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Abstract. The purpose of this paper is to extend the results of [Barr et al. (2008),
Section 8] from the case of abelian groups (Z-modules) to that of modules over a large
class of not necessarily commutative rings.

1. Introduction

The theme of the paper [Barr et al. (2008)] was the duality that may arise when you
have, in Isbell’s words, “One object living in two categories”. For example, the Lefschetz
duality between vector spaces and linearly compact vector spaces over the same field arises
from the fact that the ground field lives in both categories.

One of the principal examples in that paper was the duality between a certain sub-
category of the category of abelian groups and a certain subcategory of the category of
topological abelian groups. This “Isbell duality” was described in each direction as the
group of homomorphisms (respectively continuous homomorphisms) into the group Z of
integers, see Section 8 of that paper.

The purpose of this paper is to extend most of those results from the category of
abelian groups to categories of R-modules, for suitable rings R. It is more-or-less clear
that the same arguments will work for any (commutative) integral domain. To generalize
beyond that, we need some replacement for the field Q of quotients. The two properties
of Q that were crucial were that it be R-injective (left R-injective, as it will turn out) and
that Q/R be torsion (as a right R-module).

If two categories are dual, then the dual of a monomorphism is an epimorphism. This
suggests, if the duality is mediated by a object in both categories, that the dualizing object
be injective. Thus it was at least slightly surprising to discover, in [Barr et al. (2008),
Section 8], that there is a duality between a full subcategory of topological abelian groups
and discrete abelian groups that can be described—in each direction—as homomorphisms
into the group Z of integers. It was crucial, in that case, that the field Q of quotients was
Z-injective, but the dual was still taken in Z.

The first candidate for Q is the (classical) ring of quotients, gotten by inverting all the
non zero-divisors. When R is commutative, this ring always exists but is not, in general,
R-injective. When R is non-commutative, not even the existence is guaranteed. Even if
you impose the right Ore condition (see 2.1 below), you get a right ring of quotients, but
there is no reason for it to be left injective.
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Consider the case that R is a ring without zero-divisors. The left Ore condition implies
that the ring of left quotients is a division ring and is therefore left and right self-injective.
It is also right R-flat from which we can show that it is left R-injective as well, see Theorem
2.5. On the other hand, we also require that Q/R be a right torsion module and that
requires (actually is equivalent to) the right Ore condition. Thus we must impose both
Ore conditions in this case.

If there are zero-divisors, a better idea is to use complete ring of right quotients, see
[Lambek (1986), 4.3]. This is much more likely to be R-injective, at least on the right
(so left injectivity, which is the condition we actually need, is still a separate hypothesis).
The torsion condition has to be weakened, but we will see that it is satisfied. We should
point out that the complete ring of left quotients is likely to be left injective, but not
likely to satisfy the weak torsion condition. You win some and you lose some.

Definitions, notation, and preliminary remarks. Here are some definitions and
results from [Barr et al. (2008), Section 3] that we will need. If Z is an object of a
complete category A , an object A of A will be called Z-cogenerated if A has a regular
monomorphism into a power of Z. It will be called Z-sober if there is an equalizer
diagram A // ZX //// ZY for sets X and Y and canonically Z-sober if

A // ZHom(A,Z) //// ZHom(ZHom(A,Z),Z)

is an equalizer. The diagram is the canonical one from the contravariant adjunction

A
Hom(−,Z) //oo

Z−
Set

It is known that A is canonically Z-sober if and only if there is an equalizer
A // ZHom(A,Z) // // ZY in which the first map is the canonical one [Barr et al. (2008),
Proposition 3.4].

We will be dealing below with modules and topological modules. If C is a topological
module, we will denote by ||C|| the underlying discrete module. If A is any object of C or
D we will denote by |A| the underlying set of A.

2. Rings, modules, and complete ring of quotients

All rings will be unital. A right ideal I of the ring R is called dense if for all elements
a, b ∈ R with a 6= 0, there is a c ∈ R such that ac 6= 0 and bc ∈ I ([Lambek (1986), p.
96]).

2.1. Definition. A ring R satisfies the right Ore condition if for all r ∈ R and all
non zero-divisors n ∈ R, there are elements s,m ∈ R with m a non zero-divisor such that
rm = ns. Category theorists call this a calculus of right quotients. There is obviously a
left Ore condition that we leave to the reader to formulate.
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For any subset I ⊆ R, define the left annihilator of I as

I l = {r ∈ R | rI = 0}

When I = {s} is a singleton, we will write sl instead of {s}l. It is not hard to show that
when R is commutative, then I is dense if and only if I l = 0, but the noncommutative
situation is more complicated. By taking b = 1 in the definition, we do see that when I
is dense, then I l = 0 even in the non-commutative case.

