ is represented by a rapidly decrea- 

sing sequence and as soon as single coordinate is non-zero there is an a6F with 
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~(a) ~ 0 . For A£A , a map f : F---+ A is determined by a sequence al,a2,.., of 

elements of A . Here a. is the image of the sequence with a 1 in the ith coordi- 
l 

nate and 0 elsewhere. Continuity requires that for every seminorm p on A , the 

sequence Pal,Pa2,... be extendable to all of C by the formula 

pf(c) = pf((ci)) = E P(ciai) = E ciPa i 

which means that (pa i) must be a rapidly decreasing sequence of real numbers. Now 

say that a sequence (ai) of elements of A is rapidly decreasing if the sequence 

(Pai) is rapidly decreasing for all seminorms p . Then we require that whenever 

(a i) is a rapidly decreasing sequence and (ci) a slowly increasing sequence of real 

numbers, the sum E c.a.l l converge. Since (ciai) is also rapidly decreasing, this 

can be replaced by the simpler hypothesis that every rapidly decreasing series con- 

verge. I must emphasize that this is only a consequence of ~-completeness. It is 

tempting to conjecture that it is equivalent but there is no real evidence for that. 

If the conjecture were valid, it would follow that A is ~-*-compact provided the 

sum of rapidly converging series of continuous functionals were always continuous. 

2. Dualizing Modules. 

(2.1) This example is in response to a question of Robert Raphael as to whether the 

theory of vector spaces over a discrete field had any natural generalization to mo- 

dules over other commutative rings. If there is such a generalization, it seems li- 

kely that the dualizing object T will have to be injective and its dual - which is 

its endomorphism ring - must be the given ring. Technical considerations seem to re- 

quire that T be finitely generated and a cogenerator. Accordingly let R be a com- 

mutative ring. We say that an R-module T is a dualizing module provided T is a 

finitely generated injective cogenerator and the canonical map R---~HomR(T,T) is an 

isomorphism. 

We leave till 2.10 the queskion of the existence of a dualizing module. If R 

is a field, it is clear that R itself is the unique dualizing module. The theory in 

that case reduces to that of vector spaces considered earlier. 

(2.2) Now we let V be the category of all R-modules with its usual monoidal closed 

structure. The category Un V is simply that of topological R-modules. For ~ we 

take all modules of the form R S with the product topology and for D all discrete 

modules of the form S.T . Variations on the theory can be obtained by putting car- 

dinality restrictions on S such as that it be finite or countable. 

(2.3) If D~D , D X S-T and Hom(D,T) ~ Hom(S-T,T) ~ R S . We would like to define 

* R S D = equipped with the product topology. But we must show that this is indepen- 

dent of the representation of D as a direct sum. Instead, define D to be Hom(D,T) 
, 

equipped with the coarsest topology such that D ~ R is continuous for all T---~ D. 

The coordinate injections T---+ S.T dualize to the projections RS---+ R so that this 

topology is at least as fine as the product topology. On the other hand, since T is 

finitely generated, any T---~ S-T factors through F-T for a finite subset F c S . 

When R s and R F have the product topology (the latter being discrete) the projec- 
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tion RS----~ R F is continuous and hence so is RS----+ R ~ R . Thus the topology on 

D* S is the product topology on R 

(2.4) If C ~ R S ~ C , we see that any continuous R S---+ T must have an open sub- 

module in its kernel. The product topology has a neighborhood base consisting of the 

kernels of maps RS----+ R F where F is a finite subset of S . Thus Hom(RS,T) is 

the direct limit of Hom(RF,T) ~ Hom(F-R,T) ~ Hom(R,T) F ~ F.Hom(R,T) ~ F'T and the 

direct limit of the finite sums is just S-T . Thus we define C = S-T . This des- 

cribes the duality between C and D . 

(2.5) Since T is a cogenerator, every AEUn~ has a D_-representation iff it is to- 

pologized by open submodules. Then A consists of these "linearly topologized" mo- 

dules. 

Proposition. T is injective with respect to the class of embeddings in ~ . 

Proof. Let A---~ B be an embedding and q : A --+ T a map. Since T is discrete 

A 0 = ker~ is open in A , A 0 = ANU where U is a neighborhood of 0 in B . Then 

U D B 0 where B 0 is an open submodule. I claim that A 0 = AN(A0+B0) . In fact if 

a = a0+b 0 ~ A where a0eA0, b0~B 0 , then b 0 = a-a 0 £ A while b£B 0 c U so b~ANU = A 0. 

Thus a = a0+b 0 £ A 0 as well. Thus we have 

A/A0-- -+ B/(A0+B 0) 
# 

is an injection and both modules are discrete. Since A 0 = ker 9, ~ induces ~ : A/A 0 

--+ T. Then extension to B/(A0+B0)----+ T now follows from the hypothesis that T is 

injective in V . 

(2.6) The hypotheses of II.2.9 are now satisfied. The cosmallness of T follows 

from the easily proved fact that a continuous map on a topological group is uniformly 

continuous together with 1.2.12. The functor c°P×D--~ D is very simply the hom- 

functor. For a continuous map R S---+ P-T factors, by the previous remark, through 

R F for some finite subset F c S . Since R F ~ F-R is finitely generated a map to 

P-T factors through G-T ~ T G for some finite G c p . Thus Hom(RS,p -T) ~ lim Hom 

(F.R,T G) ~ lim Hom(R,T) FxG ~ lim (F×G) .T ~ (S×P)-T where the limits are taken over 

the finite subsets of S and P respectively. Thus we define (C,D) to be Hom(C,D) 

with the usual structure of an R-module and the discrete topology. 

(2.7) We can now verify the hypotheses of III.4.2. The first two are clear while the 

third is easy. In fact the required isomorphisms, such as 

(RS,(RP,Q.T)) ~ (RQ,(RP,s.T)) 

are immediate when S,P and Q are finite and the general case follows by a limit 

argument as above. Since both sides are discrete, no topological question arises. Ob- 

jects in C are powers of objects in ~ and hence have a D--representation. The uni- 

formity on (C,D) is a convergence uniformity, ~(C) consisting of C alone (or of 

all subset of C ). 

Since the hypotheses of II.2.9 are satisfied, every object is prereflexive so 

III.4.2 (iv) is satisfied. The fifth hypothesis is an easy consequence of the fact that 

T is a cogenerator. In fact if A ---~ B is a proper embedding and x(B, x{A , let B 0 
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be an open submodule of B such that x+B 0 does not meet A . But then x~A+B 0 which 

means the latter is a non-zero open submodule. Thus the non-zero discrete module 

B/A+B 0 admits a non-zero map to the cogenerator T . This is a map non-zero on B 

but 0 on A , as required. 

That the objects in C and D are complete is evident and hence all the hypo- 

theses are satisfied and the construction works. 

(2.8) If R is noetherian, the full subcategory of finitely generated R-modules is 

a sub-,-autonomous category. In fact, T is finitely generated by hypothesis and if 

M and N are finitely generated, choose a surjection F-R---+ M with F finite. Then 

Hom(M,N) is a submodule of Hom(F.R,N) ~ F-N . In that case it becomes natural to ask 

whether this is a compact category in the sense of Kelly, that is whether (M,N) is ca- 

nonically isomorphic to M*~ N . First off, by letting M = N = R we see that it is 

necessary that R ~ T . Actually the question cannot be properly formulated without 

that hypothesis. Granting that, there are natural maps M*@M--+ R and R---+ (N,N) 

which compose to give M*~M---+ (N,N) . This transposes to M*~N---+ (M,N) and what is 

really asked is whether this map is an isomorphism. It is easy to see that it is when 

R is a field and hence when R is semisimple (i.e. a finite product of fields). If 

R is not semisimple, there is a non-flat module (yon Neumann regular self-injective 

rings are fields), and hence a finitely generated non-flat module (Tor commutes with 

li~m), call it M . Then Steve Schamuel's elegant observation that (M ,-) is left 

exact while M~- is not settles the question. In fact if K is a field and R = 

x]/(x 2) , then it is easily seen that R is a dualizing module and that when K is 

made into an R-module via the obvious argumentation R---+ K , then the canonical map 

K*~K---+ (K,K) is zero (although they are isomorphic). 

(2.10) Now we turn to the question of the existence of a dualizing module. The only 

result I know is the following. 

Proposition. Suppose K is a commutative ring with a dualizing module Q and R is 

a finitely generated K-projective K-algebra. Then for any constantly rank 1 finitely 

generated R-projective R-module P , T = HomK(P,Q) is a dualizing module for R . 

Before beginning the proof let me observe that this requires beginning with a 

ring that has a dualizing module. Of course K might be a field. The result of this 

proposition applied in that case is that any finite dimensional commutative K-algebra 

has a dualizing module and may well have more than one. It can be shown that Hom 
K 

(R,K) ~ R iff R is self injective. 

Proof of the proposition. The proof that the T so defined is injective is standard. 

For if M---+ N is an injection of R-modules, we have 

H°mR(i'H°mK(P'Q)) 

Hom K (P@R N ,Q) 

and with P R-projective P@R M > P@R N 

HomR(i,HOmK(P,Q)) 

HOmE (P~RM, Q ) 

is still an injection and since Q is K-in- 
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jective it follows that the map is a surjection. Similarly, from M ~ 0 , HOmR(M,Hom K 

(R,Q)) ~ HomK(M,Q) and the fact that Q is a cogenerator in K-modules, it follows 

that HomR(M,T) ~ 0 so that T cogenerates R-modules. Since P is finitely genera- 

ted as an R-module, there is a surjection F.R---~ p and since P is projective 

this map has a left inverse. Similarly R is a retract of G.K for some finite set 

G and thus as a K-module, P is a retract of (FXG)-K whence T = HomK(P, Q) is a re- 

tract of QF×G . Since Q is finitely generated as a K-module so is T . Afortiori, 

it is finitely generated as an R-module. The functor M ~ HomK(HOmK(M,Q),Q)) is 

finitely additive. The natural map 

M ---+ Hom K (Ho~ (M, Q) ,Q) 

is an isomorphism when M = K , by hypothesis, hence is when M is finite free and as 

well when it is finitely generated and projective. This is, in particular, true of P, 

considered as a K-module. Now 

HOmR(T,T ) = HomR(HOmK(P, Q) ,HOmK(P,Q) 

HOmK (P@RHOmK (P, Q),Q) 

HomR(P,HOmK (HOmK(P, Q) ,Q) 

HomR(P,P) 

But P is locally isomorphic to R and hence the natural map R--~ HomR(P,D ) is 

everywhere locally an isomorphism and hence is an isomorphism (its kernel and cokernel 

are everywhere locally zero). 

3. Banach Spaces. 

(3.1) Let V be the category of banach spaces and continuous linear maps of norm Nl. 

It is known that this is a semivariety. The underlying functor assigns to each spare 
1 

V its unit ball uV . The left adjoint assigns to each set S the banach space £ (S) 

of all functions a : S---+ K (where K is the real or complex field) such that 

lasl converges, with norm defined by Itai] = ~iasi An algebra for the theory de- 

s£S 
termined by this adjoint pair is a set closed under operations (x i) I > ~ l.x.1 1 where 

(li) is any finite or countable sequence of scalars for which Z ili] S 1 . The op- 

erations must satisfy equations which look like double summation identities and are 

fairly obvious. Examples of algebras for this theory which are not (unit balls of) 

banach spaces are the open interval (-i,i) as well as the quotient space [-i,i]/ (-i,i). 

This latter space is more accurately the coequalizer of the inclusion map and the zero 

map. It has three elements i,-i and the third which might be denohed 0 , and repre- 

sents the whole interior of the ball. Any operation not required by an identity to 

take the value 1 or -i , takes the value 0 . 

(3.2) Proposition. Let V be a banach space and B c uV be topologically closed 

and invariant under the above theory. Then there is banach space W such that B ~ W. 

Proof. Since uV is closed in V , so is B . Since V is complete, so is B . Now 

let W be the linear subspace of V generated by B . Since B is invariant under 
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the operations it is convex and circled and hence determines a norm p on W by the 

formula 

p(w) = inf {I I wclB} . 

If w£B , p(w) ~ 1 , while if p(w) ~ 1 , w6(l+6)B for all £ > 0 or (l-£)w£B for 

all ( > 0 . Since B is closed this implies wEB . Thus B is closed in this norm. 

Now W is complete iff every set IB is since every Cauchy sequence is eventually in 

a IB . This is closed in V since B is• The uniformity induced by p on IB is 

finer than that induced by V . The uniform covers of IB are by translates of 6B 

and these are closed in V since B is. Thus the completeness of IB in the p uni- 

formity follows, by 1.2.5, from its completeness in V . 

(3.3) From this we see that the hypothesis of 1.3.10 is satisfied. It is not clear 

what the uniform objects are. Here is an example of a preuniform object which is not 

uniform. First let I be the closed interval [-i,i] with its usual uniformity• Let 

J be the same interval with the uniformity in which 1 and -i are isolated while (-i,i) 

has the uniformity inherited from the closed interval. This is a preuniform object be- 

cause the value 1 (resp. -i) is the value of an operation iff all the genuine variables 

(i.e. all variables on which the operation genuinely varies) are 1 (resp. -i). A map 

I---+ j preserves the algebra structure iff it is multiplication by a scalar of abso- 

lute value ~ 1 . Of these, only those of absolute value < 1 are uniform. Thus Hom(I,J) 

is (-i,i) which does not belong to V . 

(3.4) Fortunately, it is not necessary to describe Un V . It is sufficient to des- 

cribe the full subcategories C and D and let A consist of all objects with a D- 

representation. There are two natural choices for C and D . The first is to take 

and D to be finite dimensional banach spaces. Let A be a finite dimensional 

banach space with norm p and al,...,a n be a linear basis. Let li II denote the 

euclidean norm determined by al,...,a n , i.e. 

Ullal+...+inanll = (a~+...+a~) ½ . 

Now let U = max(p(al),...,P(an)) . First observe that from the ordinary inner pro- 

duct in R n , we have 

[(Lll[ ..... [lnl)-([l ..... i) ~ [Illll ..... lln])[[ [[(i ..... 1) I[ 

2)h 
llll+...+il n ~ ,~ (Illl2+...+lln I . 

Then 

Ip(llal+...+Ina n) ~ llllP(al)+...+llnlP(a n) 

U(llll+...+llnl) 

• 2)% 
~[n(illl2+..+llnl 

= ~ Lillal+...+Inanli , 

so that p is bounded in the norm 11 II Conversely, the (n-l) sphere ilali = 1 is com- 

pact in a finite dimensional euclidean space and p never vanishes on it. Hence p 

takes on a minimum value there, say l/M, and it is clear that [iall K Mp(a) for all a£A. 
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Thus each of the norms defines the same topology (or uniformity) on A . 

(3.5) From this it follows every linear functional A---+ R is continuous (but not ne- 

cessarily a map in the category) and we let A* be the set of them. We norm A* by 

p*(f) = sup { If(a) l lp(a) ~ i} . 

We identify A** with a under the usual identification of a finite dimensional space 

and its second dual. Let p** denote the norm on A induced by p* . 

(3.6) Proposition. p** = p . 

Proof. For any a£A , If(a/p(a))l ~ p*(f) so that If(a) I ~ p*(f)p(a) If p*(f) ~ i, 

If(a) I ~ p(a) and hence 

p**(a) = sup { If(a) l lP*(f) ~ i} ~ p(a) 

To go the other way, let a ~ 0 . We may, without loss of generality, suppose p(a) =i. 

The subspace generated at a certainly admits a functional f with f(a) = 1 . The Hahn- 

Banach theorem ([Schaefer ] , II.3.2.) guarantees that we can extend f to a functio- 

nal defined on all of A such that If(b) l~ p(b) for all b~A . This implies that 

p*(f) ~ 1 . Then p**(a) ~ f(a) = 1 = p(a) 

(3.7) This shows that A ~ A** and establishes the duality for finite dimensional 

spaces. An object of the category A is a set A which is the unit ball of a banach 

space and has the norm and the uniformity induced by a family of embeddings into unit 

balls of finite dimensional banach spaces. Note that the product uniformity does not 

coincide with the uniformity induced by the norm. 

(3.8) Several observations may be made here. First off, a product of finite dimen- 

sional banach spaces, although not a banach space, is a topological vector space. In 

particular this means that the induced uniformity, restricted to the unit ball, has an 

extension to the whole space of such a nature that addition and scalar multiplication 

are uniformly continuous. This is assurdly not the case for the object J described 

in 3.3. There are two ways of extending this uniformity. The first is to use the 

uniformity induced by the product uniformity on the product of finite dimensional ba- 

nach spaces. The second is to use the uniformity induced by the coarsest locally 

convex topology on the whole space such that every map to an arbitrary locally con- 

vex space which is continuous on the unit ball, is continuous. As long as this is done 

in the same way for every object in A it makes no difference which is chosen. The 

result is a category of "MT" (for mixed topology, see [Semadeni] , [Wiweger] ) spaces 

which is equivalent to the category A . It is clear that the first approach is more 

in the spirit of our previous development. Thus we take A to be the category of spa- 

ces which are subspaces of products of discrete spaces with the norm and the topology 

induced. 

It should be noted that if A and B have isomorphic (algebraically and topo- 

logically) unit balls they are isomorphic. For the topology on A is such that any 

map of A to a banach space, is continuous as soon as it is on the unit hall of A . 

Since B is embedded in a product of banach spaces, the same is true of B . 

(3.9) As internal homfunctor c°P×D ---+ D we take (C,D) to be all linear maps be- 
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tween the spaces C and D . If p and q are the norm functions on C and D re- 

spectively, define the norm (q/p) (f) = sup {qf(c) i p(c) ~ i} . This could also be 

described by 

sup {qf(c/p(c)) I c ~ 0} 

except when C = 0 . Using this it is easy to see that C and D form a pre *-auto- 

nomous situation. The only part of III.4.2 which must be demonstrated is that every 

object is prereflexive (the ~-comp}eteness here is a vacuous hypothesis). This be- 

comes harder to verify as C and D grow larger for the dual has the same underlying 

object but its uniformity becomes finer meaning it might admit more functionals. Ac- 

cordingly we turn to the next example. 

(3.10) We let D denote the category of banach spaces. The discussion of 3.8 goes 

through unchanged with finite dimensional banach spaces replaced by banach space. Thus 

we can consider A to be the category of those MT spaces whose topology and norm are 

determined by maps to banach spaces. Among them are the full subcategory ~ of these 

spaces which are locally convex and whose unit ball is compact (not, of course, in the 

norm but in that topology). Semademi shows ([Semademi]), that C °p ~ D . The duality 

may be described as follows. For D(D , D* is the set of linear functionals on D to- 

pologized by pointwise (simple, weak) convergence and with the norm given by the same 

formula as in (3.5). The fact that the unit ball of D* is compact is standard. Here 

is a proof. It is topologized as a subspace of K D . If uD is the unit ball of D, 

a map in the unit ball of D* takes uD to I = u]< and so that unit ball is topolo- 

gized as a subspace of I uD which is compact. It is in fact a closed subspace for any 

map uD---~ I which preserves the finitary operations essentially convex linear combi- 

nations automatically induces a map D---+ ~ . The preservation of a finitary operation 

involves only a finite number of coordinates and the set of maps preserving a given op- 

eration is easily seen to be closed. On the other hand, if C(C , let C* be the set 

of continuous linear maps C---+ K . Each such map is bounded above on the compact 

unit ball of C and the least upper bound is the norm of the map. No additional to- 

pology is required on C* . Before continuing, we require the following. 

(3.11) Proposition. Let CeC and DeD . Then the topology on the unit balls uC* 

and uD* is that of uniform convergence on compact sets bounded in norm. 

Proof. For C that is clear since it is the topology of uniform convergence on the 

unit ball and its scalar multiples. So let DeD and X be a compact subset. A zero 

{9~D* i llgll ~ 1 and ig(x) I < e for all xcX} 

where £ > 0 . Now there is a finite subset x I .... ,x n such that X c U (xi+(e/2)uD) 

where uD is the unit ball of D . The set 

{9£D* i [1911 ~ 1 and 19(xi) i < {/2, i=l ..... n} 

is a neighborhood of 0 in the pointwise convergence topology. But if 9 belongs to 

the latter set and x6D , x = xi+(£/2)y for some y with ilytl ~ 1 . Then 

m 

neighborhood in the compact convergence topology is 
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norm, the natural map 

a ~A* of norm ~ 1 

(l-c)ilail . Thus the 

1~(x) I S i~(xi) I + £/2 I ~(Y) t < 6/2 + E/2 = 6 and thus ~ belongs to the former. 

(3.12) The result of this is that if C---+ D is a map the induced map D*---+ C* is 

continuous on uD* and hence on D* . The same is true of a continuous linear func- 

tion. For the topology on C is coarser than that of the norm, a fact which follows 

immediately from the representation in D . Thus a continuous linear function C ---+ D 

is also continuous in norm and hence bounded. It follows that some scalar multiple of 

it is a map C ---~ D , induces a map D*--+ C* and dividing by the scalar gives us again 

a continuous linear D*---+ C * . 

(3.13) We now define (C,D) to be the space of ~ontinuous linear functions C--+ D 

equipped with the usual sup-on-the-unit-ball norm. The previous paragraph implies 

that there is a map (C,D) ---+ (D*, C*) It is routine to see that that map preserves 

norm. Both (C',(C,D)) and (C,(C',D)) can be identified as the set of all bilinear 

maps C×C'---~ D which are continuous on the product of the unit balls. The fact that 

the usual hom/cartesian product adjointness works well when the domain spaces are com- 

Pact (~elley] , Chapter 7, theorem 5, p.223) implies the same here. The only thing 

left is to show that objects in C and D are reflexive. 

(3.14) Proposition. Let AeA and a6A be an element of norm > i. Then there is a 

functional ~ on A such that ~(a) > 1 and II~LI ~ 1 . 

Proof. Since the unit ball of a banach space is closed so is the unit ball in a pro- 

duct of banach spaces. This property holds as well for a subspace of such a product. 

Thus the unit ball uA is closed in A and a{uA . Thus there is a convex circled 

neighborhood M of 0 such that (a+M) N uA = ~ . It follows that (a+½M) N(uA+½M) = 

so that N = uA+½M is a neighborhood of 0 whose closure does not contain a . 

The gauge of N , defined by 

p(b) = inf {~Ib£1N} , 

is a seminorm on A with p(b) ~ Jlbti for all b and p(a) > i. The functional 

defined on the one dimensional subspace generated by a ~(a) = p(a) has, by the Hahn- 

Banach theorem, an extension to all of A for which ~(b) ~ p(b) K llbll . 

(3.15) This means that no matter how A* is topologized, as long as it bears the sup 

A- + A ** is norm preserving. For given any ~ > 0 , there is 

such that l~(a/(l-E)llalL) I > 1 which means that i~(a) I > 

sup { i~(a) I i ii~II = 17 Z llall 

while the other direction is automatic. It follows that a , considered as a functio- 

nal on A* , has norm equal to ilall. 

(3.16) This implies, in particular, that A --~ A** is an injection. Let C£~ . The 

topology on C** is that of simple convergence on C* . Since each ~£C* is continu- 

ous, it follows that C---+ C** is continuous in that topology. We will show that the 

image is dense. Suppose f£C** . A neighborhood of f is determined by a finite num- 

ber ~i,...,~ n of functionals on C and an ~ > 0 as 

{g I i (g-f(~i) I < £} • 
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Now ker ~i is a subspace of codimension 1 so that ker ~in...n ker ~n has finite 

codimension. Let A = C/ker ~IN...N ker ~n Then A* is isomorphic to a finite di- 

mensional subspace of C* , (in fact, they are generated by ~l,...,~n). The restric- 

tion of f to A* is, by (3.7), represented by an a£A . If cEC is a preimage of a 

then the corresponding element of C** lies in the neighborhood of f described above 

(in fact for any £ > 0). Now suppose [Ifl] < 1 . Then ILall = lJflA*Li~iifi1< 1 and so c 

may also be chosen to have norm < 1 . Since uC is compact, its image is closed but 

every element of C** of norm < 1 is in the closure of that image. Thus the image 

of uC is uC** and that of C is C** . Since uC is compact that map is homeo- 

morphism on unit balls and hence C---+ C ** is an isomorphism (see the discussion in 

(3.8)) . 

(3.17) Proposition. Let A be embedded in B . Then any functional ~ : A---+ K with 

61~II < 1 has an extension to B of norm < 1 . 

Proof. Since K is complete and continuous maps are uniformly continuous, ~ has an 

extension to the closure of A . Thus we may suppose A closed in which case so is 

A 0 = ker ~ . In that case A/A 0 is embedded in B/A 0 and A/A 0 is a space of di- 

mension 1 (except in the trivial case that ~ = 0) generated by an element a such 

that ~(a) = 1 , whence ilall > 1 . We know from 3.14 that there is a linear functio- 

nal ~ on B/A 0 with ~(a) > 1 and LI~Ii ~ 1 . The required functional is 

b ----+ ~ (b)/~ (a) 

(3.18) Proposition. Every A£A is quasireflexive. 

Proof. We have shown that every CE~ is reflexive. Suppose {q :C~ A} is a family 

of maps C ~C such that the induced A*---+ HC is an embedding. Suppose f: A*---+~ 

is a functional with ]Lfll < 1 . Then we know that f has an extension f# to a func- 

* . = f# ~ f#1[ tional on ~C whose norm is still < 1 Let f LC • If ~11f i] > i] (in 

particular if more than countably many f # 0) we could find a finite set ~=l,...,n 

such llflii+'''+lifntl > alf#11 . Let ~ = SlflU+'''+llfnll - llf#11 and 9icCi such that 

119iI] = 1 and fi(gi ) > IIfill - £/n . Then let (~)e~C have 9i in the ith coordi- 

nate and 0 elsewhere. We have f(9 ) = fl(~l)+...+fn(~n) 

> [i flll+ll f211+...+LI fnll - 

= li f#11 

while II (~)II = 1 , a contradiction. Now each f eC is repesented by an element c ~ 

C and of course ZIic~II converges. Then with a~ = g(c ) , ZIIa~IL < 1 so that ~ae 

converges (in norm, afortiori in the topology) to an a{A . If 9cA* , f(9)=f#((gg )) 

= Z~g (c) = 9(Zg c ) = ~(a) . The next to last equality follows from the fact that 

is additive and continuous. 

(3.19) Now with D£D , both D and D** are banach spaces, the map between them is bi- 

jective and preserves norm (see 3.15) and is thus an isomorphism. This finishes the 

proof that C and D constitute a pre-*-autonomous situation. 

We should now verify III.4.2(v) . Unfortunately it is not quite true in the form 

stated. The condition is satisfied for norm-preserving embeddings (use the same argu- 
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ment as in i.i0). The way out is to let T(CI,C 2) have the norm of IClI@IC21 and 

the topology of (CI,C2) Then the map constructed to the Corollary of III.27 will 

necessarily be continuous and can be proved ad hoc to be norm non-increasing. To see 

this, we begin with 

(3.19) Proposition. For any 

is norm preserving. 

Proof. If f : A ---+ B , 

A,B6A , the natural embedding 

A(A,B) ---+ A(B*,A*) 

II fll = sup {ilf(a) il lllal] = i} . 

Suppose llfll = 1 . Then for any 6 > 0 , there is an 

llf(a) ll > 1-6/2. There is a linear functional B on 

18f(a) i > 1-6. But then 

i]ai[ = i, llf*Z(a) II > -6 

which implies that 

Corollary. 

llf*Sil > I-E . 

Since this is true for all 6 > 0 and lIBil = 1 , 

II f*ll >_ 1 . 

Since ilf*ll _< llfll = 1 , it follows that 

II f*ll : 1 . 

The natural embedding 

V(A,B)---+ V(B*,A*) 

preserves norm. 

(3.20) Now we suppose that 

aEA such that ilall = 1 and 

B such that liS]i = 1 and 

and hence that 

which implies that 

llf#(Cl) (~)II <_ 1 

If#(Cl ) (e) (C 2) I < 1 . 

f : Cl~-~ A(C2,A) 

has norm 1 and that ~ : (Cl,C~)*---+ A is the map induced by the Corollary to III.2.7. 

We must show ~ has norm -< 1 . The map 

f# : Ci---+ A(C2,A)---+ A(A*,C~) 

still has norm 1 and ~ has the same norm as 

~* : A*-~ (Cl,C ~) 

NOW if cI6C 1 , d6A* , c2£C 2 are such that llClLi = ildll = lIy211 = 1 , then 

II f# (Cl) II _< 1 
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But f#(C I) Ca) (C 2) = ~(a) (c I) (c 2) 

1 , the inequality 

successively implies 

and since d,CI,C 2 are arbitrary elements of norm 

I~(c~) (C I) (C2) I -< 1 

I I f (~ )  (C l ) l l  ~ 1 

I1~(~)11 ~ 1 

I1~11 ~ i 

which establishes what we need. Since no other use was made of III.4.2(v), we may ig- 

nore that condition here. 

The objects in D are banach spaces and hence are complete. As for C , re- 

call that the "underlying set" is the unit ball and for spaces in C , this is compact. 

Thus the requisites for our construction are present. 

4. Modules over a Hopf Algebra. 

(4.1) Let H be a cocommutative hopf algebra over a field K . This means that H 

is a vector space over K , equipped with K-linear maps 

: K---+ H ; e : H---+ K 

: H®H ---+ H ; 6 : H---+ H6~H 

1 : H---+ H 

such that c and 6 determine a cocommutative coalgebra and ~,~,i a group object 

in the category of cocommutative coalgebras. 

(4.2) The best known example is the group algebra ~ G] of a group. Here ~(g) = i, 

6(g) = gQg and l(g) = g-i for g(G . Note that the algebra is commutative iff G 

is. The second best known example is the enveloping algebra L e of a lie algebra L . 

The operations are the unique algebra homomorphisms for which 6(£) = 0 , 6(£) = i~£ 

+£®i and I(~) = -£ for £6L . Most of the many features which are common to the 

theory of groups and of lie algebras belong in fact to the theory of hopf algebras. 

(4.3) If H is a hopf algebra we understand by an H-module a module for the associa- 

tive algebra whose multiplication is given by p . A morphism f : M---+ N of H-mo- 

dules is simply a module homomorphism. We let H denote the category of H-modules. 

(4.4) We adopt Sweedler's notation and write for heH , 

6h = E h(1)®h(2 ) 
h 

although in practice, the index on the summation is usually omitted. 

If M is a module, let PM : H@M---~ M denote the action of H on M . 

(4.5) Let H denote the category of H-modules and morphisms described above. If M,N£H, 

let H(M,N) denote the abelian group Hom(M,N) equipped with the H-action defined by 

(hf) (m) = E h(1)f(~h(2)m) 

In the case of a group G , this formula amounts to 
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(xf) (m) = xf(x-lm), xEG 

which is more-or-less standard while for a lie algebra 

(4.6) Proposition. Let M,N 

of H-modules iff for all h£H , mEM , 

(6h) f(m) = ~ h(1) f(lh(2)m) 

Proof. To motivate the proof we consider that case H = ~ G] 

In that case, the formula above becomes, for all x~G , 

f(m) = xf(x-lm) 

which is evidently equivalent to 

and since x 
-i 

L , it becomes the "bracket" 

(xf) (m) = xf(m) - f(xm) , x~L . 

in H . A K-linear map f : M---+ N is a homomorphism 

-i 
x f(m) = f(x-lm) 

is arbitrary, this means 

xf(m) = f(xm) 

where G is a group. 

for all x£G . The proof below is a translation of this into diagrammatic language. 

It is worth mentioning that a purely combinatorial argument would seem nearly impos- 

sible. The proof is gotten by juxtaposing commutative diagrams. Since 1 is an invo- 

lution of the coalgebra structure el = 6 , 61 = @ . If we replace h by lh the 

formula above becomes 

This can be written 

(6h) f(m) = (Elh) f(m) = Elh(1) f(h(2)m) 

(*) ~N.H@f.H~M.I~H~M.6~M = f. ESM 

where we use the canonical isomorphism to identify K~M 

mutative diagram 

HSF 
HSM ~ H~N 

H~H~f 
H~H~M -w H~H~N ~ HSN 

with M . Then we have a com- 

N . 
~N 

The left-lower sequence of this diagram is the upper-right of next. 

H®(*) is exactly that, (*) being the formula labelled above. 

The polygon marked 
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H@f 
H~uM 

8~M I 

H~uHef 
H~H~uM 

H~H~uH~M 

H~ I (9/I(9.M I H~(*) 

H~H~ M 

H~N 

7/ 
> H~N 

H ~ C ~ N ~  

H~M H~ f > H~N 

H~uH~H~UM 

H®HSf 

Then we have a commutative diagram 

H~M~ 

[ 6~M 
d®H®M 

H®HSM 

[ H@~ M 
6~M 

H@M 

H®f 

~N H~N 

I £~N 
K®N 

H~HOM 

I H~60M 
H~ISH®M 

• + H~H~H~M 

HSHSz M 

H@I~M 
) H@H@M-- 

I H~H®f 
H@I@N 

+ H~H~N-- 

H~H~H~M 

I H®H~ M 

H~H@M 

I H@H~f 
H ~  N 

H~H~N 

~N 
> H~N 

HSN 

* N 

Finally we have a commutative diagram 

H®ZM H@f 
H(~H(gM- > H@M ~ H~N 

/ K~laM K~f r/~N H~M K~N-I~M. > K~M ~ K~N > H~N 
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Putting these diagrams together, we see that (*) implies that 

is, of course, the condition that 

equations 

imply that 

f'ZM = ~N "H@f " This 

f be an H-homomorphism. To go the other way the 

f(hm) = hf(m) , 

{h = Eh(l ) (ih(2)) 

~h(l ) f (ih(2) 

(4.7) If H is a hopf algebra over 

m) : Eh(l ) (ih(2))f(m) 

= (~h) f(m) 

K , the augmentation : H ~  K determines in 

an obvious way an H-module structure on K . If M 

K ---+ M is determined uniquely by an element meM . 

in the category the element m must satisfy, for all 

In particular, a map 

(eh)m = hm . 

K + H(M,N) 

is determined uniquely by a K-linear map f : M---+ N 

(~h) f = hf 

which means, in view of the H-action defined in (4.4), 

(6h) (fm) : Eh(1)f(ih(2)m) , 

i.e. that f is an H-homomorphism. Thus we have shown, 

Proposition. For any M,N in H , 

is another module, a K-linear map 

In order that the map be a morphism 

heH , 

such that 

h = ~h(l ) (ch(2)) 

M ~ M~K 

so that this ~ makes H into a symmetric monoidal category. 

(4.9) Proposition. For any M,N,P in H , there is a natural isomorphism, 

Hom(M~N,P) + Hom(M,H(N,P)) 

Proof. Since as a K-module, M~N = MOKN and H(M,N) = HomK(M,N), there is a canonical 

isomorphism, 

gives rise to an isomorphism 

Hom(M,N) ~ Hom(K,H(M,N)) 

(4.8) Define MSN to be the K-module M~ N with H-action given by 
K 

h(mSn) : ~h m~h (i) (2) n " 

Since the algebra is cocommutative and coassociative, it is easy to see that this gives 

a symmetric, associative tensor. The counit identity 
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HomK(M~N,P ) ~ HomK(M,H(N,P)) . 

Thus the only thing to check is that a morphism on one side corresponds to a morphism on 

the other. If f : M®N --+ P is a K-linear m~p it is a morphism iff it satisfies, for 

all h6H , mEM , nEN , 

(6h) f(m®n) = ~ h(l ) f(lh(2 ) (m~n)) 

(i) = E h(1)f(lh(2)(1)m~lh(2 ) (2)n) 

The corresponding map ~ : M---+ H(N,P), defined by 

~(m) (n) : f(m@n) 

must satisfy for all hEH , mEM 

(~h)(fm) = ~ h(1)~(lh(2)m) 

which means, for all n6N , 

({h) (fro) (n) = ~ h(1)~(lh(2)m) (n) 

(Eh) f(m~n) = ~ h(l ) (1)f(lh(2)m) (lh(l) (2)n) 

(ii) = E h(l ) (1)f(lh(2)m~lh(1) (2)n) 

To see that these are equal, let ZM ' ~N ' ~P denote the maps describing the action 

of H on M,N,P, respectively (e.g. ~M : H~M---+ M) Also let o : H®H > H@H de- 

note the interchange isomorphism. From the cocommutativity and coassociativity, it 

follows that the diagram 

H ~H 

H ~  H ~  

H~H ' ÷  I I ® H ® H - -  ~ H~H~H 

commutes. This implies that for hEH 

h(1)®h(2) (1)®h(2) (2) = ~ h(1) (1)®h(2)~h(1) (2) 

By applying H®I@I , tensoring with m®n and applying an interchange, we conclude that 

~h(1)®lh(2) (l)~m~lh(2) (2)~n = ~h(1) (1)®lh(2)~m®lh(1) (2)®n • 

Now apply ~p.H~f.H®~M~ N and the required identity of (i) and (ii) results. 

(4.10) Theorem. H is an autonomous category. 

Note that the set underlying ~(M,N) is HomK(M,N) , not Hom(M,N) . Thus we 

have an example which features pseudomaps distinct from maps. In the development in 

chapter III it may have appeared that the pseudomaps should have been taken as the pri- 

mary category. Although that point of view would have simplified the language, it would 

have led in the current instance to considering the category whose objects are H-modules 

but whose maps are just K-linear. 
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(4.11) Until now we have not used the fact that K is a field. Thus the preceding re- 

sults are valid for arbitrary hopf algebras. What follows will require that K be a 

field although it would likely be sufficient that K have a dualizing module. 

(4.12) It is evident that H is a variety as well as closed monoidal category. It 

should be noted that the theory of H is not in general commutative (the theory of 

G]-modules in commutative iff G is) and even if it is, the closed structure is not 

the canonical one. This is reflected in the existence of pseudomaps distinct from maps. 

The pseudomaps M--~ N - i.e. the elements of H(M,N) - are the K-linear maps while 

the maps are the H-homomorphisms. 