If R is a ring, the complete ring of right quotients of R consists of equivalence
classes of partial R-linear maps R // R whose domains are dense right ideals. The
equivalence relation is that p = q if they agree on their common domain. This works
because the intersection of two dense right ideals is dense. Addition is pointwise. As for
multiplication, the class of dense right ideals has the property that if q is such a partial
function and I a dense right ideal, then q−1(I) is also a dense right ideal. This allows
one to define multiplication as the usual composition of partial functions. We denote the
resultant ring by Q. We embed R as the subring of left multiplications by its elements.
Details are found in [Lambek (1986), Section 4.3].

Weak torsion and weak torsion free. Let D be a right R-module. Then we say
that an element a ∈ D is a weak torsion element if there is a dense right ideal I ⊆ R
with aI = 0. We say that D is a weak torsion module if every element is weak torsion
and that D is weak torsion free if the only weak torsion element is 0.

2.2. Proposition. Let D be a right R-module. Then

1. the weak torsion elements of D form a submodule;

2. a submodule or quotient module of a weak torsion module is weak torsion;

3. a submodule of weak torsion free module is weak torsion free;

4. if D is weak torsion and D′ is weak torsion free, then HomD(D, D′) = 0;

5. if 0 // D′ f // D
g // D′′ is exact with D′ and D′′ weak torsion free, so is D.

Proof.

1. If aI = 0 and bJ = 0, then (a+b)(I∩J) = 0 and the meet of two dense right ideals is
dense, [Lambek (1986), Lemma 4.3.3]. Let a be weak torsion and I be a dense right ideal
with aI = 0. For any r ∈ R, it follows from [Lambek (1986), Lemma 4.3.2], by taking
q to be left multiplication by r, which is a total function, that J = {s ∈ R | rs ∈ I} is
also dense and then arJ ⊆ aI = 0 and we see that ar is also weak torsion.

2. Immediate.

3. Immediate.
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4. Let f ∈ HomD(D,D′). For a ∈ D, choose a dense right ideal I so that aI = 0. Then
0 = f(aI) = f(a)I and, since D′ is weak torsion free, f(a) = 0.

5. Let a ∈ D and suppose there is a dense right ideal I with aI = 0. Then g(a)I = 0 so
that g(a) = 0 and a = f(a′) for some a′ ∈ D′. But Then f(a′I) = 0 and f is injective,
whence a′I = 0 and so a = 0.

The classes of weak torsion and weak torsion free modules do not seem to form a torsion
theory in the usual categorical sense (but it will be if, for example, R is Noetherian, see
3.18). The class of weak torsion modules is not closed under extension and the quotient
mod the subobject of weak torsion elements is not necessarily weak torsion free.

2.3. Theorem. The quotient Q/R is weak torsion.

Proof. Let q ∈ Q be represented by ϕ : I // R. We claim that qI ⊆ R. In fact,
for a ∈ I, define µa : R // R to be left multiplication by a (which is right R-linear).
According to [Lambek (1986), proof of Proposition 4.3.6], the product qa is represented by
ϕµa ∈ Hom(µ−1

a (I), R). But µ−1
a (I) = R since I is a right ideal so that left multiplication

by a takes R into I. Thus qa ∈ R and, since a was an arbitrary element of I, we see that
qI ⊆ R.

2.4. Corollary. If {q1, . . . , qk} is a finite set of elements of Q, then there is a dense
right ideal I with qlI ⊆ R for l = 1, . . . , k.

Proof. This is immediate from the fact that a finite intersection of dense right ideals is
dense ([Lambek (1986), Lemma 4.3.3]).

Injectives. We will require that the complete right ring of quotients Q of R be left R-
injective. See Section 3.28 for some discussion of these hypotheses. In some cases, it will
be known that Q is left self-injective and also right R-flat (for example, when R satisfies
the left Ore condition and Q is also the classical ring of quotients). Thus the following
result is interesting.

2.5. Theorem. Suppose Q is left self-injective and right R-flat. Then Q is left R-
injective.

Proof. Let I be a left ideal of R and ϕ : I // Q be left R-linear. Since Q is right R-flat,
Q ⊗R I is a left ideal of Q ⊗R R ∼= Q and Q ⊗ ϕ : Q ⊗R I // Q ⊗R Q is left Q-linear.
Let µ : Q⊗R Q // Q be multiplication which is left (and right) Q-linear. Then there is a

map ψ : Q // Q such that ψ|(Q⊗ I) = µ(Q⊗ϕ) and the composite R // Q⊗R R
ψ // Q

extends ϕ.
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2.6. Theorem. Suppose that R =
∏

α∈A Rα is a product of rings. If for each α, a left
Rα-injective Qα is given, then Q =

∏
α∈A Qα is R-injective.

Proof. It is clearly sufficient to show that each Qα is R-injective. Let eα ∈ R be the
central idempotent that arises from the projection on Qα. For any ideal I ⊆ R, eαI is a
left ideal of Rα contained in I. If ϕ : I // Qα is given, then one easily sees that ϕ = ϕeα

and therefore extends to Rα. But ϕ factors through Rα and hence also extends to R.