Since the category H is abelian, the category Un H is equivalent to topolo- 

gical H-modules. We let D be the discrete H-modules and C be the category of topo- 

logical H-modules which are, as K-vector spaces, linearly compact. The dualizing object 

is K equipped with the H structure induced by • . As usual we let A denote the 

subcategory of objects which have a D--representation. Evidently the vector space un- 

derlying any such object is a topological K-vector space with enough discrete repre- 

entations. We also know that if M•A , the space underlying M(IM],K) is the same as 

the dual space of the vector space underlying M . The same is evidently true of 

M* = A(M,A) Thus the linear transformation underlying the canonical map 

IMI + H (M*,K) 

is an isomorphism and hence this map is an isomorphism. This shows that every object 

is quasi-reflexive. 

To show that objects in ~ have a D--representation, it is sufficient to observe 

that every topological K-vector space which has a neighborhood basis at 0 of open sub- 

spaces, has a representation by discrete spaces. If such a space is the vector space 

underlying an object of Un H , then that object already belongs to A . For it is 

sufficient to find a family of pseudomaps, i.e. linear, but not necessarily H-linear, 

maps. For that, you can take the maps to discrete spaces which can be given H-module 

structures as direct sums of copies of K . In particular this holds for all C£C . 

The pre-*-autonomous structure is evident. The module of continuous maps of C ---+ D 

is topologized discretely and given the H-structure described in (4.5). The continu- 

ity required of the H action insures that hf is continuous when f is. The remai- 

ning parts of III.4.2 are immediate. Recall, in showing the fifth, that the vector 

spaces underlying C* and A* are the continuous K-linear functionals on C and A, 

respectively. Thus the general theory applies here. 
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5. Topological Abelian Groups. 

(5.1) In this section we let V be the category of abelian groups. We can and will, 

as observed at the beginning of this chapter, identify Un V with Top V, the category 

of topological abelian groups. 

Let A be an abelian group. 

Such that 

By a seminorm on A is meant a function 

p : A--~ 

i) p(0) = 0 ; 

ii) p(a-a') < p(a) + p(a') , for all 

Trivial consequences are 

iii) p(a) ~< 0 (take a=a' in (ii) ) ; 

iv) p(a) = p(-a) (take a'=0 in (ii) 

v) p(a+a') ~< p(a) + p(a') ; 

vi) Ip(a) - p(a') I ~< p(a-a') . 

a, a' E A. 

) ; 

(5.2) An invariant pseudometric on A is a pseudometric d 

±) d(a,a') = d(a+a", a'+a"), for all a,a',a" e A . 

Trivial consequences are 

ii) d(a,a') = d(-a,-a') ; 

iii) d(a-a') = d(a-a", a'-a") . 

(To prove (ii), d(-a,-a') = d(0, a-a') = d(a-a',0) = d(a,a'). 

(5.3) Let p be a seminorm on A . Define a function 

~(p) : A x A , 

by 

(a,a') = p(a-a') 

Then for a,a',a" E A, 

e(p) (a,a') = p(a-a') 

~< p(a-a") + p(a"-a') 

= e (p) (a,a") + e(p) (a",a') 

so that ~(p) is a pseudometrie. Also, 

e(p) (a,a') = p(a-a') 

= p (a+a"-a"-a') 

= ~ a+a"-(a"+a')] 

= e(p) (a+a', a'+a") 

and we see that ~(p) is an invariant pseudometric. 

by 

such that 

Let d be an invariant seminorm on A and define a function 

B(d) : A----+~ 

Bd(a) = d(a,0) . 
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Then 

f,d(0) = d(0,O) = 0 

~d(a-a') : d(a-a', 0) 

: d(a-a'+a', O+a') 

: d(a,a') 

< d(a,0) + d(0,a') 

: d(a,O) + d(a',0) 

= 8d(a) + 8d(a') 

so that 8d is a seminorm. 

(5.4) Proposition. The correspondences 

p ---+ ~ (p) 

d ---+ B (d) 

correspondence between seminorms on determine a 1-1 

on A . 

Proof. We have 

Also, 

~Bd(a,a') - 6d(a-a') 

: d(a-a', 0) 

= d(a-a'+a', a') 

: d(a,a') 

8~p(a) = ~p(a,O) 

= p(a-0) 

= p(a) 

Thus ~ and 8 are inverse isomorphisms. 

(5.5) Proposition. Let A be a topological group and 

following are equivalent: 

i) p is continuous ; 

ii) p is uniformly continuous ; 

iii) ~(p) is continuous ; 

iv) ~(p) is uniformly continuous . 

A and invariant pseudometrics 

p a seminorm. Then the 

Proof. If p is continuous (resp. uniformly continuous) ~(p) is the composite 

A x A ~ A ~E+FR 

in which the first map, subtraction, is uniformly continuous, so the composite is. If 

~(p) is continuous (resp. uniformly continuous), p = ~(p) is the composite 

The components of the first map are the identity and 0 and it is uniformly continu- 

ous. Finally, suppose that p is continuous. For C > 0 , choose a neighborhood 

M of 0 such that 

a E M implies p(a) < s . 

Then for a @ A, a' E a+M implies 

IP(a) - p(a') I <_ p(a-a') < s . 
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(5.6) Let A be a topological abelian group and M be a neighborhood of M. Then 

so is -M and M 0 = M n (-M) . The set M 0 is a symmetric (i.e. M 0 = -M 0) neighbor- 

hood of 0 contained in M . We may inductively choose a sequence 

MI,M2,M 3 , .... 

of symmetric neighborhoods of 0 such that 

M +M C 
n n Mn-i 

for all n > 0 

If ~ is a finite set of strictly positive integers, let 

I(~) = Z{2-ili E ~} 

be the corresponding dyadic rational number. 

If 1 is a positive dyadic rational, define a subset M(1) of 

M(1) = A , if i > 1 

M(1) : M 0 

M (i(~)) : ~{MiJi E ~} 

(5.5) Proposition. For any dyadic rationals D and v , 

M(~) + M(v) C M(~+v) 

Proof. If ~+v > 1 , the conclusion is evident. If 

the conclusion is also evident. Thus we may suppose 

D > i ; v > i 

This means there are finite sets of integers ~ and 8 such that 

i(~) : ~ ; I(B) = v 

The proof is by a double induction; first on the cardinality of 

the smallest integer in ~ n 8 • Thus we begin by supposing that 

~ n s : ~  . 

In that case, we have 

since the union is disjoint. 

Similarly 

A by 

l(a U 9) : Z{2-11i e U 8} 

: Z{2-ili e ~} + E{2-ili E 8} 

Thus 

~(~ u 8) : l(e) + (8) 

~=i and v=O or vice versa, 

M(D+V) = M (I(~) + I(8)) 

= M (X(~ u 8)) 

= z{Mili e ~ u 8} 

: E{Mil i e e} + E{Mili E 6} 

= M (I(~)) + M (I(B)) 

= M(~) + M(v) 

Next we suppose that ~ N 8 # 0 and that the conclusion is valid whenever 

: ~(~') ; v : ~(8') 

and ~, n B' has fewer elements than e ~ 8 and that it is also valid when a' n 8' 

has the same number of elements but the least integer of ~, n 8' is smaller than 

N 8 and second on 
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that of e N B • 

Now let i be the smallest element of a N ~ . Then if i = 1 , 

1 1 

2 2 

and the only possibility consistent with 

~ + ~ < 1 

is 

1 

2 

in which case the result follows from 

M1 + M1 C M 0 . 

Now suppose i > 1 . Since 

i - i ~ ~n B 

it is not in at least one of them. Suppose, say, that i-i ~ ~ . In that case, let 

~' = ~ - {i} U {i - i} 

B' = ~- {i}. 

Then if i-i ~ B , a' n ~, has fewer elements than d n B while if i-i • B , 

they have the same number of elements but the least element of a' A B' is i-i 

which is smalle~ than that of a n S • In either case, our inductive hypothesls 

implies 

Evidently 

so that 

Finally, 

M (I(~')) + M (ICB')) C M (ICa') + I(B')) 

I(~') = l(e) - 2 -i + 2 -i+l 

I(B') = I(B) - 2 -i 

M (l(e)) + M (I(8)) = Z{Mj]j 6 a} + X{Mj]j 6 B} 

= Z{M.Ij • a-{i} } + M i + X{Mj]j • ~-{i} } + M. 
] x 

• X{Mj[j • a-{i} } + Mi_ 1 + ~{Mjl j e B'} 

= Z{Mjlj • ~'} + Z{Mj[j • S'} 

= S (l(a')) + S (i(8')) 

c M (~(a') + I(~')) = M (~(a) + I(8)) 

Corollary. If ~ < ~ are dyadic rationals, then 

M(~) C M(~) 

Proof. For the difference of two dyadic rationals is one so that 

M(~) • M(~) + M(~-~) C M(~) 

(5.6) Proposition. The topology (resp. uniformity) of any topological abelian group 

is given by a family of continuous seminorms (resp. uniform invariant pseudometrics). 

Proof. Let A be a topological group and M a neighborhood. There is then a family 

{M(1) ] I a dyadic rational } 
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of s!nmnetric neighborhoods of 

and whenever I ~ ~ , 

Define a function 

by 

as 1 

(5.7) 

0 such that 

M(1) C M 

M(I) + M(~) C M(I+~) 

M(1) C M(~) 

p : A ~ 

p(a) = inf{IIa E M(1)} 

runs over all the positive dyadic rationals. 

Proposition. The function p has the following properties. 

(i) p(0) = 0 ; 

(ii) p(a) = p(-a) ; 

(iii) p(a-a') = p(a) + p(a') ; 

(iv) p is continuous ; 

(v) p(a) -< 1 implies a E M . 

Proof. (i) is evident from the fact 0 E M(1) 

(ii) Since each M. is symmetric so is each 
1 

p(a) _< 1 

if and only if 

if and only if 

if and only if 

if and only if 

for every positive dyadic rational 1 

M(1) Thus 

a e M(I) 

-a E -M(1) 

-a E M(I) 

p (-a) < 1 

Since the dyadic rationals are dense, this is only possible if 

p(a) = p(-a) 

(iii) It is sufficient, now, to show that 

p(a + a') -< p(a) + p(a') . 

Now let e > 0 be given. 

Since the dyadic rationals are dense on the line, there are positive dyadic rationals 

I and I' such that 

p(a) < I < p(a) + e/2 

and 

p(a') < I' < p(a') + £/2 

It follows that 

a E M(1) 

and 

a' E M(I') 

so that 
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so that 

a + a' C M(1) + M (i') 

C M(Z + l' 

p(a+a') <- I + I' 

< p(a) + p(a') + c 

Since s > 0 is arbitrary, this is possible only if 

p(a+a') < p(a) + p(a') 

(iv) Let a C A and s > 0 be given. Let I be a dyadic rational such that 

)~ < 6 . 

Then a + M(1) is a neighborhood of 0 and if 

a' E a + M(1) , 

we have, 

or 

But 

gives 

Similarly, 

so that 

a' - a E M(1) 

p(a'-a) <- I < a . 

p(a) : p(a-a'+a') <- p(a-a') + p(a') 

p(a) - p(a') -< p(a-a') 

p(a') - p(a) -< p(a'-a) = p(a-a') 

Ip(a') - p(a) I S p(a'-a) < 

(v) This is by definition. 

(5.8) This essentially completes the argument. For we have shown that for any neigh- 

borhood M of 0 , there is a seminorm p such that 

0 ~ p-l([ 0,1]) C M 

while the continuity of p guarantees that p-l([ 0,i]) is a neighborhood of 0. 

(5.9) At this point we require a digression on the sums in the category of topological 

abelian groups. Let {A } be a family of abelian groups. Then 
w 

A : ~A 

denotes, as usual, the subgroup of HA consisting of all sequences with only a 

finite number of non-zero terms. If for each w , Pw is a seminorm on A , let 

p = (pw) be the seminorm on A defined by 

P(aw) E Pwaw 

It is trivial to see that p is a seminorm on A and that if u : A > A is the 
w 

th 
inclusion of the w summand, then 

PW = PU 

NOW supposing each A i is a topological abelian group we endow A with the weak 

topology for the set of seminorms p = (pw) so defined as each -wP runs independently 

over the set of seminorms on We call this the direct sum topology on A , a A 
w 
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term which we will justify later. 

Before stating the next proposition, it will be convenient to say that of two 

seminorms p and q on A , p refines q if p k q . This is equivalent to the 

assertion that for all £ > 0 the cover of A by 

{M C Ala,a' E M =~p(a-a') < ~ } 

refines the cover by 

{M C Ala, a, E M --)q(a-a') < s } 

A basis of seminorms ~ is a set of seminorms with the property that for any semi- 

norm q there is an s > 0 and p E p such that p refines sq . 

(5.10) Proposition. Let A and B be topological groups and f : IAI ~IBI be a 

homomorphism of the underlying discrete groups. Then f is continuous iff for every 

continuous seminorm p on B , p.f is a continuous seminorm on A . 

Proof. Supposing / is continuous, so is p.f while the seminorm property is evi- 

dent. To go the other way, let b C B . Every neighborhood of b is of the form 

b + M where M is a neighborhood of 0 . Let N be a neighborhood of 0 such thai 

N + N C M and let p be a seminorm on B such that 

{b'Ip(b') < l} c N 

Then if p.f is a seminorm on A , 

{alp (f (a)) < i} C f-l(s) 

is a neighborhood of O . We have 

a E f-l(b + M) 

if and only if 

if and only if 

which is true if 

Now if 

and a E A 

we have 

so that 

Thus 

is an open set in A 

(5.11) Proposition. 

topology on 

is such that 

p (f(a') - b) 

and hence 

f(a) e b +M 

£ (a) - b ~ M 

p (f (a) - b) < 1 

= 1 - p (f (a) - b) > 0 

Ipf(a) - pf(a') I < s , 

-< p (](a') - f(a)) + p (f(a) - b) 

< 6 + 1 - e = 1 

f (a') E b + M 

f-l(b + M) 

f is continuous. 

Let {A } be a family of topological abelian groups. Then the 
w 

A = E A  
oJ 
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described above is the finest for which each inclusion 

u : A ---+A 
w w 

is continuous. 

Proof. It is evident that if for each ~ ' Pw is a continuous seminorm on A 

and p = (pw) , then p~ = P-u - Thus for each such p , p-u is continuous and 

hence each u w is. Conversely, suppose q is any seminorm on A such that q.u 

is continuous for each w . Let p = (pw). Then for 

a : (a w) ~ A 

we have 

so that 

q(a) 

: Euw(a ) 

= q (Z u (a)) 

_< Z qum(a ) 

= E pw(a) 

= p(a') 

and consequently p refines q . In particular, q is continuous in the topology 

defined by all such p . 

Corollary. The direct sum topology is the categorical sum. 

Proof. If B is a topological group and f : A >B is a continuous homomorphism 

for all ~ , let 

f : ~ A ----+B 
w 

be defined in the usual way. Then fu = f If q is a seminorm on B , qf is 
w 

a seminorm on A , qfu = q[w is a seminorm on A and hence qf is a seminorm on 
w 

A with the direct sum topology. Thus f is a continuous homomorphism. The unique- 

ness of f is clear. 

(5.12) Here and henceforth in this section, we let T = ~/Z . For a topological 

abelian group 

varying ways. 

proposition. 

canonical map 

A, A* is the group of continuous homomorphisms A----+ T topologized in 

Here we take the topology of compact convergence. 

Let {A } be a family of topological abelian groups. Then there is a 

which dualizes to 

and that map is a natural isomorphism. 

Proof. For each ~ there is a projection 

: ~A ----+ A 

A * ---+ (~A)* 
w W 

The universal mapping property of the sum gives 

Z A * ---+ (~A)* 

which is evidently canonical and natural. Now suppose 

p~ 

A * ~ (HA w) * 
w 
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f :HA > T 
w 

is a continuous homomorphism. Let 

- )]]A 

be the map which is the identity on the ~ coordinate and 0 on all others. Let 

: =:.u 
w 

I first claim that only finitely many [ are different from 0 . For let M be 
w 

the neighborhood of 0 in T represented by the interval/ 1 1 ~. Evidently M 
k - ~ ,~ J 

contains no non-zero subgroup of T . [ Repeated doubling of a t E (0,41- ) will 

eventually, by the archimedean property of the reals, put it into the interval /i i~ 

k4 27 

Similarly for a t C ( 1 , 0) .] Thus the image of a non-zero subgroup cannot lie in 

M . Now f-l(M) is to be a neighborhood of 0 in ~A This means that 

[ -i (M) D HM~ 

where M is a neighborhood of 0 in M and except for finitely many w , say 

= ~i' "''' m M = A In particular 
n ~ w 

where 

Since B is a subgroup and 

it follows that : (B) = 0 . 

for 

it follows that 

Then if 

the difference 

: -i (M) D B = nB 

B 

I 
= I0, w = w I, ..., mn 

! A , otherwise . 

f (B) C M 

In particular since 

u (A) C B 
w 

belongs to B 

so that 

SO that 

[ ~ = 0 ; w # w I, . . . ,w n 

a = (a) ~ A , 

a' = a -- l{umawl ~ : ~i' 

f (a') = 0 . Hence 

fa = [(Zua ) 
w 

= Zfu a 

= Z [ a 

= Z: ~a 

• - - r  ~3 } 
n 

: = L :  ~T 
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This shows that the canonical map is at least an algebraic isomorphism. 

for 

lar 

Now let M i be the neighborhood of 0 in T represented by the interval 

(_9_ -I, 2 -i) 

i -> 2 . Then the family of all M i is a neighborhood base at 0 . In particu- 

M 2 = M 

where 

Thus 

Since 

which is a contradiction. In fact, j may taken as 2 raised to the power 

4 +[log 2 Irl] 

is the absolutely least residue of x (mod i). 

{f If (X) C Mi} D {f If (2i-2x) C M} 

2i-2x is compact when X is -- it is the image of the 2i-2nd power of X 

under the addition map of that power of A to 

{flf(x) c M) 

as X ranges over the compact sets in A 

Now let p be the seminorm on 

least residue, modulo i. Then 

A -- the sets of the form 

Thus 

if and only if p f < i 

then f belongs to 

if and only if 

form neighborhood base at 0 in A 

T which assigns to x , 4 times its absolutely least 

x E M {--~ p(x) < 1 

f (X) C M 

on all of X . If we let ~ denote the seminorm defined by 

~(s) : sup {p~(x) Ixe x) 

{gIg(x) c M} 

X U {0} is 

f (jx) e M 

j < 2 i-2 such that 

f (jx) ~ M 

If f (X) ~ M i , there is same 

(as defined above). Now a neighborhood base at 0 in A* consists of 

{f If (X) C Mi} 

as X ranges over compact sets and i over all integers > 2 . Since 

compact when X is and 

{:Is(x) cM) ~ {sls(xu{0)) cMil 
1 

we can restrict to X which contain 0 . If 

(2i-2x) C M 2 : M , f 

then, since for all x E X , and integer i , 

0 < j < 2 i-2 , 

jx : jx + (2 i-2 - j)0 C 2i-2x 

then for all such j , 
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Thus the seminorms 

A* of seminorms of 

Now returning to 

determine, as 

if X C A is compact, ~ X 

so that 

or, equivalently, 

Now if 

¥ is also compact and 

sists of ~ where X 

and 

~(f) < 1 

X ranges over the compact sets of A , a basis 

Evidently 

A = ~A , 

is compact in A 

X D X # : ~ X 
w 

<s Is <x> c M} D <s If <x #) c M} 

is refined by X #i 

Y : x u {0} u (-x) 

A 
Y refines ~ . Thus a basis of seminorms of 

is compact 

X = ~ X , 

0 E X , 

I claim that under these hypotheses 

(5.13) 

Lemma. 

of x. 

X = -X 

: ( (~ x) ̂  ) 

At this p o i n t ,  we r e q u i r e ,  

Let n > 1 and x_, ..., x E T 
± n 

is p o s i t i v e ,  

px i < 1 , j = l, 
i=l 

and 

Then the absolutely least residue of 

px n < 1 . 

g x i 
i:l 

is positive. Moreover, 

Proof. We will confuse xi 

hypotheses are that 

A = HA con- 

be such that the absolutely least residue 

..., n-i , 

n <i!l xi 1 Px i = p 
i=l 

and its absolutely least residue. 

1 
0 -< Xl < 4 

1 
0 <- X 2 < 

When n = 2 , the 
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and, of course, 
1 

x I + x 2 < 

is its own absolutely least residue and hence that that This implies that x I + x 2 

residue is positive and moreover that 

p ( x  1 + x 2)  = 4 ( x  1 + x 2)  

= 4 x  1 + 4 x  2 

= p(x I) + p(x 2) 

For larger n , we may suppose inductively Vat the assertion is valid for 

Then ~e hypotheses are satisfied by 

n-i 

i = l  

Hence the absolutely least residue of i n~ is positive and 

i=l 

p = p X x .  + p x  n 
i = l  

n - 1  

= ~ PX i + p x  n 
i = l  

= ~ Px i 
i=l 

Now we return to ~e proof of 5.12. We suppose that is a compact s~set of (5.14) 

A such that 

and 

Let 

be such that 

Then is there some x E X 

Now f is a finite sum 

n-i . 

and x n 

and 

X = H~ X ; 

0 E X 

X = -X 

f : A ~T 

~(f) >_ 1 

such that 

p [ (x) >- i 

f (x) = Z fu~x 

-< p f (x) = p(Z fU ~ n) 

_< Z p f u~X 

-< Z sup {p fun Ix e X } 
c0 w ~ L0 

A 
= Z X (fu) 
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Thus 

{siS(s) l} D {sl Z ^ < X (fU a) < I} . 

To go the other way, suppose 
A 
k (f u w) -> 1 

Then there are x E X such that 
w 

Zp[ux >- 1 
w 

(of course X and the X are compact, so these sups are actually attained. The 

arguments would complicate somewhat but the same principle would work even if they 

weren't.) Now since X and hence X is symmetric, we can suppose that the abso- 
a 

lutely least residue of each [u x is positive. Since [u = 0 for all but fi- 

nitely many ~ , the sum is finite. Suppose the set of indices involved is ~l,...,~n. 

Now we may suppose, by induction, that 

E {p [u n Iw = ~I ..... ~n-i } < 1 

By our lemma, this means either that 

p fu~ x -> 1 

n n 

or that 

In the first case, let 

p(E {fu x Iw = al ..... an}) 

= Z {p fu x l a = ~i ..... an } 

-> 1 

x E X have 0 in every coordinate but the 

th 
there. In the second case let x have xwi in the ~. 

1 

where. In either case x E X while 

f (x) > 1 

so that 

~(f ) > 1 

th 
and x 

n L0 
n 

(5.15) Proposition. A direct sum of complete groups is complete. 

Proof. Let {A } b e  a f a m i l y  o f  c o m p l e t e  g r o u p s  a n d  

A = ~A 

and A' be the same abelian group but topologized by the box topology -- the one in 

which the product of any family of open sets is open. First I claim that A' is a 

t o p o l o g i c a l  g r o u p .  I n  f a c t  a n e i g h b o r h o o d  o f  ( a )  c o n t a i n s  a s e t  o f  t h e  f o r m  

H(a + M ) = (a a) + HM 
w 

where for ~ , M is a neighborhood of 0 in A Moreover if N is a neigh- 

This shows that 

{~l~(s) < l} : {slz ~ (Su a) < 1} . 

Thus the t o p o l o g i e s  on  E A a n d  ( ~ A . )  a r e  i d e n t i c a l  a n d  t h e s e  g r o u p s  a r e  i s o -  

m o r p h i c .  

coordinate and 0 else- 
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borhood of 0 such that 

N - N C M , 
to w to 

TIN - HN C TIM 
LJ LO tO 

Next I claim that A' is complete. In fact, by an obvious additive analogue of 1.2.5, 

it is sufficient, since A is complete, to show that there is a neighborhood base at 

0 in A' consisting of sets closed in A . But of course the M may be taken as 
to 

closed neighborhoods of 0 in the A , whence the HM is closed in A . Now let 
w w 

B be the subgroup (of A') whose elements are those of the direct sum. I claim that 

B is a closed subgroup. For if 

a (a w) g B , 

then a ~ 0 for infinitely many to . For all these w let M be a symmetric 
w to 

neighborhood of 0 such that 

Let M 
w 

Then 

a { M 
w w 

be an arbitrary neighborhood of 0 for all other coordinates and let 

M KM 
w 

(ato) + M 

is a neighborhood of (a w) If 

(bto) C (aw) + M 

then when 

we have 

a w # 0 , 

a ~ M 
w 

so that 

-a ~ M 
to 

and then 

0 ~ a + M 
to 

so that 

b # 0 
to 

Thus 

(bto) ~ B 

This means 

(a) + M 
to 

is disjoint from B . Hence the complement of 

In particular B is also complete. 

The topology on 

where for each to ' Pw 

is a neighborhood of 

be a seminorm on A 
to 

B is open in A' and B is closed. 

B can be described as the one generated by the seminorms 

p(a w) = sup (Pwaw) 

is a seminorm on A . ( N o t e  t h a t  t h e  s u p  i s  f i n i t e . )  F o r  i f  
w 

M : B N EM 
w 

0 in B where M is a neighborhood of zero in A , let _ pto 
w to 

such that 

Mto C {atolpato < l} 
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Then 

if and only if 

for all w , if and only if 

(a) E ]]M 
to to 

pwato < 1 

sup pmaw < 1 

Thus the topology on B is coarser than that of the direct sum (which, recall, is 

determined by EPw where each p~ is a seminorm on Aw )" Now we may infer the 

completeness of the direct sum from another application of 1.2.5. It is the suffi- 

cient to show that the basic neighborhood 

M = { (a w) I ~ Pwa~ _< i} 

is closed in B . Suppose 

(a) ~ M 
w 

which means that 

Z pwaw > 1 

Choose e > 0 so that 

Z pwaw > i + e 

Since (a) E Z A , this sum is actually finite. Let e I ..., ~ be the finite 
LO 03 ' n 

number of indices involved. Then for i = i, ..., n , define seminorms q~ by 
1 

qw i nP~.l/~ 

Let 

qto = 0 

for indices w ¢ el, .. ., Wn. Then evidently q~ is a continuous seminorm on A~. 

Moreover, if 

(b) e B 
w 

is such that 

sup qwb < 1 , 

we have 

q~ibwi = nPwibw'l ~ < 1 

or 

< 
Pwibwi ~/n 

for i - 1 ..... n . Then we have, 

- D a i ~, Z p (a + b ) ~i i. 
i=l 

> a 
tO O] 

1 1 
i=l 

> 1 + s 

- ~ P~ibwi 

i=l 

s / n  

i = l  
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If 

we have that 

= 1 + 

= 1 

£ - E 

((a M) + N) ~ M 

and M is closed. This completes the proof. 

(5.16) Proposition. Let 

A = E A 

Then every compact set in A lies in a sum of finitely many factors. 

Proof. Let X be a compact subset of A . Let ~ be an index such that there is 

an element (a) • X with 

Let M~ be a neighborhood of 0 with 

a~ ~ M~; 

and let PC be a seminorm on A~ such that 

S~ D {a • A~Ip~(a) < i} 

whence 

p~ (a~) -> 1 

Now assuming this to be possible for at least countably many coordinates, say 

= ~i' ~2 ..... 

then we can find such seminorms 

P~l' P~2 .... 

Let q be the seminorm on A which has the seminorm 

qi = lP~ i 

in the i th 0 elsewhere. By hypothesis there is for each 

i = 1,2,... 

such that 

coordinate and 

an element 

so that 

so that 

But then 

(a .) 6 X 
el 

P~ia~i I > 1 

qia~i I -> i 

q(a i ) = ~qj a~j j 

-> qi a~i i 

>- i 

is a continuous unbounded real valued map on the compact set which 

N = {blsu p q b < i} , 
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is impossible. 

(5.17) Proposition. 

ical bijection 

Let A and B be topological abelian groups. Then the canon- 

A @ B ) A x B 

~ A ~ B 

(A x B) 

* B* 

* B* ~ A X 

Corollary 2. 

is an isomorphism. 

(5.18) Proposition. 

the canonical map 

Let {A } be a family of topological abelian groups. Then 
ca 

(~ A) ~ KA w 

is an isomorphism. 

(Z A i) ~ HA i 

Proof. The fact that the canonical map is a continuous bijection is trivial. 

basic neighborhood of 0 in 

is 

where 

X C 

is compact and M is a neighborhood of 

contained in a finite sum of A , say 

X C A • ... @ A 
ca 

Thus N(X,M) 

N(X,M) = {[ I[ (X) C M} 

(EA) 
ca 

A 
ca 

0 in T . It follows from 5.16 that X is 

= A(cal' "''' can) 
1 n 

is the inverse image of the set of the same name in 

A(ca  1 , . . . .  ca n )  

If AI, ..., A are topological abelian groups, the canonical map 
n 

gotten by dualizing the injection 

A 

At any rate, we have 

(A • B) 

is an isomorphism. 

Proof. This map exists in any pointed category and is, of course, a bijection of the 

underlying abelian groups. If p and q are seminorms on A and B ,respectively, 

I(a,b) Ipa + qb < 1 I D I (a'b) Ipa < 1 }2 (3 I(a,b)[qb < 12 } " 

The left hand side is a basic neighborhood of 0 in A • B while the right hand 

side is the intersection of two such in A x B . Thus the map is also open. 

Corollary i. The canonical map 

(A • B)* , A* x B* 

is an isomorphism. 

Proof. By the canonical map is meant the one whose A* coordinate, for example, is 
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under the dual of the canonical inclusion 

A(m l, ..., w n) 

From the commutativity of 

A(m I , 

) Z A 
w 

(Z Am) > ]I A m 

1 1 
..., w ) ~ A x...x A 

n m I m n 

together with the previously established fact that the lower arrow is an isomorphism, 

it follows that the inverse image of that set in Z A is open. Since the upper 
m 

arrow is a bijection, it follows that inverse image is the image of N(X,M) under 

the canonical map. 

(5.19) Before continuing, it is necessary to discuss Pontijagin duality for compact 

and discrete groups. If D is a discrete group, the group 

D = (D,T) 

D 
is topologized by the product topology, i.e. as a subspace of T . 

Proposition. The group of homomorphisms of D ~ T is closed in T D and hence 

compact. 

Proof. If x,y C D , the map 

D 
T ) T 

defined by 

£ ~ ~- f (x) + [ (y) - f (x + y) 

factors 

T D > T x T x T ~ T 

where the first map is projected onto the factors corresponding to 

t I + t 2 - t 3 

0 , 

= f (x + y)) 

and the second takes 

(tl,t2,t 3) I > 

Both are continuous and so the inverse of 

{f If (x) + f (y) 

x,y and x + y 

is then closed. 

T 

This implies that for any compact group C , the canonical map 

of topological groups. 

Theorem. If C is compact, then for any 

homomorphism 

~ : C 

such that $(x) ~ 0 . 

Proof. See [ Hewitt-Ross] , 22.17 on p.345. 

(5.21) 

x E C , x ~ 0 , there is a continuous 

is closed. The intersection of these over all x,y E D 

(5.20) If C is a compact group, we let 

C (C,T) 

with the discrete topology. We use here one highly non-trivial fact from the theory 
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C ) C** 

is injective. The analogous fact for discrete groups follows readily from the well 

known fact that T is an injective cogenerator in the category of abelian groups. 

The continuity, for a compact C , of 

C- ~ C** 

follows immediately from the pointwise convergence topology of the latter and the 

fact that every map in C* is continuous. The analogous fact for discrete groups 

requires, of course, no proof. 

(5.22) Proposition. 

~* ~ T ; T* ~ 

Proof. The first is obvious. As for the second, a map ~ : T --÷ T is equivalent 

to a map ~ : rR ----+ T such that ~(27 ) : 0 The kernel K of such a map either 

contains a smallest positive number ~ or else contains arbitrary small positive 

numbers. In the latter case, let x ~ [R and s > 0 . Then there is a ~ ~- K with 

0 < ~ < e . Then if n is chosen so that n~ _< x < (n+l)~ , Inl - x I < s and 

n l E K . Thus K is dense and since T is separated, K = ~ and @ = 0 whence 

= 0. Otherwise, there is a smallest ~ E K Choose m such that 

nl -< 1 < ( n+ i)~ 

Then 

0 ~ n I - i < 1 

Since i ~ K and n X E K this is only possible if n I = i or 

1 

n 

Now choose e > 0 so that 

~,~) 
Choose an integer k > i such that 

so that for j >- k , 

2-kll < a 

~(2-3X) E ~ i i ~,~) - 

Now let a be the absolutely least residue of #(2-kl) . Then the absolutely least 

~(2-k-ix) a a + i (depending on whether a < 0 residue of can only be either ~ or ~ _ 

1 < _ 1 and similarly in the other case. Thus or a > 0 ). But if a e (0, ¼), a - ~ 

a 
the absolutely least residue of ~(2-k-ll) can only be ~ . Similarly, the absolutely 

least residue of ~(2-k-Jl) is 

That is 

implies 

2-3a = n2ka 2-J-kl 

= 2-k-Jl 
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This continues to be true when 

x are clearly dense in T . 

for all x 6 R . Moreover, 

0 

so that 2ka is an integer. 

1 
so that 12kal 

(x) = n2kax 

x is a linear combination of such elements and such 

Hence 

~(x) : n2kax 

~(I) = ~ (2k2-kl) = 2ka 

If 

12kal > 1 , 

is a smaller positive element in the kernel. Hence ~ is either 

multiplication by n or by -n . This shows that the canonical map 

~ (T, T) 

is surjective. That it is injective is clear and hence it is an isomorphism. 

(5.23) It is clear from (5.12) and (5.18) that sums and products of copies of 

and T are also reflexive. 

Proposition. 

Proof. Let 

A compact group is isomorphic to a closed subgroup of a power of T . 

C be compact. The natural map 

C ~ T C 

C is compact, it is homeomorphic, hence isomorphic, to its is injective. Since 

image. 

(5.24) Proposition. Let T be embedded in the compact group C . Then T is a 

direct summand of C . 

Proof. It is clearly sufficient to show that the map 

C > T 

induced by the embedding, is surjective. Suppose, to the contrary, that the proper 

T* subgroup D C is the image. Since T is a cogenerator, there is a non-zero char. 

acter on T /D . This means there is a non-zero character on T which vanishes on 

D or that 

is not injective. 

T ~D* 

But we have a commutative diagram 

T 'C 

1 1 
T ~D ~C 

in which the top and right hand map are injections and the left an isomorphism from 

which it follows that the bottom map is an injection as well. 

(5.25) Proposition. The group T is injective in the category of compact groups. 

Proof. The proof is standard. If 

C 1 ~ C 2 
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is an injection and ¢ : C 1 ) T 

This is the compact group T x C 2 

ing of all 

{ (-#(x), x ) I X @ C I } 

In other words, the pushout is the same as of the underlying abelian groups. 

is a subgroup of C and the preceding proposition completes the argument. 

(5.26) Proposition. Every compact group is reflexive. 

is a map, form the pushout 

C 1 > C 2 

1 [ 
T ) C 

m o d u l o  t h e  c o m p a c t ,  h e n c e  c l o s e d  s u b g r o u p ,  c o n s i s t -  

Thus T 

Proof. If C is compact, embed C in a power of T , say T n ( n needn't be fi- 

nite). Then 

0 • ~ C -----+ T n ~ Tn/c ~ 0 

is exact and Tn/c is compact. Then since T is injective in both categories of 

compact and discrete abelian groups we have a commutative diagram with exact rows, 

0 ) C ' T n ~ Tn/C ~ 0 

• * n ** n ** 
0 ~ C ---+(T ) ---+(T /C) ---+ 0 

with the vertical maps injections. It follows from (5.12) and (5.18) that the middle 

one is an isomorphism. Since the bottom composite is 0, it is an easy diagram chase 
C** 

t o  w o r k  o u t  t h a t  t h e  l e f t  h a n d  map m u s t  b e  s u r j e c t i v e .  S i n c e  C a n d  a r e  c o m -  

p a c t ,  i t  i s  a n  i s o m o r p h i s m .  

( 5 . 2 7 )  P r o p o s i t i o n .  E v e r y  d i s c r e t e  g r o u p  i s  r e f l e x i v e .  

Proof. If D is discrete, D is compact. The canonical map 

D ~D 

is, by the preceding, an isomorphism. Since it is always true (in any closed category) 

that the composite of that map with the dual of the natural map 

D ~D 

is the identity on D , it follows that the dual of that map is an isomorphism. Now 

since T is a cogenerator, this map is injection. Thus there is an exact sequence 

• * D** 0 ~D''~D ~ /D 70 

Then we have a commutative diagram with exact rows, 

• * D** 0 ~D ' D > /D ~ 0 

1 + 

• * D**** ** ** 0 + D ~ ~ (D /D) ) 0 

in which the vertical maps are injections, the middle an isomorphism and hence so is 

the left hand one. 

This shows that the duality is valid between the compact and the discrete groups 
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(5.28) 

topology of uniform convergence on compact sets, is 

Proof. If 

Proposition. The dual of the group ~ of real numbers, equipped with the 

and @(~ ) = 0 , @ induces a map 

: T ~ T 

We know from 5.22 that ~ is multiplication by an integer. Since ker @ = ker @ , 

is an injection. The only maps T --÷ T which are injections are the identity and 

the inverse. Thus 

If we define, for all ~ E 

by 

~(~) (x) = ~x (mod l) 

then the above shows that every ~ is of the form ~(i) for al C i~ 

unique. 

A basis for the compact sets in ~ consists of the intervals 

natural number. Evidently ~(I) takes that set into (_ 14 ' i) iff 

that the basic neighborhoods of 0 are just the usual ones. 

(5.29) We are now ready to apply the theory. 

We consider six passibilities for the subcategory C and as many for 

leads to a different choice of A , of duality and finally, of G . We let 

of all groups of the form 

C x m n x ~m 

and D consist of all groups of the form 

subject to 

i) 

ii) 

iii) 

The three choices in (ii) and two in (iii) give the six possibilities. 

A compact group can be embedded, as mentioned above, in a power of 

of ~ can of course be embedded in a power of ~ . A power of 

in a product of discrete groups. Thus for all possibile choices of 

D • n. [R • m.T 

C is compact and D discrete; 

n = 0 , n is finite, or n is at most countable; 

m is finite, or m is at most countable. 

T . A power 

can be embedded 

C , every group 

= ± }(1/~) 

~(I) : ~R ~ T 

: ~ > T 

is a map, let 

: inf {xlx > 0 & ~(x) : 0} . 