2.7. Corollary. Suppose R =
∏

Rα and the complete right ring of quotients of each
Rα is left self-injective. Then the same is true of R.

Proof. This follows from the above combined with Utumi’s theorem [Lambek (1986),
Proposition 9].

3. The duality

When R is a ring, let D(R) and C (R) denote the categories, respectively of right R-
modules and topological left R-modules. With the exception of Section 4, R will not vary
and we will simply write D and C , respectively.

It is clear that, using the right R-action of R on itself, there is a functor homC (−, R) :
C //D. If D is an object of D, we denote by homD(D, R) the abelian group HomD(D, R),
topologized as a subobject of RD with the left R-module structure coming from the left
action of R on itself. We will show all the details we need about these functors, including
the fact that they are adjoint on the right in Section 8 below.

For C ∈ C , we will denote by C∗, the object hom(C,R) ∈ D and, similarly for D ∈ D,
we denote by D∗ the object homD(D,R) ∈ C . This useful notation, used with care, will
not cause trouble. An object C ∈ C is said to be fixed if the adjunction homomorphism
ηC : C // C∗∗ is an isomorphism and, similarly, an object D ∈ D is fixed if the canonical
ηD : D // D∗∗ is. It follows by standard arguments that the full subcategories of
fixed objects, called Fix(C ) and Fix(D) are dual. The main purpose of this paper is
to identify these subcategories under certain assumptions on the ground ring. In the case
of Fix(C ) our assumptions are natural and mild. Having a good description of Fix(D)
seems to require some special hypotheses. Examples indicate that these constraints are
not necessary, but also that our results do not hold for all rings.
Note: In the rest of this paper, we will use the following notation. The free R-module
on the basis X is denoted X · R. We often use the letter “P” to denote a free module
when we don’t wish to emphasize the basis. They will always have the discrete topology,
whether considered as an object of C or of D. A power RX of R could also be an object of
C or of D; context will make it clear. When it is considered an object of C it will always
have the product topology arising from the discrete topology on R. Both X ·R and RX are
two-sided modules, but will be considered as left modules when objects of C and as right
modules when considered as objects of D. It is quite evident that (X ·R)∗ ∼= RX whether
(X · R) is considered as an object of C or D. When X is finite, the RX ∼= X · R is free
and discrete even in C since a finite product of discrete spaces is discrete.
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One fact that will be used extensively follows.

3.1. Proposition. Suppose D ∈ D and X is a set such that there is a surjection
X ·R // // D, Then the induced D∗ Â Ä // (X ·R)∗ ∼= RX is a topological embedding.

Proof. Let f : X · R // D be the given map. Then the induced f ∗ : D∗ // (X · R)∗

is given by f ∗(ϕ) = ϕf . When composed with the isomorphism g : (X · R)∗ // RX , we
get that gf ∗(ϕ)(x) = ϕf(x) for x ∈ X. The topology is determined by subbasic open
neighbourhoods defined for each d ∈ D by {ϕ ∈ D∗ | ϕ(d) = 0}. Now suppose that
d = f(r1x1 + r2x2 + · · ·+ rkxk) with r1, r2, . . . , rk ∈ R and x1, x2, . . . , xk ∈ X. Then it is
clear that

{ϕ ∈ D∗ | ϕ(d) = 0} ⊇ (f ∗)−1

(
k⋂

i=1

{ϕ ∈ D∗ | ϕ(xi) = 0}
)

which implies that the topology induced on D∗ by RX is finer than the one from RD. The
reverse inclusion is easier and we omit it.

Fixed modules in C
Assumption. Throughout this section we will suppose that Q is left R-injective.

There is an obvious necessary condition that a topological module be fixed. If D is an
right R-module, it has a presentation by free modules:

P1
// P0

// D // 0

Dualizing, we get an exact sequence

0 // D∗ // P ∗
0

// P ∗
1

which enables us to conclude:

3.2. Proposition. A necessary condition that a topological left R-module be fixed is
that it be R-sober.

In order to prove that this condition is also sufficient, we begin with:

3.3. Theorem. Free right R-modules are fixed as objects of D.

Proof. Let P = X ·R be free. Since P ∗ = RX , we must show that (RX)∗ ∼= X ·R. The
kernel of a map f : RX // R has to be an open submodule since R is discrete. Every
open submodule contains one of the form RX−X0 for some finite subset X0 ⊆ X. This

means that f factors as RX // RX0
f0 // R, which means that

homC (RX , R) ∼= colim homC (RX0 , R) ∼= colim X0 ·R ∼= X ·R
3.4. Proposition. Suppose C is a topological left submodule of RX . For any continuous
left R-linear map ϕ : C // R, there is a finite subset X0 ⊆ X such that ϕ factors through
the image of C in RX0.
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Proof. Since the kernel of ϕ is open and a basic neighbourhood of RX has the form
RX−X0 as X0 ranges over the finite subsets of X, the kernel of ϕ must contain a set of
the form C ∩ RX−X0 for some finite subset X0 ⊆ X. The conclusion follows from this
diagram in which C0 = C/(C ∩RX−X0):

C0 RX0Â Ä //

C

C0

²²

C RXÂ Ä // RX

RX0

²²
C0

R

ϕ0

²²Â
Â
Â
Â
Â

C

R

ϕ

»»

3.5. Proposition. Suppose C is a left submodule of a finitely generated free module P ,
both topologized discretely. Let ϕ : C // R be a left R-linear map and ψ : P // Q extend
ϕ. Then there is a dense right ideal I such that ψI takes values in R.