By continuity, 0(I) = 0 and ~ = 0 only when ~ : 0 . Otherwise let 

~(i/l) : ~ ~ T 

by 

@(i/~) (x) :x/A (mod i) 

We have an exact sequence 

0 ~ ~ > ~ ~ ~/~ ~ T ~ 0 

which is clearly 

I-n, n ], n a 

IlI< i/4n so 

D . Each 

C consist 
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in C can be embedded in a product of groups in D . Whatever choice of C and D 

is made, we let A , as usual, consist of all groups that can be embedded in a product 

of groups in D . 

(5.30) We define the functor 

by letting 

be the direct 

i) 

ii) 

iii) 

iv) 

v) 

vi) 

vii) 

viii) 

ix) 

We wish 

(-,-) : C °p x D ) D 

(C x m x 77 n , D @ p.~ @ q.T) 

sum of nine terms as follows. 

(C,D) is the group of continuous maps C 

(c, p.~) = 0 ; 

(C, q.T) = q.C* ; 

(~m, D) = 0 ; 

) D topologized discretely; 

For example, 

in (iii) the image of a mad C ~ q.T lies in a compact subgroup of T . By (5.16) 

it lies in qo.T for same finite subset qo C q . Hence 

Hom(C,q.T) ~ lim)Hom (C,qo.T) 

qo 
lira+Horn (C, T ) 

qo 
lira)Horn (C,T) 

lim qo.HOm(C,T) 

q. Hom(C,T) 

Here Hem (-, -) refers to the abelian group valued hom. Both groups rR TM and 77n 

are generated by compact subsets, [-i, 1 ]m and {-i, 0, i} n respectively. Thus 

any map from either of these groups to a direct sum must also factor through a finite 

sum. Analogously (and, if fact, dually) the groups in D all have a neighborhood M 

of 0 that contains no non-zero subgroup. If f is a map to such a group, any sub- 

group contained in f-l(M) lies in the kernel of f . Thus a continuous map from a 

power ~R TM n or 77 must contain in its kernel the product of all but finitely many. 

Then a dual argument to the above shows that in each case, the discrete abelian group 

underlying (A,B) is Hom(A,B). 

(5.31) Proposition. Let C E C and D E D . Then (C,D) is Hom(C,D) topologized 

by uniform convergence on compact subsets (compact convergence). 

Proof. We have already established that the abelian group underlying (C,D) is Hom(C,D) 

We consider the cases separately. 

i) When C is compact and D discrete, 

{ :: c--+D [ :(c) : 0 ] = 0 

is open in the compact convergence topology so that the topology is 

( [R TM, n.~) = (m x n).• ; 

( m, q.T) = (mxq).~ ; 

( 77n, D) = n.D ; 

(~n, p.~) = (m x p).~ ; 

(Z~ n, q.T) = (n x q).T 

to establish that these are the correct underlying groups. 
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ii) 

iii) 

iv) 

v) 

discrete. 

There is nothing to prove. 
* 

The group q'C is discrete. 

hood M 

~ q , 

Here n and m 

one is easier. 

form 

F(-rB , r~) 

where {r B} is a doubly indexed sequence of positive real numbers. 

so determined consists of all doubly indexed sequences 

On the other hand, q-T has a neighbor- 

of O without any small subgroups. For example, if for all 

M = (-1/4, 1/4), 

M = F(M ) 

will do. Thus Hom(C,q-T) is discrete in the compact open topology. 

Again, there is nothing to prove. 

We must show that the abstract isomorphism 

(n x m)- ~ ~ (~n, m.~) 

is a homeomorphism. 

may be finite or countable. We consider the latter case as the other 

We first show it is open. A neighborhood of 0 on the left is of the 

of real numbers such that 

i) Only finitely many 

ii) E I [~8/r~BI < 1 

Given such a sequence, let 

s = 

and 

t = 

Then for e ~ ~ , we have 

and 

while ~ k B implies 

and 

and in either case 

[ ~  ~ 0 , and 

2 ~ sup {i, i/rsyIB,y ~ a} 

2 -~ inf {i, rBy I B,y N ~} 

s ~ 2 ~ 

t ~ 2-Br8 

> s - 2 /r8 

-S 
t 8 ~ 2 

ts/s ~ ~ 2-~-8r 8 

{/I /(H [-s~,s~]) C F(-ts,t ~) } 

Every 

f = (l ~8) 

On the right hand side the set 

is a neighborhood of O . 

The neighborhood 
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in that set must in particular have the property that 

f 8[-sa, sa ] C (-tB, ts) 

or 

If as sa] < t8 

2-a-B 1 [ aS l < ts/s a -< r 8 

so that 

I Z f C~B/rc~8l <- ZIf as/rasl <- 
This shows that the map is open. 

contained in one of the form 

while sets of the form 

1 

To go the other way, every compact set in [A n 

H [-s a, s] 

are a basis for the open sets in 

{ f l ' ( ~ [  s, s l )  

I f  

F(-t B, t B) 

m-~ . Thus a basic open set in ( n, m'[A) is 

f = {f S} 

C F(-t8, ts)} 

then f 

Now let 

< 1 

belongs to that set iff 

[ I[ [~8 S~ I / Its[ 

2-~-B rc~ ~ = tB/s a 

Then supposing 

we have, 

{f 8} 6 F(-r 8, r B) C (n x m)" • , 

is 

I I lS~Bs l  / Ihl ~ l l l s~  BsJtSI 
B 

< ~ Z 2  - ~ - B  = 1 

Thus t he  map i s  c o n t i n u o u s  and hence  a homeomorph ism.  

The failure of such an argument for larger than countable exponents is the 

reason for the restriction to finite and countable exponents. Without this, the 

topology on (C,D) is not a convergence topology which hypothesis figures crucially 

in several places. Thus I do not know whether the main results of [Barr, 1977] are 

correct without restriction to at most countable exponents. 

The remaining cases are handled by trivial modification of one of the above 

arguments and are left to the reader. 

(5.32) Proposition. For any C E C , D E D , 

(C, D) ~ (D , C*) 

Proof. Just examine the nine cases individually. Each of them is trivial in view of 

the definitions. 

The error is in the proof of 7.9 in which the caveat of 5.3 is ignored. 
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(5.33) Proposition. For any Cl, C 2 E C , D ~ D_ , 

(C I, (C2,D))~ (C 2, (C1,D)) 

In particular, there is a i-i correspondence between maps 

C 1 ) (C2, D) 

and maps 

C 2 -- (C 1 ' D) . 

Proof. There are, in principal, 27 cases to consider. However, using the symmetry 

above and the fact that some are zero, there is a considerable collapsing. If C 1 

and C 2 are compact and D discrete, both (C I, (C2,D)) and (C 2, (CI,D)) are discrete 

so that we need only show they have the same elements. Now a map 

$ : C 1 --+ (C2, D) 

is a map of a compact to discrete set and hence has a finite image. It thus determines 

a finite number of continuous maps 

C -----+ D 
2 

each of which has open kernel. The intersection of the finitely many open subgroups 

is an open subgroup which is the kernel of the induced map 

C 2 ) ('C I iI, D) , 

whence that map is continuous. Each element of C 2 determines a map ICI] , D whose 

kernel contains the kernel of [ . Since that is open, each such map is continuous so 

we have 

C 2 (Cl, D) 

It is evidently exactly the same in the other direction. Since exponents in the first 

variable and coefficients in the second come out as coefficients, it is sufficient to 

consider the cases C. compact or ~ or ~ and D discrete or PR or T . If C] p 
l 

is compact, C 2 = 59 , there are no non-zero maps 

C 1 ~ (C2, D) 

since (C2,D) is an rR-vector space. On the other hand, (CI,D) is discrete no 

matter what choice of D in D , so also 

(c 2, (c I, D)) : 0 

Exactly the same is the case C 2 compact, C 1 = ~. The cases Cl = 77 or C 2 : Z[ 

leave nothing to prove. It is left to the reader to show that using (5.32), every case 

can be reduced to one already considered. 

(5.34) This shows that III.4.2(iii) is satisfied. We now turn to (iv), for which 

it is sufficient to verify the hypotheses of II.2.9. We turn to the injectivity of 

T as the cosmallness will appear as a way station and the third hypothesis is evident. 

Suppose 

A * B 

is an embedding. Since B can be embedded in a product of D it suffices to show 

that every I : A > T can be extended to B > T in the case B = ~D The set 
w 
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f-if_ 1 

is open in A and hence contains a set of the form 

A N M 

where M is open in B . The topology on B is such that there is a finite set of 

indices Wl, .... Wn such that 

M D B 0 = K {Bwle ~ e I ..... en } 

Since B 0 is a subgroup so is A 0 = A n B 0 . Since 

and that set contains no subgroups, 

.{ (A 0 ) = 0 

Let A/A 0 denote the abstract quotient group topologized (here only') as a subgroup 

of 

B/B 0 : Dwl x...x Den 

The homomorphism 

F : A/A 0 ~ T 

induced by $ is still continuous. In fact, a homomorphism to T is continuous iff 

the inverse image of (-1/4, 1/4) is open. But M can be chosen to be the inverse 

image in B of an open set M in B/B 0 since such sets are basic neighborhoods of 0 

in B . Then 

7 -l(-1/4, 1/4) D (A/A0) n 

so f is continuous in the topology induced on A/A 0 . Since T is complete, and 

7 has a unique extension to the closure of A/A 0. Since D is closed under finite 

products, B/B 0 E D . Thus it is sufficient to show that if D E D and A C D is 

a closed subgroup every map A ----+ T has an extension to D . We consider first the 

case that D = mJR . Let A 0 be the sum of all ~-subspaces of A . In fact, since 

A is closed, A 0 is the divisible subgroup of A . Then A 0 is a subspace of D 

and there is an R-linear retraction D ----+ A Since any ~-linear map on a finite 
0 

dimensional space to an abitrary topological vector space is continuous, this map is 

continuous on every finite dimensional subspace of m-~ . Since m-~ is the direct 

limit of the finite sums (I am tacitly supposing m = ~ ; if m is finite, there 
0 

is nothing to prove), the retraction is continuous on D . The restriction to A 

splits the sequence 

0 ~ A 0 ) A -----+ A/A 0 ~ 0 

which means that A/A 0 is isomorphic to a subgroup of D . Let A be a subspace 
1 

of D containing A/A 0 such that 

D ~ A 0 • A 1 

algebraically. The map D ---+ A 0 • A 1 is continuous by the same argument as above 

while A 0 and A 1 being subspaces implies the continuity in the opposite direction so 

the above isomorphism is topological as well. Now A/A 0 C A 1 so that 
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A • A/A 0 

For every finite subspace V C A 1 , V ~ A/A 0 contains no vector subspace and is 

hence discrete. Thus every subset of A/A 0 is relatively open in every such V and 

is therefore relatively open in A/A 0 Thus A/A 0 is discrete and we have A C D . 

The duality of C and D implies that 

D ) A 

is surjective and the result follows for D = m-~ . 

Next suppose D = m-~ + n-T 

B 

! 
A 

where the kernel of each vertical 

map f : B ----+ T such that f (n~ 

to a map 

for which, evidently, 

Finally, let 

with D 1 discrete. 

Consider the pullback 

(rn + n) " 

I 

A 
0 

) m ~ @ n-T 

map is n'~ A map A ----+ T is the same as a 

) = 0 . Such a map has, by the above, an extension 

Let 

A 0 

= D1 @ m- ~ @ n.T 

= A N m- ~{ @ n.T 

(Note that 

Then if 

is a map, the restriction 

has an extension to m. ~ + n.T 

f : A }T 

f0 : A0 > T 

and then to a map 

g : D > T 

The map 

f - gLA : A ~ T 

vanishes on A 0 and hence induces a map 

f : A/A 0 > T 

Since A/A 0 is a subgroup of D 1 , that is discrete and T is injective f 

continuous extension to a map h : D 1 ~ T . Composed with the projection 

we get a map 

h : D ~ T 

such that 

hIA = f - gli 

or 

f = gIA + hIA = (g + h) IA 

Thus g + h is the desired extension. 

m. ~ + n.T is uniquely determined, being the identity component of D.) 

has a 

D ~ D] 

g : (m + n) " ~ ) T 

g(n "77 ) = 0 , and so induces the desired map D T . 
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(5. 35) To take care of I II.4.2(v), we consider the case of C E C and A C C a 

* A* subgroup such that C ---+ is injective. This is done by successively enlarging 

the class of C . Suppose first that 

n 
C F x~ 

where F is a finitely generated abelian group and n is finite. In that case, 

C E D . If A is a proper closed subgroup let x E C - A and B be the subgroup 

generated by x and A . Then B/A is cyclic and has a non-zero map to T . The 

composite 

B ~ B/A ~ T 

can, by the previous section be extended to C . Thus C ---+ A is not injective. 

The case 

C F x~R n m : x T 

with m and n finite is easily reduced to the previous one by pulling back along 

fR TM ---+ T m Rewrite that as 

where F 0 is finite. Then F 0 ® T m is a compact subgroup of a finite dimensional 

torus and is, in fact, the most general such. For the dual of a compact subgroup of a 

torus is the quotient of a finitely generated free group. This is the direct sum of a 

free group and finite group and its dual is the sum of a torus and a finite group. 

Now in the most general case, 

: x 77 C C1 xPR n k 

It follows from the duality that C 1 can be embedded in a power T m where m may be 

arbitrary. If A is not dense in C , Jt follows from the definition of the product 

topology that there are finite sets m0 C m, n O C n, k 0 C k such that the image A 0 

of A is not dense in the image C O of C in 

m n k 0 
T0x~0 x~Z 

m 0 n o ~k 0 
x . That is, The group C O is the product of the image of C 1 in T with fR 

< m) n 22k 
C O ~ F 0 • T C x~ 0 x 0 

and A 0 is a non-dense subgroup. The result now follows from the previous case. 

(5.36) The last hypothesis follows readily from 5.15. All the hypotheses satisfied, 

it now follows that the theory applies. It is the case that the duality theory de- 

scribed here extends that of Pontrjazin although not sufficient machinery is developed 

here to show that. The missing facts are these: (See [Hewitt-Ross], 89, especially 

9.6 and 9.8 .) 

i. Every locally compact group with a norm (i.e. a seminorm taking on the value zero 

only at zero) is of the form D ~ n-rR @ m-T where D is discrete and n, m are 

finite ; 
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2. 

n zzm C x £R x where C is compact and m, n are finite. 

For if ~ and ~ are the full subcategories of 

it is clear that ~ and ~ are dual under the duality. 

compact group is a subgroup of a product of groups in ~O 

group and p a seminorm, let 

L : {x • Lip(x). : 0} 
P 

h/p = L/L 
P 

Then 

Every locally compact group generated by a compact set is of the form 

D and C described above, 

Moreover every locally 

For if L is such a 

L C ~{L/plp a seminorm on L } 

Since every locally compact is complete, hence ~-complete, it follows 

Then I claim that f= 0 . For if not, let s 

If s > 0 , there is a k such that 

1 k 
-- < 2 £ < 
4 

be the absolutely least residue of f (2) 

1 

2 

converges to 

is compact. 

is a homomorphism such that 

1 1 
[ (X) C (- ~, ~) 

4 

and L/p E ~ . 

that they all lie in G . Let L be a locally compact group and X be a compact set. 

Let M be a compact neighborhood of 0 . Then X + M is a compact set with non- 

empty interior. The subgroup L 0 generated by X + M also has non-empty interior 

and is hence open. An open set in a locally compact space is locally compact so 

L 0 E ~ . The set X C L 0 . Hence 

1 1 
{f: n ~ T[f (X) C (- ~, ~)} 

is forced to be open by the map 

L ~ L 
0 

L* This shows that has the compact/open topology. 

(5.37) It is not true, by the way, that every dual has the compact/open topology. 

To see this, let A be the group of integers topologized as a subgroup of 

x~ x~ x . . .  

2 4 8 

which is a subgroup of T 0 The maps A ----+ T are found among the maps }7 --+ T , 
, 

i.e. the elements of T . A consists of all the elements of T which annihilate 

2n~ for all sufficiently large n . That is, they are the elements of T whose 

order is a power of 2 . In A the sequence 

2, 4, 8, 16, ..., 2 n, ... 

0 , so that the set 

X = {0, 2, 4, 8, 16 ..... 2 n .... } 

Suppose 

[ : A ~ T 
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and then f (2 k) ~ (-1/4, 1/4) Thus f (2) : 0 from which f (2 k) = 0 for all k . 

Using the binary representation of n , we see that f (n) = 0 as well. This means 

* A* that the zero homomorphism is open in the compact open topology on A . Thus is 

In fact 
the group ~7 

2 

Then 

of elements of 2 power order, topologized discretely. 

A* = lim 
--+ 2 n 

which is the 2-adie completion of ~ . 

A** * = = lim ~ lira ~[ 
~---- 2 n <----- 2 n 
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6. Semilattices 

(6.1) By an inf semilattice is meant a partially ordered set in which any finite set 

of elements has an inf. Obviously it is sufficient that the empty set as well every 

pair of elements have an inf. If the empty inf is denoted 1 and the inf of x and 

y by xy we see that an inf semilattice is exactly the same as a commutative monoid 

in which every element is idempotent. If L 1 and L 2 are semilattices a morphism 

f : LI----+L 2 is a function which preserves 1 and preserves finite inf, i.e. a monoid 

homomorphism. We let L denote the category of these semi-lattices. 

(6.2) If f and g are homomorphisms, so is the map fg defined by 

fg(x) = f(x) g(x) . 

The map u : L 1 ~ L 2 such that u(x) = 1 for all x E L 1 is a homomorphism and 

obviously a unit for the multiplication defined above. Thus the set of maps L 1 ) L 2 

is an object L(LI,L2) of L . It is evident, since the internal hom is computed 

pointwise, that the theory of L is commutative and hence that L is an autonomous 

variety. Thus parts i) and ii) of III.4.2 are satisfied. 

(6.3) We take for D the subcategory of Un L consisting of all the uniformly dis- 

crete semilattices. For C we take all the compact semilattices which can be embed- 

ded in a product of topologically discrete ones (or, ultimately, of 2 element ones). 

(6.4) We let I = T be the two element lattice {0,i} with 0 < 1 . If C E C , 

we let C* be the set of continuous maps C --+ I with the discrete uniformity and 

the lattice structure of L(Icl, I) . If D E D we let D* be the lattice, L(D,I), 

equipped with the uniformity induced by I D. Since I is compact, so is I D and 

one easily sees, by the usual arguments, that ~(D,I) is closed, hence compact. If 

D is discrete and x E D , the function 

: D ---+ T 

defined by 

~(y) = 

is readily seen to preserve inf. 

lattice and hence every object of 

the canonical maps 

are injections. 

{~ , if x y 

, otherwise 

From this, it is immediate that every discrete semi- 

C has enough representations into T and that 

D ) D** 

C ~ C** 

(6.5) To see they are isomorphisms, we proceed as follows. Let L be a finite lat- 

tice. Then given 

: L ----+ T 

let x = inf{y E Llg(y ) = 1 } . Since L is finite and ~ preserves finite inf, 

= x . It is immediate that x -< y implies y -< x so that L* is simply the lat- 

tice L °P . (Of course a finite semilattice is a lattice. However remember that 

maps preserve only infs. rf 
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f : L 0 ---+L I 

is an inf preserving morphism, the induced 

f*: L~P----+ L~ p 

*op L 0 preserves sups of also preserves infs. The corresponding function f : LI----+ 

course and is actually the left adjoint of f:) Thus in this case the duality is 

clear. An arbitrary discrete semilattice is the direct limit of finite ones. If 

L = li T L , 

L finite, L* = lim L equipped with the inverse limit topology. If 

: L ---+ 2 

is uniform (or even continuous) the inverse image of i is open in L C ~L* This 

L* means it contains a set of the form N M where M is the inverse image under 

projection of a subset of a finite product L x...x L The same is true of the 
~i ~n 

inverse image of 0 (with a possibly different finite set of indices). The result 

is that ~ depends only on finite many indices, say el' "''' em Thus there is 

a factorization of 

L ---+ L 0- 2 

L* L* The identification of representations on finite lattices where L 0 C al x...x ~m 

implies, in particular, that when L0>---+ L 1 is an injection, L 1 > L 0 is a 

surjection. In particular there is a map 

* L* : L x...x ----+ T 

~i ~m 

which extends ~ . Now we have shown that 

EL = EL --+ L , 

is a surjection, whence so is L ----+ L 

In the process, we have seen that 

then 

But then 

and with each L 

T is cosmall and that when L = lim L , +--- 

L* * = lim L +--- 

L = lim L 

reflexive, so is L . 

(6.6) This establishes the duality between C and D . As for the hom, we take 

(C,D) to consist of the sublattice of (ICI,D) consisting of the uniform morphisms, 

equipped with the discrete uniformity. The map 

(C,D) ---+ (D*,C*) 

is the evident one and as for its being uniform, there is nothing to prove. The com- 

posite 

(C,D) ~ (D*,C*) ~ (C**,D**) ~ (C,D) 

is the identity so the first is injective. Since the second is an instance of the 

first it is injective as well so that each is an isomorphism. The equivalences 

(I,D) ~ D 
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Horn (I, (C,D)) ~ Hom(C,D) 

are clear. In view of (C,D) --~ (D*,C*) , 1.4.6(iii) follows from 

(e l, (C2,D)) ~ (C 2, (CI,D)) 

Since both sides are (topologically) discrete, it is sufficient to show that 

Horn (CI, (c2,m)) --~ Hom (C2, (Cl,m)) 

If 

then the image of f 

equivalence relation 

that f factors 

f : C I ----+ (C2,D) 

is compact and discrete, hence finite. That is, there is an 

E on C 1 with only finitely many equivalence classes such 

Cl---+ Cl/E ~ (C2,D) . 

Let Xl, ..., x n be a set of representatives mod E . 

f(x , ) : C 2 ----+ D 
1 

which similarly factors 

C2~ C2/Ei ~ D 

where E is an equivalence relation with only finitely many classes. 
1 

C2 / N E i ----+ ZC2/E i 

is injective, there are only finitely many classes mod (N El). Thus 

an element of 

(Cl/E , (C2/ n E i ,D)) 

(C2/ N E 1 ,(CI/E , D)) ---+ (C 2 , (C1,D)) 

the exchange possible there because all three are discrete and 

category. This determines a map 

(C I, (C2,E)) ---+ (C2, (CI,E)) 

Each xj determines a function 

Since 

f determines 

t 

L is an autonomous 

A C ) nD 
w 

T 

As in 6.5 above there is a finite set of indices Wl' "''' ~n 

depends only on those indices. We can thus factor the diagram as 

can be completed. 

such that 

gram of the form 

which is evidently an involution. Thus we have a pre - * - automonous situation. 

The discrete uniformity of (C,D) is evidently that of global uniform 

convergence and is a convergence uniformity. Thus the first three parts of III.4.2 

are satisfied. 

(6.7) We now consider III.4.2(v). Let C E C and A C C be a proper closed sub- 

lattice. Since C is profinite there is a finite quotient C of C such that the 
,0 

image A 0 remains proper, else A would be dense. Since C O ---+,A 0 is surjective 

and not an isomorphism it cannot be injective whence neither is C ---+ A* 

(6.8) We now show that the hypotheses of II.2°9 are satisfied. The first is already 

shown and the third is evident. For the second, it suffices to show that every dia- 
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Now A 0 and B 0 are discrete. If 

image. 

We have the composite 

A 0 ~ A 0 

A C ~ zD 

A 0 C__+ D I 

+ 

T 

B 0 ----+ A 0 

C* 

x...x D 

n 
= B 0 

is not surjective let C be its 

B 0 ~ B 0 

B 0 i s  c o m p a c t  s o  t h a t  C i s  c l o s e d  

consists of all inf preserving homomorphisms X ---+ Y made into a complete lattice 

by the infs in Y . In particular, 

X* = (X , 2) 

Every map X ----+ 2 is a limit preserving set-valued functor on X considered as a 

category. Hence X* and X have isomorphic underlying sets and the isomorphism is 

readily seen to be order inverting. Thus X* ~ X °p from which the duality and the 

*-autonomous structure are obvious. It has been incorrectly conjectured that this is 

a compact category: a *-autonomous category such that I ; T and such that the natural 

map 

X* ® Y --~ (X ,Y) 

induced by exchanging Y and X in 

X* ® X --~ I ---+ (Y ,Y) 

is an isomorphism. Here X ® X > I is evaluation and I ---+ (X,X) the unit map. 

This means 

Thus assigns to a family of subsets their intersection. 

(x ,Y) 

The unit N : X ---+ TX 

Tf(A) {yl/l(y) C A } . 

is the singleton map and 

x 2 x ~X : 2 2 ---+ 

that for A C X , 

is injective, whence the first factor is. But 

and by hypothesis proper in A 0 and this contradicts the previous paragraph. 

The last condition of III.4.2 is immediate and hence we have another model of 

the theory. 

(6.9) The category of complete semilattices and complete homomorphisms provides a 

model of a *-autonomous category that is not constructed in the way described here. 

(A complete semilattice is in fact a complete lattice. It is understood that the 

category of complete semilattiees is the category whose objects are complete lattices 

and whose maps are complete inf preserving functions.) It is a closed category, in 

fact models of commutative theory. The triple ~ = (T , ~ , ~) can be described as 

follows. For X a set, let 

TX = 2 X 

and if f : X ----+ Y is a map, T f is the right adjoint to 2 f : 2 y ---+ 2x 
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Since (X,Y) = (X ® Y ) , compactness is equivalent (in a *-autonomous category) to 

either of the natural maps (whose constructions are easy -- given I = T ) 

X ® Y ---+ (X ® Y) 

(X,Y) ~ (X ,Y ) 

being an isomorphism. In the case of lattices, this would imply that (X,Y) ~d 

(x°P,Y °p) were dual lattices and, in particular, that (X,Y) and (xOP, yOp) have 

isomo~hic ~derlying sets. I have verified, using an HP67 progra~le calculator, 

that when 

x:xOp  /i\ \ i /  
and 

I\ 
/\1\ 
\ i /  

then there are 94 inf preserving maps X ---+ Y and only 88 such maps X °p ~ X ---+ yOp 

The computation is carried out by modeling Y (as well as yOp) as a set of positive 

integers ordered by divisibility such that the inf of two numbers is their gcd . This 

would seem to be possible for any finite lattice. 

To have compactness, it is necessary -- and almost surely sufficient -- to have a 

trace map 

tr : (X,X) ~ X* ® X ---+ I , 

such that the composite 

(X,I) ---+ (X, (X,X)) ---+ (X, (X,X)) (X'tr') ~ (X,I) 

is the identity. Here the first map is induced by the unit and the second interchanges 

the first and second copies of X . The full subcategory of the category of complete 

lattices of complete atomic boolean algebras (which is the Kleisli category for the 

triple) has such a trace map but its form suggests very much that it cannot be extend- 

ed to any larger subcategory. Namely, if the lattice X = 2 A , then let 

tr : (X,X) ----+ 2 

be defined by 

i, if a @ f (A - {a}) for all a @ A 

tr(f) = O, otherwise . 

In other words, trace is represented by the map g : X ---+ X defined by 

g(A) = A , g(A-{a}) = a , g(A 0) = 

for any subset A 0 < A that omits at least two elements of A . The fact that X 

is complemented and atomic seems crucial here. 
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CONSTRUCTING *-AUTONOMOUS CATEGORIES 

Po-Hsiang Chu 

CHAPTER I: PRELIMINARIES 

We will be dealing with closed symmetric monoidal (autonomous) and 

*-autonomous categories as defined in the previous paper. Using the MacLane- 

Kelly coherence conditions (see [MacLane,Kelly]), M.F. Szabo has proved the 

following useful theorem [to appear]. 

Theorem: A diagram commutes in all closed symmetric monoidal categories 

iff it commutes in the category of real vector spaces. 

This theorem not only points out the notion of closed symmetric 

monoidal category is a 'correct' generalization of the category of vector 

spaces, but it also provides a very easy method to check if a diagram is 

commutative in any closed symmetric monoidal category. 

The following is a collection of easy consequences of this theoren 

which we shall use later on: 
f 

Corollary i. Given A,B,C objects in V and map A®B > C, then the 

following diagram commutes: 
i 

I ~ (A,A) 

(B,B) , (A®B,C) 

where the map~ (A,A) ÷ (A~B,C) is the composition 

(A,A) (id'fJ>(A,(B,C)) x P >(A®B,C) 
? f 

Note. A ) (B,C) is the usual transpose of A®B ~ C . 

The map (B,B) ÷ (A®B,C) is obtained in a similar fashion. From now on 

we simply denote either composite by f . 

Corollary 2. Given A,B,C,D,F objects in V and map B®C > F, then the 

following diagram commutes: 

(A,C)®(D,B) (id,f)®if > (A,(B,F))®(D,B) 

lid®(id, f) Ip-l®id 

(A,C)®(D,C,F)) (A®B,F)®(D,B) 

Iid®p-i I (s,id)®id 

(A,C)®(D®C,F) (B®A,F)®(D,B) 

lid®(s,id) Ip®id 

(A,C)®(C®D, F) (B, (A,F))®(D,B) 

iid~p i M 

(A,C)®(C, (D,F)) (D, (A, F)) 

(C,(D,F))®(A,C) p-i 

(A,(D,F)) P , (A®D,F) ' ts'id)'(D®A,F) 
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PROOF. It is easy to check that the diagram commutes in the category of 

real vector spaces. 

Remark. The word "coherence" is going to appear frequently throughout this 

paper. In particular, if the commutativity of a certain diagram is said to 

be implied by coherence, we understand that its commutativity follows easily 

from this theorem. 

Our second assumption on V is that it has pullbacks. Since almost 

all interesting examples of closed symmetric monoidal categories have this 

property, this restriction is not too drastic. 

The following is a collection of examples satisfies our assumption: 

(i) The category of vector spaces over a fixed field K; 

(ii) The category of Banach spaces; 

(iii) The category of compactly generated spaces; 

(iv) The category of sets (and functions); 

(v) The category of abelian groups; 

(vi) The category of lattices. 

An example of a closed symmetric monoidal category that does not have 

pullbacks is the category of sets and relations. 

CHAPTER II: CONSTRUCTION OF ~X AND ITS ENRICHMENT OVER V. 

i. The Category ~ 

Given an arbitrary object X in V, we shall construct a category_A X 

as follows: 

The objects of ~X consist of triplets (V,V',v) where V,V' are objects 

in V and v:VeV' > X is a morphism in V. 

A morphism from (V,V',v) to (W,W',w) is a pair (f,g), where f:V ~ W 

and g:W' ~V' are morphisms in V such that the square 

V®W' id®g ~ V®V' 

W®W ' w > X 

commutes. 
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If (f,g):(V,V',v) ~ (W,W',w) and (h,k):(W,W',w) 

are morphisms in Ax then the following diagram commutes: 

V®U' id®k id®$ > V®W' > V®V' 

W®U' id®k + W®W' v 

lh®id ~ ~ .  

u 
U®U' > X 

(U,U',u) 

This implies the composition of (f,g) and (h,k) is (hof,gok) in AX . 

Since the composition is defined explicitly in terms of morphisms in V , the 

associativity of maps in AX can now be verified: 

If (f,g):(V,V',v) 

(h,k):(W,W',w) 

(l,m):(U,U',u) 

are morphisms in AX , then 

Moreover, 

shown that A x 

(W,W',w) 

÷ (U,U',u) 

(T,T',t) 

((l,m) o(h,k))o(f,g) = (loh,kom) o(f,g) 

= ((loh)of, go(kom) 

= (lo(hof),(gok)om) 

= (l,m) o (hof, gok) 

= (l,m) o((h,k)o(f,g)) . 

Id(V,V',v) = (idv,idv,) is the obvious identity. 

is a category. 

Hence we have 

2. __~ is ~hriched over X 

Definition. If V is a closed monoidal category, then A is enriched over 

if A is equipped with the following: 

i) For each A,B in A, an object V(A,B) in V; 

ii) For each A in A, a morphism j(A):I > V(A,A) in V ; 

iii) For each A,B,C in A, a morphism 

M'(A,B,C):~(B,C)®V(A,B) ~ X(A,C) in ~ . 

These data are required to satisfy the following axioms: 

VC i. The following diagram commutes: 
M' 

V(A,B)®V(A,A) ~ V(A,B) 

V(A,B) ®I ~ r 
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VC 2. The following diagram commutes: 

M' V(A,A)®V(B,A) 

j @ i d f  

I®V(B,A) I 

~(B,A) 

VC 3. The following diagram commutes: 

(V(C,D)®V(B,C))®V(A,B) a ) V(C,D)®(V(B,C)®V(A,B)) 

iM'eid [id®M' 

V(B,D)®V(A,B) V(C,D)®X(A,C) 

~ X ( A , D ) / M '  

Given A = (V,V',v),B = (W,W',w) objects in A X , define V(A,B) to be 

the object in V such that the following square is a pullback. 

V(A,B) pl > (V,W) 

(W',V') ~ (V~W',X) 

Here -i 

(v,w) ~ (ww',x) : (v,w) w ~ (v,(w',x)) P > (v®w',x) 

and -i 

(w',v') ~ (ww',x) = (w',v') v ~ (w',(v,x)) P ~(w'~v,x) s ~(V®W',X) 

are the right and bottom maps, respectively. 

isomorphism in V . 

Given A = (V,V',v) 

Corollary i: 

Therefore V(A,B) is defined up to 

in _~ , the following diagram commutes, by 

i I > (V,V) 

(v',v') , (v®v',x) 

Universal property of pullbacks implies that there exists a unique map j(A) 

I ----~V(A,A) in V such that the diagram 
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commutes. 

Now suppose 

in ~X " 

diagram. 

- ~ V(A,A) ~(V,V) 

~ 

(v',v') v + (v®v',x) 

A = (V,V',v), B = (W,W',w), C = (T,T',t) are three objects 

In order to verify iii) it suffices to show the outer square of the 

_V (B, C) ®V(A, B) pl~pl ) (W,T)®(V,W) 

p2®p2 IM 

(T',W')®(W',V') V(A,C) p1 ~ (V,T) 

I I t 
(W',V')®(T',W') M , (T',V') 9 , (V®T',X) 

commutes. 

Using the fact that -~- is a bifunctor and 

_V(A,B) pl > (V,W) V(B,C) pl ~ (W,T) 

(W',V') > (V®W',X) (T',W') , (W®T',X) 

are pullbacks (hence commute!), we can get the desired result from the commu- 

tative diagram in Fig. 1. Note in Fig. 1 that corollary 2 of Szabo's theorem 

(Chapter I) implies that (2) commutes; coherence implies that (i) and (3) 

commute. Again using the universal property of pullbacks, there exists a 

unique morphism M'(A,B,C):V(B,C)®V(A,B) ÷ V(A,C) in V such that the 

diagram 

commutes. 

V(B,C)®V(A,B) pl®pl > (W,T)®(V,W) 

(T',W')®(W',V') V(A,C) pl , (V,T) 

(W',V')®(T',W') M , (T',V') 9 , (V®T',X) 

Hence i) - iii) are defined. 
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Now we have to show they satisfy the required axioms. 

Given A = (V,V',v), B = (W,W',w) in _~ , by construction we have 

the pullback diagram: 

But the coherence of V 

V(A,B) pl > (V,W) 

p21 p.b. I~ 

(w',v') ~ (vaw',x) 

implies that the diagrams of Fig. i commute. 

V(B,C)OX(A,B) 

p2®id 

(T' ,W')®V(A,B) 

id~p2 

(T' ,W')a(W' ,V') s 
(w' ,v')a(T' ,W') 

id~pl 

id~pl 

id®~ 

(3) 

M 

V(B,C)®(V,W) plaid ~(W,T)e(V,W) M ~ (V,T) 

p2aid ltaid 

, (T',W')a(V,W) waid , (WaT',X)a(V,W)/t 

, (T',W')®(VaW',X) M , (VAT' ) 

(T',V') 

V(A,B)®I r ~ V(A,B) 

(V,W) ®I r ÷ (V,W) 

V(A,B) ®I r > V(A,B) 

(W' ,V')®I r ~ (W' ,V') 

FIGURE i. 
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Hence the following diagram 

V(A,B)®I 

, 2 ® i d  

commutes. 

(W',V')®l 

pl®id 

V(A, B) pl 

I p2 p.b. 

(W' ,V' ) 

(V,W)®I 

lr 
(v,w) 

1° 
(V®W', X) 

r I 
Since the outer square commutes, there exists a unique map V(A,B)®I 

such that (1) and (2) commute. But the map V(A,B)®I r ~ V(A,B) has this 

property as well; therefore it follows from uniqueness that it is the map induced 

by pulling back. 

Recall that in the construction of j(A) we have the following commutative 

diagram: 

, V(A, B) 

I 

~ ~ ~ ~ ~ ~ ' "  ~ -V(A,A) w ~ (v,v) 

~ v ( v ' , v ' )  ~ > (v®v' ,x) 

Then the defining property of M(A,B,A), coherence of V_ , and the fact that 

-~- is a bifunctor imply that the diagram: 

commutes. 

V(A, B) ®V(A,A) pl®pl ~ (V,W)®(V,V) 

I®V(A,B) i®p2>(V',V')®(W',V') 

Ip2  
(W' ,V')®(V' ,V') V(A,B) pl > (V,W) 

Is ip pb Io 
M ,(U' ,V') v , (V®W' ,X) 
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Again applying the same argument, we conclude that the map 

V(A,B)®I id®j M' _ + V(A,B)®_V(A,A) + V(A,B) is the map induced by 

pulling back. 

But this is not sufficient to conclude that VCI. holds, i.e. that the 

diagram: 
M' 

V(A,B) ®V(A,A) > V(A, B) 

V(A,B)®I 

commutes. 

We are still required to show that the following diagrams commute: 

V(A,B)®I pl®id + (V,W)@I V(A,B)®I p2®id > (W',V')®I 

] I L I . -  r S 

/ 
t 

M 
(V,W)e(V,V) + (V,W) (W',V')®(V',V') I®(W',V') 

/ j ] 11 S j/~/ 1 

I 
M 

(V',V')e(W',V') ,(W',V') 

That is, that the induced maps satisfy the same commutative square 

(therefore they are same by uniqueness). 