Proof. Let a1, a2, . . . , ak enumerate the values of ψ on the generators of P , then from
Corollary 2.4, it follows that there is a dense right ideal I for which all of a1I, a2I, . . . ,
akI belong to R, whence ψI takes all its values in R.

3.6. Proposition. Suppose P is free and C is a topological left submodule of P ∗. For
any continuous left R-linear map ϕ : C // R, there is a dense right ideal I such that
every element of ϕI extends to an R-linear map P ∗ // R.

Proof. We know from 3.4 that ϕ factors through the image C0 of C in P ∗
0 for some

finitely generated free submodule P0 ⊆ P . We now apply the previous proposition to the
inclusion C0

// P ∗
0 , both topologized discretely.

3.7. Corollary. If C is a topological left submodule of P ∗, then the cokernel of P //C∗

is weak torsion.

3.8. Corollary. If C Â Ä // C ′ is an inclusion of R-cogenerated topological left modules,
then the cokernel of C ′∗ // C∗ is weak torsion.

Proof. Embed C ′ Â Ä //RX for some X. The composite C //C ′ //RX is also an embedding.
The snake lemma applied to

0 (RX)∗// (RX)∗ C∗// C∗ T// T 0//

0 (RX)∗// (RX)∗ C ′∗//(RX)∗

(RX)∗
²²

C ′∗ T ′//C ′∗

C∗
²²

T ′

T
²²

T ′ 0//

gives that coker(C ′∗ // C∗) ∼= coker(T ′ // T ), which is weak torsion.
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3.9. Theorem. Suppose the complete ring of right quotients of R is left R-injective.
Then a topological left R-module is fixed if and only if it is R-sober.

Proof. We have one direction in 3.2. Suppose that 0 // C // P ∗
0

// P ∗
1 is exact. If we

let T = coker(P0
// C∗), then we have a sequence

P1
// P0

// C∗ // T // 0

with P0
// C∗ // T // 0 exact. The subsequence P1

// P0
// C∗ is not exact, but

the composite is 0. From Corollary 3.7, we know that T is weak torsion, and hence, by
Proposition 2.2.4, has no non-zero right R-linear maps to R. Thus we have a sequence

0 // C∗∗ // P ∗
0

// P ∗
1

The initial subsequence is exact and the remaining composite is 0 so that C∗∗ is a topolog-
ical left submodule of the kernel of P ∗

0
//P ∗

1 , which is C, while C is canonically embedded
in it. The composite C // C∗∗ // C is the identity since when followed by the inclusion
into P ∗

0 it is the inclusion. When the composite of monics is an isomorphism, both factors
are isomorphisms as well.

3.10. Theorem. For any object D of D, D∗ is fixed.

Proof. Let P1
// P0

// D // 0 be a free resolution of D. This gives an exact sequence
0 // D∗ // P ∗

0
// P ∗

1 and the conclusion follows from 3.9.

3.11. Theorem. A module in C is fixed if and only if it is canonically R-sober.

Proof. Recall that when D is an object of D, we denote by |D| the underlying set
of D. According to [Barr et al. (2008), Proposition 3.4] an R-cogenerated module
C ∈ C is canonically R-sober if and only the cokernel C ′ of C // R|C∗| is R-cogenerated.
And that happens if and only if C ′ // C ′∗∗ is monic. The significance of the map
D // R|D∗| is that it dualizes to |C∗| ·R // C∗ which is obviously surjective. Thus from
0 // C // R|C∗| // C ′ // 0, we get the exact sequence 0 // C ′∗ // |C∗| ·R // C∗ // 0
whose second dual is the second row of the commutative diagram with exact rows:

0 C∗∗// C∗∗ R|C∗|// R|C∗| C ′∗∗//

0 C// C R|C∗|//C

C∗∗
²²

R|C∗| C ′//R|C∗|

R|C∗|
²²

C ′

C ′∗∗
²²

C ′ 0//

The snake lemma implies that ker(C ′ // C ′∗∗) ∼= coker(C // C∗∗), from which the
equivalence is immediate.
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Fixed modules in D
We begin the discussion of Fix(D) with