But it is trivial once we notice there exist canonical maps 
id®i ieid 

(V,W)®I ~ (V,W)®(V,V) in (i) and I®(W',V') ) (V',V')®(W',V') 

in (2) which break (i) and (2) into two smaller conmlutative squares. Hence 

VCI. holds. 

Applying a similar argument, we conclude VC2. is also true. Next we 

are going to verify VC3. 

Given A = (V,V',v), B = (W,W',w), C = (T,T',t), D = (U,U',u) objects 

in _~ , then by iii) we have the commutative diagrams of Figure 2. 

Coherence of V and property of M(A,B,C) imply that subdiagrams (i) and 

(2) of Figure 2 commute; similarly (i') and (2') commute. 

Now we apply the same argument as in proving VCI, i.e. the maps 
id®M' M' 

V(C,D)®(V(B,C)®V(A,B)) + !(C,D)®V(A,C) ~ V(A,D) 

M'®id M' 
(V(C,D)®V(B,C))®V(A,B) + V(B,D)®V(A,B) > V(A,D) 

are the maps induced by pulling back. We only have to show that the composition 

a(V(C,D), V(B,C), _V(A,B)) 
(V(C, D) ®V (B, C) ) ®V(A, B) , V(C, D) ® (V_(B, C) @V (A, B) ) 

id®M' M' 
*_V(C,D)®V(A,C) + V(A,D) 
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V(C, D)® (V(B, C) ®V(A, B) ) 

(U',T')®((T' ,W')®(W',V')) 

id®s (2) 

(U' ,T')®((W' ,V' )®(r' ,W')) 

pl®(pl~pl) 

(i) 

V(C, D) ®_V (A, C) plopl 

(U', T')®(T' ,V' ) V(A,D) 

Is p l 
M >(u',v') ((W',V')®(T',W'))®(U',T')M®id~(T',V')®(U',T ') 

> (T,U)®((W,T)®(V,W)) 

l idoM 
> (T,U)®(V,T) 

pl , (V,U) 

p.b. ]~ 

>(VoU',X) 

(~(C,D)®V(B,C))®~(A,B) 

(p2~p2)~p2~®id 

((U',T')®(T',W'))®(W',V') 

s®id (2') 

((T',W')®(U',T'))®(W',V') 

(W',V')O((T',W')®(U',T')) id®M~(w',v')®(U';W') 

(pl~pl)®pl > ((T,U)®(W,T))®(V,W) 

L 

( i ' ) IM®i d 

V(B, D)®V(A,B) pl~pl ~ (W,U)®(V,W) 

1 p2® M 

(U' ,W')®(W' ,V') V(A,D) pl ~ (V,U) 

Ls p lpb I 
M ~r 

, (U',V') , (V®U',X) 

FIGURE 2. 

is also a map induced by pullback and it satisfies the same commutative 

square as the map: 
__ M T 

(V(C,D)®V(B,C))®V(A,B) M'oid > V(B,D)®V(A,B ) > V(A,D) 

The first part follows easily from the following commutative 

diagram: 
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((T,U)®(W,T))e(V,W) 

(pl®pl)@pl 

(X(C,D)®~(B,C))®V(A,B) 

(p2@p2)@p2 

((U' ,T')®(T' ,W'))®(W' ,V' ) 

t s ® i d  

((T'. ,W')e(U' ,T'))®(W' ,V') 

(W' ,V')®((T',W')e(U',T')) 

(T,U)®((W,T)®(V,W)) 

pl®(pl@pl) 

X(C,D)®(X(B,C)@V(A,B)) 

p2®(p2@p2) 

(U',T')®((T',W')®(W',V')) 

l i d ® s  

(U',T')®((W',V')®(T',W')) 

- 1  

a ((W',V')®(T',W'))®(U',T') 

As for the second part, we observe a simple fact of V : two 

permutations of the tensor product of any three fixed objects are coherently 

isomorphic. Therefore it is enough to show the following diagrams commute: 

((T,U)®(W,T))®(V,W) a > (T,U)®((W,T)®(V,W)) 

1 1 
(W,U)®(V,W) (T,U)®(V,T) 

((W',V')®(T',W'))®(U',T') a > (W',V')®((T',W')®(U',T')) 

iM®id lid®M 

(T' ,V')®(U' ,T') (W' ,V')®(U' ,W') 

This follows trivially from coherence and completes the proof. 
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CHAPTER III: ~_ HAS A *-AUTONOMOUS STRUCTURE --x 

1. The Hom-Functor~(-,-) 

Definition. Given any two objects A 

in ~ , define an object _~(A,B) = (V(A,B), VOW', n) 

First of all recall V(A,B) is the object in 

= (V,V',v) and B = (W,W',w) 

in ~X as follows: 

such that the follow- 

Since we require _~(A,B) to be an object in_~ , n has to be a 

morphism in V, which sends V(A,B)®(V®W') to X. 

pl®id > (V,W)®(V®W') 

l ~®id 
(W',V')®(V®W') ~id ) (V®W',X)®(V®W') 

Now let ev:(V®W',X)®(V®W') > X be the evaluation map, then put 

n" = ev composed with the above map V(A,B)®(V®W') ~ (V®W',X)®(V®W'). 

But since V is coherent, it is easy to verify that n is identical 

to n', so these two definitions are same. 

For the rest of this section we shall prove A X(-,-) 

which sends _~op × _~ to _~ . 

We have to show 

i) given any object B = (W,W',w) in _~ , F = A_X(-,B) 

is a contravariant functor; 

ii) G =_~(B,-) is a covariant funetor; 

iii) Given A ~ B, C ~ D in A X , then the diagram 

It seems there are two (canonical) alternatives for defining n: 

(i) Since the above square commutes, let n' be the morphism (along either 

route) which sends V(A,B) to (V®W',X) , and define 

n:~(A,B)®(V®W') > X to be the transpose of n'. 

(2) Again since the above square commutes, we have the following 

commutative diagram: 

V(A,B)®(V®W') 

p2®id I 

is a bifunctor 

ing diagram is a pullback. 

V(A,B) pl ~ (V,W) 

(w',v') , (v®w',x) 
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commutes. 

Recall if 

is a morphism in AX, 

A_x(B,C) ~ Ax(A,C) 

t [ 
A_x(B,D) , Ax(A,D) 

C = (V,V',v) and 

then the square: 

V®P ' id®g ~ V®V' 

P®P ' P ~ X 

commutes. 

A = (P,P',p) in A X and (f,g):C 

In order to show F is contravariant, we must find a map (in A X) 

F(f,g) = (f',g'):_Ax(A,B) ~ Ax(C,B) . 

By definition _~(A,B) = (V(A,B), P®W', n I) and Ax(C,B) = 

(V(C,B), V®W', n 2) ; so the choice for g' is clear: g' = f®id:V®W' 

As for f', consider the following diagram: 

V(A B) 

~(C,B) 

i 
(*) p2 p21 p.b. 

(W',V,)-- ~ 

~ d,g) 

(W' ,P' ) 

pl 

pl 

(P,W) 

(V,W)(~ f,id) 

I ~ (i) 

> (V®W',X) 
id) 

,X) ~ ( P ~ W '  

We know the outer square commutes, therefore it suffices to show (i) 

and (2) are commutative. 

For (i), we prove it by looking at the following commutative diagram: 

(P,W) (f,id) > (V,W) 

(P , (W' ,X))  p ~ (P®W',X) ( f®id ,  id)  ~ (V®W',X) +---P (V,(W',X)) 

+ P®W' 
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As for (2) we have a similar diagramatical proof: 

(w',e) (id,$) + (W',V') 

(W',(P,X)) P ÷ (W'eP,X) (id®f,id) , (W'®V,X) ~ P (W',(V,X)) 

But in this case the commutativity of the outer square is due to 

the fact that (f,g) is a morphism which sends 

diagram (*) above commutes). 

This implies that there is a unique map 

induced by pullback such that the diagram 

V(A,B) 

~(C,B) 

(W',V') 

iN,g) 

(W',P') 

C to A (hence the 

pl 

pl 

p.b. 

f':V(A,B) + V(C,B) 

+ (P,W) 

id) 

, (v,w) 

1° ° 
(V®W',X) 
K 
(f®id,id) 

~'. (P®W',X) 

commutes. 

Therefore the following diagram commutes: 

V(A,B) p2 ~(W',P) - 

I f' (id,g) 

V(C,B) p2 ~(W',V') 

> (P®W',X) 

(feid,id) 

(V®W',X) 

This implies that: 

V(A,B)®(VOW, ) id®g' 

I f'Qid 
n 2 

V(C,B)®(V®W') 

commutes. 

+ _V(A,B)®(P®W' ) 

1 . 
~ X 
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Therefore (f',g') has the property required of a morphism in 

It is trivial to see that F(id A) = idF(A) . Now we have to show 

F preserves composition. 

Suppose A = (P,P',p), C = (V,V',v) and E = (U,U',u) are three 

objects in _~ , moreover (f,g):E ~ C and (h,k):C ~ A then we 

want to show that 

Ax(A,B ) (h',k') > A_x(C,B) 

((h°f)''(g°k)') ~ f (f''g') 

commutes. 

By definition: 

_~(E,B) 

_~(A,B) = (V(A,B), P®W', nl) 

_~(C,B) = (V(C,B), V®W', n 2) 

_Ax(E,B) = (V(E,B), U®W', n3) 

Now we consider the following commutative diagram: 

V(A,B) 

p2 

V(C,B) 

p2 

_V(E,C) 

(W' ,U' ) 

(id,g) 

(W' ,V' ) 

(W',P') 

pl (P,W) 

~(P®W',X) 

pl ~ (V,W) 
(f, ida/ 

pl ~ (U,W) 
1 

p.b. [~ 

1 
~(U®W',X) 

~(f®id,id)~ 

v ~ (V®W',X) 
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But the following diagrams also commute: 

(W' ,P') (id~k) ~ (W' ,V') 

(W' ,U' ) 

(P®W',X) (h®id,id) > (V®W',X) 

((h°f)®id'id) I ~~~(f~id,id) 

(UoW',X) 

(P,W) 

(hof,id) 

(u,w) 

(h,id) (v,w) 

This implies that the map induced by pullback is identical to f'oh', 

and clearly k'og' = (h®id) o(f®id) = ((hof)®id) = (gok)' Hence F is a 

contravariant functor. 

As for G, we have a similar series of diagrammatical proofs: Suppose 

B = (W,W',w), A = (P,P',p), C = (V,V',v) are objects in_~ with (f,g): 

A > C a morphism in_~ . We need G(f,g) = (f',g'):G(A) > G(C). 

By definition 

G(A) = _~(B,A) = (V(B,A) , W®P', n I) 

a n d  

G(C) = _~(B,C) = (_V(B,C) , W®V', n 2) 

Hence the choice of 

g' = id®g:W®V' > W®P' 

is clear. And the following commutative diagram shows the existence and 

uniqueness of f': 
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V(B,A) 

V(B,C) 

p2 ]p2 

(V' ,W') 

(P',W') 

pl 

pl 

p.b. 

> (w,e) 

(W,V) (~id,f) 

) (W®V',X) 
~ id) 

> (W®P',X) 
Again the preservation of the identity is clear. 

Now if A = (P,P',p), C = (V,V',v), E = (U,U',u) are objects in 

AX and (f,g):A > C, (h,k):C ) D are morphisms, then the 

commutative diagrams of Figure 3 imply G preserves composition. 

To prove (iii): 

Suppose A = (V,V'v), B = (W,W',w), C = (P,P',p), D = (U,U',u) are 

objects in ~X and (f,g):A ) B, (h,k):C ~ D are maps in ~X ' 

then the following diagrams commute: 

V(B C) 
pl 

V(B,D) p2 

I p2 p .b. 

(U' ,W' ) 

(P',w') 

(w,P) 

, (w,u) 

I~ # . 

(W®U',X) 

(id®k,id)~ 

> (W®P',X) 

V(B,D) 

V(A,D) 

p2 lp2 

(U',V') 

Sd,g) 

(U',W') 

pl > (W, U) 

~,idl 
pl ~ (V,U) 

p.b. lfi 

~ (V®U',X) 

(g®id,id)~ 

> (W®U',X) 
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(W,P) 

(id,h°f) 1 
(w,u) 

(id,f) + (W,V) (W®P',X) (ideg,id) ~ (W®V',X) 

(id®(gok),id) I ~k,id) 

(w®u',x) 

(P',W') (g,id)___+ (V',W') 

(g°k'id) I 

(u',w') 

V(B ,A) pl 

v_(B, c) pl 

, (w,u) 

p .b. I~ 

+(W®U' ,X) 

(id®k, id)~ 

> (W,P) 

(id,/ 
÷ (w,v) ~ 

(id®g,id)~ 

(W®P',X) 

+ (W®V',X) 

!(B,E) -- pl 
i 

~2 lp2 

(U',W') ~ 
,id) 

(V' ,w' ) 

(P',W') 

FIGURE 3. 



120 

~(A,C~ 

V(A,D) 

~2 lp2 

(U' ,V') 

(P',V') 

pl 

pl 

p.b. 

9 

> (V,P) 
(id,h) J 

(V,U) 

(k®id i ~  ~X) 
> (V®P',X) 

V(B,C) 
pl 

(P' ,W' ) 

V(A,C) pl 

\ 
V(A,D) 

p2 lp2 

(u' ,v') 

(P' ,V' ) 

(w,p) 

(V,P) 

pl ,(V,U) 
p.b. fi 

~(V®U' ,X) 

(k®id, i d ) ~  
(V®P ', X) 

(W®P',X) 

FIGURE 4. 

This implies that the first diagram in Figure 4 commutes which implies, in 

turn, that the second one does. 

Applying the same argument, the map from V(B,C) to V(A,D) induced 

by pullback is the same as h"of" , hence the following diagram commutes: 

f" 
V(B,C) ÷V(A, C) lh lh 

f, V(B,D) > _V(A,D) 
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Next consider Figure 5. Since the center square of the first diagram 

is a pullback, f'oh' is the unique map V(B,C) > V(A,D) that 

makes the diagram commute. 

Next consider the lower diagram of Figure 5. Using this and the 

fact that the following diagram commutes: 

id®k V®U' > V®P ' 

If®id [f®id 

id®k W®U' ~ W®P ' 

V(B,C) -.% 
V(B,D), 
-- -~I 

V(A,D) 

p2 lp2 
• [ (U',V') 

~id, g) 

(U',W') 

(kid) 

(P' ,w' ) 

pl , (W,P) 

pl ~ (W,U) 

(f' id)k/ 1 pl , (V,U) 

> (v®u' ,X) (f®id,id~, 
~ (W®U' ,X) 
(id®k, ~ 

~ (W®P', X) 

V(B,C) 

V(A,C) 

p2 [p2 
(P' ,V') 

(P',W') 

pl (W,P) 

pl 

p.b. 

, (V,P) 

1° 
(V®P ', X) 

( f ® i ~  

(W®P',X) 

FIGURE 5. 
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we obtain the desired result that the diagram 

Ax(B,C) ~Ax(A,C) 

Ax(B ,D) ~Ax(A,D ) 

commutes. 

2. The Functor *. 

In this section we shall define a functor ,:_~op ~X 

and examine its relationship with AX(-, -) . 

Definition. Given any object A = (V,V',v) in AX define *(A) to be the 

object (V',V,vos) where s:V'®V s ~ vev' v + X is a map in V . 

Suppose B = (W,W',w) is another object in ~X and (f,g):A > B 

a morphism in AX , then define *(f,g) = (g,f):*(B) + *(A). This 

definition is justified since the commutativity of the diagram: 

VoW' id®g > V®V' 

W®W ' w > X 

implies that the diagram 

commutes. 

id®f 
W'®V + W'®W 

I gOid I w°s 

V'®V > X 
vos 

From the above formula on morphisms we can easily conclude that * 

a functor. 

Moreover * has an inverse (contravariant), since *o* = idAx_ 

The following are some properties of *: 

Proposition i. Given A = (V,V',v) , B = (W,W',w') in ~X , then 

V(A,B) ~ V(*(B),*(A)) . 

PROOF. By definition *(A) = (V',V,vos) and *(B) = (W',W,wos). 

Consider the commutative diagram of Figure 6. 

Notice that the coherence of V implies squares (I), (2), (3), (4) 

commute. It also implies that the diagram 

(V®W', X) (s, id) ~ (W' ®V, X) 

(V®W' ,X) 

is 
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commutes. 

The fact that 

V(* (B) ,*(A)) pl > (V,W) 

Vos 
(w',v') , (w'~v,x) 

is a pullback square implies that there exists a unique p:V(A,B) ~ V(*(B),*(A)) 

such that the diagram of Figure 6 still commutes. Similarly the pullback 

square involve V(A,B) induces a unique map q:V(*(B),*(A)) ~ V(A,B) such 

that the diagram of Figure 6 commutes. This implies qop is the map 

induced by the pullback square: 

V(A, B) pl (V,W) 

I p2 p'b" I f~ 

(w' ,v' ) (v®w' ,x) 

V(A,B) 

_V(* (B(,*(A)) 

~2 

(W' ,V' ) 

(w' ,v' ) 

V(A,B) pl 

p2 p . b .  

(W',V') 

p1 

pl 
, (v,w) 

, (v,w) 

Wos 

(V®W',X) 

~ o s  
(W'®V,X) 

(v,w) 

2 /  

(V®W',X) 

FIGURE 6. 
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But by the remark above idv(A,B) also has this property. Hence 

qop = idv(A,B) . 

Now switch V(A,B) and V(*(B),*(A)) in the previous diagram, and 

apply the same argument to conclude that poq = idv(,(B),,(A) ) . This 

completes the proof. 

Corollary. Let A,B be two objects in ~X ' then V(A,*(B)) = V(B,*(A)) 

PROOF. For any object C in ~X ' *(*(C)) = C. 

Corollary. Let A = (V,V',v), B = (W,W',w), be two objects in _A X , 

then A--x(A'B) ~ ~X (*(B),*(A))- 

PROOF. By definition *(A) = (V',V,vos), *(B) = (W',W,wos) which 

implies that AX(*(B),*(A)) = (V(~B),*(A)),W'®V,n I) . 

But recall that Ax(A,B) = (V(A,B),V®W',n2) ; moreover we 

have isomorphism p:V(A,B) + V(*(B),*(A)) and q:V(*(B),*(A)) ~ V(A,B) 

such that idv(A,B) = qop , idv(,(B),,(A)) = poq . 

> W'®V and S(W',V):W'®V ~ VoW' such that 

and s(W',V) os(V,W ') = idv®w, . 

Hence it is sufficient to check that the pair 

an isomorphism in _A X . 

commutative diagram: 

V(A,B) P ~ V(*(B),*(A)) q 

(V®W',X) (s,id) , (W'®V,X) (s,id), (V®E 

and complete the proof by taking the transpose. 

Corollary. Let A,B be two objects in A X , then 

Ax(A,*(B)) = Ax(B,*(A)) • 

PROOF. If C is an object in ~X , then C = *(*C) 

Proposition 2. Let A,B,C be three objects in ~X ' then 

PROOF. 

definition 

We also have s(V,W'):V®W' 

s(V,W')os(W',V) = idw,®v 

(p,s(W',V)) is indeed 

But we see this by considering the following 

, _V(A,B) 

(V®W',X) 

V(A,_Ax(B,*(C))) m V(C,Ax(B,*(A))). 

Let A = (V,V',v), B = (W,W',w), C = (U,U',u). Then by 

*(A) = (V',V,vos) and *(C) = (U',U,uos). 