3.12. Proposition. For any object C ∈ C , C∗ is fixed in D.

Proof. Let P1
// P0

// C∗ // 0 be exact with P1 and P0 free. The dual sequence
0 // C∗∗ // P ∗

0
// P ∗

1 is also exact. The second dual P ∗∗
1

// P ∗∗
0

// C∗∗∗ is not exact,
but the composite is 0 and the cokernel of P ∗∗

0
// C∗∗∗ is a weak torsion module T . In

the diagram

P ∗∗
1 P ∗∗

0
//

P1

P ∗∗
1

ηP1

²²

P1 P0
// P0

P ∗∗
0

ηP0

²²
P ∗∗

0 C∗∗∗//

P0

P ∗∗
0

²²

P0 C∗// C∗

C∗∗∗

ηC∗

²²
C∗∗∗ T// T 0//

ηP1 and ηP0 are isomorphisms. Since P0
// //C∗ is surjective, one sees that coker(ηC∗) = T .

But ηC∗ is split by (ηC)∗ and so C∗∗∗ ∼= C∗⊕T . But T is torsion and C∗∗∗ is R-cogenerated
so that T = 0 and ηC∗ is an isomorphism.

3.13. Corollary. Any power of R is fixed in D.

Proof. RX = (X ·R)∗.

3.14. Proposition. For any R-cogenerated right R-module D, the cokernel of D //D∗∗

is weak torsion.

Proof. Let P // //D // 0 be exact with P free. Then 0 //D∗ //P ∗ is exact, whence we
have, from 3.7 that there is an exact sequence P // D∗∗ // T // 0 with T a right weak
torsion module. The map P // D∗∗ factors as P // // D // // D∗∗, so that D∗∗/D ∼= T .

3.15. Theorem. Let D be an R-cogenerated right module and suppose that X is a set
of generators for D∗ such that the cokernel of the canonical embedding D // RX is weak
torsion free. Then D is fixed.

Proof. The fact that X generates D∗ implies that the map X ·R // D∗, induced by the
embedding D Â Ä // RX , is surjective and hence D∗∗ is also canonically embedded in RX .
This gives a commutative diagram with exact rows:

0 D∗∗// D∗∗ RX// RX D′′//

0 D// D RX//D

D∗∗

f

²²

RX D′//RX

RX
²²

D′

D′′

g

²²

D′ 0//

and the snake lemma implies that ker(g) ∼= coker(f). Since D′ is weak torsion free, so is
ker(g) and hence so is coker(f). But we have just seen that the latter is weak torsion and
hence must be 0 and thus f is an isomorphism.
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In the case of abelian groups the converse of this theorem is true. For an example
that shows that the converse does not hold in general see 6.1 below. The point at which
the problem arises will become clearer during from the study of the cases in which we do
have the converse.

3.16. Proposition. Suppose that every dense right ideal of R contains a finite set J
for which J l = 0. Then for any D ∈ D, ||D∗||∗/D∗∗ is weak torsion free.

Proof. Suppose ϕ : ||D∗|| // R is an element of ||D∗||∗ and I is a dense right ideal such
that ϕI ⊆ D∗∗. This means that for all r ∈ I, ϕr ∈ D∗∗ so that ker(ϕr) is open in D∗.
Choose J = {r1, · · · , rk} ⊆ I such that J l = I l It is trivial to see that

ker(ϕ) =
k⋂

n=1

ker(ϕrn)

which is thereby open in D∗ and then ϕ ∈ D∗∗.

3.17. Theorem. Suppose that D is a fixed right R-module and X is a set of generators
for the abelian group HomD(D, R). Then the cokernel of D // RX is weak torsion free
if and only if the cokernel of D = D∗∗ // ||D∗||∗, induced by the identity ||D∗|| // D∗, is
weak torsion free.

Proof. Since X generates Hom(D,R) the induced map X · R // ||D∗|| is surjective so
we have an exact sequence 0 // C // X ·R // ||D∗|| // 0 of discrete left modules in C .
Applying the duality functor gives us a commutative diagram with exact rows:

0 ||D∗||∗// ||D∗||∗ RX// RX C∗//

0 D// D RX//D

||D∗||∗

f

²²

RX D′//RX

RX
²²

D′

C∗

g

²²

D′ 0//

The snake lemma gives us that ker f = 0 and that cokerf ∼= ker g. Since D is fixed, D ∼=
D∗∗. If D′ is weak torsion free, this immediately implies that cokerD //||D∗||∗ is weak tor-
sion free, while if the latter holds, then we have the exact sequence 0 // ker g //D′ //C∗.
Since C∗ ⊆ RC is R-cogenerated, it is weak torsion free and then so is D′, see Proposition
2.2.5.

3.18. Corollary. Let D be a fixed right R-module and suppose that X is a set of
generators for Hom(D, R). Suppose that every dense right ideal of R contains a finite set
J such that J l = 0. Then the cokernel of D // RX is weak torsion free.
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3.19. Proposition. Suppose D Â Ä f // D′ Â Ä g // D∗∗. Then f ∗ and g∗ are isomorphisms.