Now put Bc = Ax(B,*(C)) = (V(B,*(C)),W®U,n I) and 

Ba = Ax(B,*(A)) = (V(B,*(A)),W®V,n 2) 

Recall that V(B,*(C)) and V(B,*(A)) make the following 

squares pullbacks: 
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V(B,*(C)) pl ~ (W,U') 

(u,w') , (weu,x) 

Now consider Figure 7. 

adjoints, they preserve pullbacks, 

still commutative. 

V(B,*(A)) pl > (W,V') 

]P2 ] v~s 

(v,w') wos > (w~v, x) 

Since (U,-) and (V,-) have left 

hence the outer and inner squares are 

But (i) is a pullback, hence the following diagrams commute: 

(v, (u,w')) 

(v, (w®u, x)) 

l p - 1  

(w (weu), x) 

pos > (u,(v,w')) (w~u,v) ~ ~ (w(w~u),x) 

(u, (wov, x)) (u, (w,v')) (u® (w®v) ,x) 

I \/ 
s ~ (ue(w~v),x) (u, (wev,x)) 

V(A,Bc) 

(V,V(B,* (C))) 

(V, (W,U')) (id,~) 

pl / w.uv) 

V(C Ba) pl > (U,Ba)(id~pI~(u,(w,v')) 

(id,p2) (I) (id,9) 

,2 (U, (V,W')) (id,~) 

(W®V,U') 

(v,(u,w')) 

(id,~) 

(v,(w®u,x)) 

FIGURE 7. 

(u, (w~v,x)) 

, (u®(w®v),x) 

(S~ ° 

-i 
P (w(w~u),x) 
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This implies that there exists a unique map 

that the diagram of Figure 7 

V(C, Ba) pl 

(WOV,U' )  

i s  a p u l l b a c k ,  t h e r e  e x i s t s  a u n i q u e  map 

V(A,Bc) ~ (U,Ba) such 

still commutes. Now using the fact that 

(U,Ba) 

(u®(w®v),x) 

V(A,Bc) q > V(C,Ba) . 

A similar argument (Figure 8) shows the existence of a map 

p:V(C,Ba) > V(A,Bc) . 

Applying the same argument as in the previous proposition, we 

conclude that poq = idv(A,Bc ) and qop = idv(c,Ba) . 

Corollary. If A, B, C are objects in _~ , then 

Ax(A,Ax(B,*(C))) ~Ax(C,_~(B*(A))) • 

PROOF. Apply the same argument as in previous corollary. 

Corollary. Let A, B, C be objects in A X , then 

_Ax(A,Ax(B,C)) ~Ax(*(C),Ax(B,*(A))) . 

PROOF. _~(A,Ax(B,C)) ~ AX(*(*(A)),Ax(B,*(*(C)))) 

~ AX(*(C),Ax(B,*(A))) 

Remark. These propositions and corollaries concerning the duality lay 

the foundation of our construction, as we shall see later on. 

3. The Functor -e- 

Note: Henceforth we write, for an object A of ~X ' A* instead of *(A). 

Definition. Given A,B objects in ~X ' then define A®B = Ax(A,B*)* . 

It is clear that -®- is a bifunctor, since -®- is the composition 

AX(-,-) 

~X × ~X (*'*) + & × AX (id,*) ~ _~ × ~X > ~X 
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_V(C ,Ba) 

p2 

V(A Bc) 
pl 

p1 

(V,V(B,*(C))) (id,pl) (V,(W,U')) 

(id,~) (id,p2) 1 p.b. 

(V,(U,W')) (id,~) 

-i 
P 

(U,Ba) 

(u,(w,v')) ~.~-v-rr-=v+~(u,(w®v,x)) tlO,v) 

(v,(w®u,x)) 
p-i 

(v®(w®u),x) 

~2 

/ 
(W®U,V') 

/pos 
(id, , (U, (V,W')) 

> (WoV, U' 

/ 

(s,id)~ 

>(u®(w®v),x) 

FIGURE 8. 

Proposition. 

PROOF. 

Proposition. 

PROOF. 

Let A,B be objects in _~ , then 

A®B m B®A. 

A®B = Ax(A,B*)* m Ax(B,A*)* = B®A. 

Let A,B,C be objects in _A X , then 

(A®B) C ~ A®(B~C) 

(A®B) ®C = Ax(A, B*)*®C 

= Ax(Ax(A, B*)*, C*)* 

Ax(C,Ax(A, B*) )* 

Ax(C,_~(B,A*) )* 

Ax(A,_Ax(B,C*) )* 

Ax(Ax(B, C*)*, A*)* 

Ax(A,Ax(B,C*)**)* 

= A®Ax(B, C*)* 

= A®(B~C). 
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4. The Dualisin$ Object and the Unit for Tensor. 

Let T = (X,l,r) be the object in ~X ' such that 

is the cannonical isomorphism in V. 

Claim. T is the dualising object, i.e. for any object A 

_~(A,T) m A 

r:X®l 

in _A X. 

X 

PROOF. Let A = (V,V',v) be an object in 

following commutative diagram 

V(A,T)_ pl ~ (V,X) 

p l I r 
(1,v') ~ , (v®I,X) 

[ 1 p 
V' 

_~ , then we have the 

(V,(I,X)) 

(id,i) 

(V,X) 

But 

V' ~ (V,X) 

V' ~ (V,X) 

is trivially a pullback in V, 

(unique) morphism f:V(A,T) 

unique map g:V' ~ V(A,T) 

Corollary. 

PROOF. 

such that fog = idv, 

T is the identity for -®- • 

S u p p o s e  A i s  a n  o b j e c t  i n  A X , t h e n  

T ®A = __~(T ,A ) 

m Ax(A , T) 

~A 

which implies that we have an induced 

V'. Apply the same argument to get a 

and gof = id.(A,T)~ . 

=A 
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On the other hand, AoT ~ T ®A ~ A. This completes the proof. 

Theorem. Let A,B,C be objects in _~, then 

_~(A®B,C) -~ Ax(A,~(B,C)) . 

PROOF. Ax(A®B,C) = Ax(Ax(A,B ) ,C) 

Ax(C ,Ax(A,B )) 

-~ Ax(C ,Ax(B,A )) 

_~(A,Ax(B,C)) . 

Proposition. Let A be an object in _~ then 

Ax(T ,A) ~- A. 

PROOF. Ax(T ,A) ~_~(A ,T) ~ A. 

Remark. 

(i) There is an obvious embedding functor from the comma category 

(V,X) to _A X sending V ~ X to V®I > X: hence in this 

context (V,X) has a *-autonomous structure. 

(2) It is easy to verify _A X also satisfies our first assumption, i.e. 

the MacLane-Kelly coherence conditions. 

CHAPTER IV: APPLICATIONS 

i. Functor Categories 

In this chapter, we shall apply the theory developed thus 

far to the double envelope of a symmetric monoidal category C. 

Before defining the double envelope, let us recall some 

elementary results of the functor categories. 

Given categories X and Y we have the functor category 

W = X ~ . We know that if X is complete, then so is W, in the case 

X = S , the category of sets W also has a closed symmetric monoidal 

structure. The tensor is the cartesian product while the internal G F 

is defined as the functor whose value at D is the set of nature 

transformations F(-) × IIom(D,-) --+ G(-). 
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2. The Double Envelope. 

Definition. Given a symmetric monoidal category with a faithful functor 

I-I:C ° > S , we denote the double envelope of ~ by E(C). The 

objects of E(C) are all triplets (F,G;t) where F and G are functors 

from ~o to S,t is a natural transformation from F x G to I-~-I. A 

morphism from (F,G;t) to (F',G';s) in E(~) is a pair (f,g) where 

f is a natural transformation from F to F' and g is a natural 

transformation from G' 

F(C) x G'(C') 

f x i d  

F'(C) x G'(C') s 

to G such that the following diagram 

idxg ~ F(C) x G(C') 

~Ic~c' I 

of C ° x C ° . commutes for every object (C,C') 

Proposition. E(C) is a category. 

PROOF. Suppose (f,g): (F,G;t) > (F',G';s) 

(f',g'): (F',G';s) > (F",G";u) 

in E(C) , then the following diagram commutes for every 

cO x C O . 

are maps 

(C,C') in 

F(C)XG"(C') fXid ) F'(C)XG"(C') f'Xid ) F"(C)XG"(C') 

idXg' idXg' U 

F(C)XG'(C') fXid >F'(C)XG'(C') 

idXg 

F(C)XG(C') t ) C~C' 

This implies that 

are maps in E(C) , then 

Moreover, given (F,g;t) 

(f,g) : (F,G;t) ) (F' ,G' ;s) 

(f',g') : (F' ,G' ;s) ~ (F", G" ;u) 

(f",g"):(F",G";u) > (F'",G'";v) 

(f",G")o((f',g')o(f,g)) = (f",g")o(f'of,gog') 

= (f" o (f' o f), (gog') og") 

= ((f' of') of,go (g' og")) 

= (f"of', g' og") o (f, g) 

((f", g") o(f' ,g')) o (f, g). 

then (idF,id G) is the obvious choice for identity. 
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Before proving the main theorem of this chapter let us in- 
O O ~ 

vestigate the functor categories ~o and S ~ × ~ . There are co 
two obvious embeddings of S into S -- , namely ~ and r, 

-- -- O 

where ~(F) = F x I and r(F) = I x F for every F in S ~ , and 

C ° -- 
I is the unit in S-- i.e. I sends every object into the singleton 

-- C ° 
(the terminal object) in S. Hence we can regard objects in S-- as 

C ° × C O 
objects in S = -- via either embedding. Now we can prove. 

-- O O 

C × C 
Proposition. E(C) is enriched over V = S-- -- . 

PROOF. By previous remark V is a closed symmetric monoidal 

category with pullbacks, moreover it is coherent. 

Now given A = (G,F;t) and B = (G',F';s) in E(C) we have to 
O O 

define V(A,B) an object in V(= S ~C × ~ ) . Suppose (C,C') is an 
-- C ° x C ° 

object of S-- -- , then V(A,B) is the functor whose value at (C,C') 

is defined by requiring that the diagram 

V(A,B)(C,C') pl ~ (~(G),%(G')(C,C') 

(r(F'),r(F))(C,C') ~ (G x F', I-~-I)(C,C') 

be a pullback. 
o cO 

Note. (-,-) denotes the internal hom-functor of S ~ x As for the 

map (~(G),~(G'))(C,C') > (G x F', I-~-I)(C,C'), we simply observe 

that in V, G x F' is isomorphic to ~(G) × r(F'). Then the adjoint 

property of V constructs such a map (in the same fashion as in Chapter 

II, Section 2.) A similar argument constructs map 

(r(F'),r(F))(C,C') ) (g x F, I-®-I)(C,C'). 

Now the enrichment follows immediately from the result in Chapter 

II, since this is how pullbacks are defined in the functor category, i.e. 

by point-wise evaluation. This concludes the proof. 

Theorem. E(~) is a subcategory of a *-autonomous category A; moreover 

A is enriched over V. 

PROOF. Put X = I-®-I , then follow the construction in Chapter III. 

3. Miscellaneous Results. 

In this section, we are assuming V has all the properties as given 

in Chapter I and we shall prove that there is a functor F maps V to 

- CAT(V - CAT is the category of all categories which are enriched over 

X)- 
The functor F on objects of V is obvious: given X in V, then 

put F(X) = ~. 
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Now we have to show given a map f:X > S in V, this induces 

a V-functor T( = F(f)) from _~ to AS. 

The notion of a V-functor can be found in [Eilenberg & Kelly] Chapter 

II, Section 6. In this case we have to show: 

(i) a function T maps objects of _~ to objects of AS. 

(ii) for each B,C in AX, a morphism T(B,C) maps V(B,C) to V(T(B),T(C)) 

in V such that the following axioms are satisfied: 

(i) The following diagram commutes: 

T 
V(B,B) , V(T(B) ,T(B)) 

I 

(2) The following diagram cormnutes: 

M v 
V(C,D)®V(B,C) . . . .  _V(B,D) 

I,l t 
V(T(C),T(D))®V(T(B),T(C)) , _V(T(B),T(D)) 

Note. In both categories we denote the enriched object by 

is clear from the context which one we are referring to. 

The function T on objects of _~ is obvious; given 

_Ax, then T(B) is the composition V®V' v ~ X f , S 

T(B) = (V,V',fov). 

To show (ii): 

Suppose B = (V,V',v) C = (W,W',w) objects in AX, 

T(B) = (V,V',fov), T(C) = (W,W',fow) 

V(-,-) , it 

B = (V,V',v) 

i.e. 

then 

and the following diagram commutes 

in 

V(B,C) 

p 2  

V(T(B) ,T(C)) 

(W' ,V' ) 

pl 

pl 

p.b. 

fov 

, (v,w) 

, (V,W) 

I f~w 

~(V~W',S) 

( i d , f ~  

(V~W',X) (W',V') 



133 

Since the inner square is a pullback, there exists a (unique) map 

T(B,C) from V(B,C) to V(T(B),T(C)). 

TO show (i) commutes let B = (V,V',v) 

and the following diagrams commute: 

p2 P'I" [~ 

(v',v') ~(wv',x) 

in _A X. Then T(B) = (V,V',fov) 

i 3 
V(T(B), T(B)) P > (V,V) 

(V' ,V') for , (V®V' ,S) 

V(B,B) 

V(T(B),T(B)) 

p2 lp2 

(V',V') 

(V',V') 

pl 

pl 

p.b. 

fov 

--, (V,V) 

÷(V,V) 

> (v~v' ,x) 

( i d , f ~ ~  
(V®V' ,X) 

(v' ,v) v ,(wv' ,s) 

(v' ,v') + (wv',x) 
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Hence the composition I J > V(B,B) T > V(T(B),T(B)) and 

map I J > V(T(B),T(B)) are both induced by pulling back. Thus by 

the uniqueness property they are "equal". 

To show (2) commutes, let B = (V,V',v), C = (W,W',w), D = (U,U',u) 

be three objects in _A X . Then T(B) = (V,V',fov), T(C) = (W,W',fow), 

T(D) = (U,U',fou) and the following four diagrams commute: 

V(C,D) ®V(B, C) pl~pl ~ (W,U) ®(V,W) 

(U' ,W')®(W' ,V') V(B,D) pl ,(V,U) 

Is p2[ p.b. [fi 

M 
(w',v')®(u',w') ~ (u',v') ~ (wu',x) 

V(T(C),T(D))®V_(T(B),T(C)) pl®pl > (W,U)®(V,W) 

(U' ,W')®(W' ,V') V(T(B) ,T(D)) pl , (V,U) 

l p.b. 
M fov 

(W' ,V')®(U' ,W') , (U' ,V') ~(V®U',S) 

V(C,D) 

V(T(C),T(D)) 

p2 p21 
(U',W') 

(U',W') 

pl (w,u) 

pl ~(W,U) 

I f~u 
fow ~(W®U',S) 

( i d , ~  

> (W®U',X) 
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V(B,C) 

(w' ,V') 

pl (V,W) 

\ 
V(T (B) ,T(C)) pl 

~2 p2 p .b. 

f o v  (w' ,V') 

~a 
,(v,w) 

I f~w 

~(V®W',S) 

(id,f)~ 

(V®W',X) 

V(C,D) ®V(B, C) 

V(T (C) ,T (D)) ®V(T (B), T (C)) 

~2®p2 p2~2 ~'~V(T(B) 

p l~ l  Y 
(w,u)~(v,w) 

(w' ,v')~(u' ,w') 

M 
(w' ,v')~(u' ,w') 

,T(D)) pl> (V,U) 

p21 p b Ifou 
fov +(u' ,v') ~(wu' ,s) 

, (U' ,V') v 

(w,u)~(v,w) 

(v,u) 

(V®U',X) 
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V(C,D) ®V(B,C) 

p2ep2 

(w',v')®(u',w') 

pl®p1 , (w,u)®(v,w) 

h 
~ ~"~V(B,D) plepl ~ (V,U) 

J 
V(T(B),T(D)) pl + (V,U) 

f °~(V®U' ,S) ~ U',V') 
M /~d 9 (id' f)~ 

(u', v') , (v®u',x) 

This implies that the diagrams above commute, which implies 

that the composition 

M' 
~(C,D)®(V(B,C)) T®~ > V(T(C),T(D))®V(T(B),T(C)) --+ V(T(B),T(D)) 

is the map induced by pulling back. 

This also implies that the composition 

M' T 
V(C,D)® V(B,C) ' ~ V(B,D) + V(T(B),T(D)) 

is the map induced by pulling back. 

Hence by the uniqueness property, they are "equal", therefore (2) 

commutes. 

Now we are left to show that if f:X > S and g:S > K are 

maps in V, then F(g) oF(f) F(gof), i.e. F preserves composition. 

All we have to cheek is that the composition is preserved in (i) 

and (ii). 

It is easy to show (i) is preserved. For if B = (V,V',v) in _~ , 

then 

(F(g) oF(f))(B) = F(g)(F(f)(B)) = F(g)(V,V',fov) 

= (V,V',go(fov)) 

= (V,V',(gof) ov) 

= F(gof)(B). 

To show (ii) is preserved: Let B = (V,V',v), C = (W,W',w) in ~X' then 

F(f)(B) = (V,V',fov),F(f)(C) = (W,W',fow),(F(g)oF(f))(B) = F(gof)(B) 

= (V,V',(gof) ov) ,F(gof)(C) = (F(g) oF(f))(C) = (W,W',(gof) ow) 

and the diagrams (*), (**) and (***) commute 
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(*) 

V(B ,c) 

(W',V') 

p1 

~(F(f)(B),F(f)(C)) pl 

~2 [p2 ~P'b" 

fov (W',V') 

+ (v,w) 

(v,w) 

I f~w 

~(V®W'.S) 

(id,f)~ 

(V®W',X) 

(**) 

Note. 

V(F(f)(B),F(f)(C)) pl 

~ 
X(F(gof)(B),F(gof) 

(W',V') (g°f) 

(w' v') 

÷(v,w) 

(c)) pl >(v,w) ~ 

(V®W ' , K) 

f ow 

f~v (id,gof)~ 

>(V®W',S) 

F(gof) (-) = (F(g) oF(f)) (-). 

X(s,c) 

(W',V') 

pl + (V,W) 

V(F(gof)(B),F(gof)(C)) ,(V,W) 

p2 p.b. (gof) ow ~ 
(W',V') ($of)ov , (WW',K) 

(V®W',X) 

But (*) and (**) imply the diagram of Figure 9 connnutes. 

This implies that both F(gof) in (***) and the composition 

V(B,C) F(f) V(F(f)(B),F(f)(C)) F(g) V(F(gof)(B),F(gof)(C)) 

are induced by pulling back. Hence it follows they are equal. 
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V(B,C) 

V(F(f) (B) ,F(f) (C)) 

pl 

~ ) 

V(F~of)(B),F(gof)(C)) 

p2 [p2 

(W' ,V') 

(W',V') 
..~ 

pl ~ (v,w) 

J 
pl ~ (V,W) 

I 
(gof)ov ,(V®W',K) 

fov (i 
(V®W' ,S) 

(v,w) 

Y 

fow 

(id,f)~ 

(w',v') ~ (ww' ,x) 

FIGURE 9. 
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