Proof. By 3.14, D∗∗/D is weak torsion and it follows immediately that D′/D is weak

torsion so that f ∗ is injective. Then from D
f //D′ g //D∗∗ and the fact that D∗ is fixed,

we get that the composite D∗∗∗ g∗ // D′∗ f∗ // D∗ is an isomorphism. It is standard now
that when f ∗g∗ is an isomorphism and f ∗ is monic, then f ∗ and g∗ are isomorphisms.

3.20. weak closure. Let D ⊆ D′ be an inclusion in D. Say that an element b ∈ D′

lies in the weak closure of D if there is a finite set F = {d1, d2, . . . , dk} ⊆ D such that
any ϕ ∈ D′∗ that vanishes on F also vanishes at b. One readily sees that the set of these
elements is a right submodule of D′ that contains D and we call it wcD′(D).

Until further notice, we will assume that D is R-cogenerated and that we have chosen
a set X of generators for Hom(D, R). It follows that D ⊆ RX and that X · R // // D∗ is
surjective. We denote wcRX (D) by wc(D) and the inclusion of D Â Ä // wc(D) by f .

3.21. Proposition. f ∗ : wc(D)∗ // D∗ is an isomorphism.

Proof. From D Â Ä f // wc(D) Â Ä //RX , we get (RX)∗ // wc(D)∗
f∗ //D∗. Since the composite

is a surjection, so is f ∗. Next we claim it is injective. If not, there is some ϕ ∈ wc(D)∗

for which f ∗(ϕ) = ϕf = 0. But it is obvious that for any b ∈ wc(D), if ϕf = 0, then
ϕ(b) = 0. Hence f ∗ is bijective. A subbasic open neighbourhood of 0 in wc(D)∗ is given
by U(b) = {ϕ ∈ wc(D)∗ | ϕ(b) = 0}. If F = {d1, d2, . . . , dk} is the set described in the
definition, then U(b) ⊇ U(d1) ∩ U(d2) ∩ · · · ∩ U(dk). This shows that f ∗ is open.

3.22. Corollary. wc(D) ⊆ D∗∗.

Proof. The preceding shows that D∗∗ = wc(D)∗∗ and of course wc(D) ⊆ wc(D)∗∗.

3.23. Theorem. If D is R-cogenerated and X is a set of generators for Hom(D,R),
then wcRX (D) = D∗∗.

Proof. It is sufficient to show that every element of D∗∗ is in the weak closure of D. We
know that the inclusion f : D //D∗∗ induces an isomorphism D∗∗∗ //D∗. Since this map
is open it must be that for any b ∈ D∗∗, the set U(b), as defined in the proof of 3.21, is
an open neighbourhood of 0 in D∗. This means that there is a finite set F = {d1, d2, . . . ,
dk} such that U(b) ⊇ U(d1)∩U(d2)∩ · · · ∩U(dk). But this just means that any function
that vanishes on F vanishes at b. Note that we use the surjectivity of (RX)∗ // // D∗∗∗ to
be able to restrict to functions defined on D∗∗.

3.24. Theorem. Suppose that D′ ∈ Fix(D) and D ⊆ D′ is a submodule such that
D = wcD′(D). Then D ∈ Fix(D).
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Proof. Let ηD : D // D∗∗ be the adjunction morphism. Since D′ is fixed, double
dualization yields a map f : D∗∗ // D′ such that f ◦ ηD is the inclusion. Let b ∈ D∗∗.
Then there is a finite subset F ⊆ D such that any ϕ : D∗∗ // R that vanishes on F also
vanishes at b. It follows that if ψ : D′ // R is a left R-linear map that vanishes on F ,
it also vanishes at f(b). But this means that f(b) ∈ D. Thus D is a retract of D∗∗ from
which it follows that D ∈ Fix(D) and ηD is an isomorphism.

Reflexive subcategories. We will show that Fix(C ) is a reflective subcategory of C
and Fix(D) is a reflective subcategory of D.

3.25. Theorem. Fix(D) is a reflective subcategory of D.

Proof. Suppose f : D // D′ is right R-linear and that D′ ∈ Fix(D). Double dualization
gives a commutative square

D′ D′∗∗Â Ä

ηD′
//

D

D′

f

²²

D D∗∗Â Ä ηD // D∗∗

D′∗∗

f∗∗

²²

and ηD′ is an isomorphism. This gives at least one lifting of f to a map D∗∗ // D′. If
there were two, the difference would induce a non-zero map D∗∗/D // D′. But this is
impossible because D∗∗/D is weak torsion, while D′ is R-cogenerated and thus torsion
free.

3.26. Theorem. Fix(C ) is a reflective subcategory of C .

Proof. It follows from 3.12 that for every C ∈ C , the module C∗ is fixed. Now if
f : C //C ′ is given and C ′ ∈ Fix(C ), we get, as in the preceding proof, a map (ηC ′)−1f ∗∗

whose composite with ηC is f . If there were another such map, the difference would
induce a map on C∗∗/C. From the exactness of C // C∗∗ // C∗∗/C // 0, we get that
0 // (C∗∗/C)∗ // C∗∗∗ // C∗ is exact. But with C∗ fixed, we see that (C∗∗/C)∗ = 0 so
that C∗∗/C has no non-zero maps to R and hence none to any R-cogenerated objects.

From these two theorems, we conclude:

3.27. Corollary. Both Fix(C ) and Fix(D) are closed in C and D, respectively, under
limits.

3.28. The conditions. There are various special conditions we have used. One is that
the complete ring of right quotients be left injective. The question of right injectivity
has been studied and conditions are well known. Little is known about left injectivity.
Obviously if R is commutative, the two conditions are the same. If a domain, not nec-
essarily commutative, satisfies both Ore conditions then the right and left classical rings
of quotients coincide and it forms a division ring. In that case the classical and complete
rings of quotients coincide and this ring is also R-flat on both sides (Q = colimr 6=0 Rr−1,
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a filtered colimit and similarly on the other side). Thus it is also left R-injective. In
addition, every dense ideal obviously contains a non zero-divisor, whose annihilator is 0
and thus our characterizations of Fix(C ) and Fix(D) both hold. With slight modification,
this also holds for a finite product of domains that satisfy both Ore conditions.

Another condition is the one used in the proof of 3.18: that every dense right ideal I
contains a finite subset J for which J l = 0. This condition clearly holds in any domain
and it also holds in any right Noetherian ring.

A trivial example is that of a ring which is left self-injective. In that case, the conclu-
sion of Theorem 3.9 is valid, while that of Proposition 3.14 holds with T = 0. That shows
that for any object D ∈ D, the map D // D∗∗ is surjective while it is injective whenever
D is R-cogenerated. Thus we conclude,

3.29. Proposition. If the ring R is left self-injective, then every R-cogenerated object
of D is fixed.

There is an interesting (but known) consequence to this. Let R be a left self-injective
ring. Then we know that every right ideal is fixed. If I is a right ideal the inclusion I Â Ä //R
induces a surjection R // // I∗ and it follows that wc(I) = I. Thus for any b ∈ R − I and
any finite set F ⊆ I there must be a right R-linear map R // R that vanishes on F and
not at b. Any right R-linear map R // R is left multiplication by an element of R so that
this says that if J = FR, then an element b /∈ J is not annihilated by any element of the
left annihilator J l. In other words, b /∈ J lr, which is possible for all b /∈ I if and only if
J lr = J . Compare [Stenström (1975), XIV.2.2(ii)].

In 6.1 below, we will see that a fixed D might not have the property that the cokernel
of D // RD∗ is weak torsion free.

An interesting class of rings is that of strongly regular rings. For our purposes we use a
definition different from, but equivalent to the usual one, which can be found in [Stenström
(1975), Page 40]. We will say that a ring is strongly regular if it is von Neumann regular
and every idempotent is central. If Q is the complete ring of right quotients of such a
ring, then Q is left and right self-injective. All R-modules are flat, so that Q is also R-
injective and Theorem 3.9 is satisfied. See [Stenström (1975), Proposition 5.2] for details.
Unfortunately, such rings are unlikely to have finitely generated left annihilators.

Let R be the ring of upper triangular matrices over a field K. In this case Q is the
full matrix ring ([Stenström (1975), Problem 4, p. 260]). It is a finite right (and left)
localization and therefore flat on both sides (op. cit. p. 239). Then Q is R-injective and,
obviously, Noetherian so that both Theorems 3.9 and 3.15 hold.

4. Morita equivalence

For a complete statement and proof of the Morita theorem, we refer to [Stenström (1975),
IV.10]

In this section, we will be dealing with two rings R and S and will denote the categories
of discrete right modules by D(R) and D(S) and the categories of topological left modules
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by C (R) and C (S). Also we will use the letters P and Q to denote modules; in particular
Q is not a ring of quotients. We write RPS to indicate that P is a left R-module and a
right Q-module that satisfies the “associative” (really commutative) law r(ps) = (rp)s for
r ∈ R, p ∈ P , and s ∈ S. Analogously, we write SQR.

A Morita equivalence between the rings R and S is mediated by a pair of modules,

RPS and SQR such that P ⊗S Q ∼= R as a two-sided R-module and Q ⊗R P ∼= S as a
two sided S-module. Under these circumstance, P is finitely generated left R-projective
and finitely generated right S-projective and, mutatis mutandi, the same is true for Q. In
that case

Q⊗R − = homR(P,−) : RMod //
SMod

is an equivalence of categories whose inverse is given by

P ⊗S − = homS(Q,−)

and

−⊗R P = homRop(Q,−) : ModR
// ModS

is an equivalence of categories whose inverse is given by

−⊗S Q = homSop(P,−)

4.1. Theorem. The diagram

C (R) C (S)
Q⊗R−

//

D(R)

C (R)

homRop (−,R)

²²

D(R) D(S)
−⊗RP // D(S)

C (S)

homSop(−,S)

²²

commutes.

Proof. Both paths are contravariant and turn the colimits into limits. For the upper
right path, this is evident. For the lower left, it becomes clear once we observe that
Q⊗R − ∼= homR(P,−). For every D ∈ D(R), we have that D = colimHom(R,D) R, so that
it suffices to show that this diagram commutes at R itself. Going the upper left path, we
get

homSop(P ⊗R R,S) ∼= homSop(P ⊗R R, P ⊗R Q) ∼= homRop(R,Q) ∼= Q

the second isomorphism coming from the fact that P ⊗R − : D(R) // D(S) is an equiv-
alence of categories. The lower left path gives

Q⊗R homR(R,R) ∼= Q⊗R R ∼= Q

.
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Since when right adjoints commute, so do left adjoints, we conclude that:

4.2. Theorem. Suppose R and S are Morita equivalent. Then Fix(C (R)) and Fix(C (S))
are equivalent and so are Fix(D(R)) and Fix(D(S)).

5. Complete subproducts

5.1. Theorem. Suppose the ring R is right Noetherian and has right global dimension
at most 1. Then a topological right R-module is R-sober if and only if it is R-cogenerated
and complete as a uniform space.

Proof. The necessity of the condition is obvious and requires no hypothesis on R. The
given conditions imply that an R-cogenerated module C is topologically embedded in
RHom(C,R) and that a submodule of a finitely generated free (or even projective) left R-
module is finitely generated projective. Let X denote Hom(C, R). Since continuous
homomorphisms of topological abelian groups are uniformly continuous for the canonical
uniformities, we see that C is embedded as closed submodule of RX . Sobriety will be
demonstrated by showing that for any w ∈ RX−C there is a left R-linear map ϕ : RX //R
that vanishes on C but for which ϕ(w) 6= 0. If not, then it is immediate that whenever n is
finite two continuous maps σ, τ : RX //Rn that are equal on C are also equal at w. Since
C is closed there is a basic neighbourhood of w that does not meet C. This means that
there is a finite subset Y ⊆ X such that if πY : RX //RY is the canonical projection, then
w+ker πY does not meet C. This implies that πY (w) /∈ C0 = πY (C); for if πY (w) = πY (c)
for some c ∈ C, then c−w ∈ ker πY and then c ∈ w+ker πY . Since C0 is a left submodule
of a finitely generated free module, it is finitely generated projective and hence there is
a split monic α : C0

// Rn for some integer n. Since C0 is discrete, α is continuous and
hence so is α ◦ πY |C. Since Rn is also discrete the splitting map β is also continuous. Since
α ◦ πY |C is a continuous map from C to a power of R, its components, say {µz | z ∈ Z}
are elements of X. Let M = {µz | z ∈ Z} ⊆ X and πM : RX //RM be the corresponding
projection. Then for c ∈ C, πM(c) = (µz(c))z∈Z = α ◦ πY |C(c) = απY (c) and then
πY (c) = βπM(c). Since this holds for all c ∈ C we conclude that πY (w) = βπM(w) ∈ C0,
a contradiction.

6. Examples

6.1. Example. This example shows that the conclusion of Corollary 3.18 may fail if a
dense ideal I does not contain a finite subset J with J l = 0.

Suppose that {Rα | α ∈ A} is an infinite family of left self-injective rings, all with
at least two elements. Let R =

∏
Rα. Then R is also self-injective, by Corollary 2.7.

It follows from 3.29 that every R-cogenerated module, in particular, every ideal of R, is
fixed. Each Rα is embedded in R as a two sided ideal we call Iα. The ideal I =

∑
Iα is

readily seen to be dense. But then R/I is annihilated by I and is therefore weak torsion,
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while I is fixed. It is also true that the singleton consisting of the inclusion map is a
subset of Hom(I, R) for which 1 ·R // // I∗.

6.2. Example. Theorem 5.1 fails for R = Z[x].

Let M be the ideal of R generated by 2 and x. Then M is a submodule of R, necessarily
closed and complete (as R is discrete). But we claim that every R-linear map from M
to R has a unique extension to a map from R to R. Let h : M // R be such a map.
Let h(2) = p(x) and h(x) = q(x). Then h(2x) = 2h(x) = 2q(x) and h(x2) = xp(x) so
2q(x) = xp(x) which implies that all of the coefficients of p(x) are even, so there exists a
unique t(x) with 2t(x) = p(x) and we can clearly extend h to a homomorphism from R
to R which maps 1 to t(x).

From this, it readily follows that any R-linear h : M // RX extends uniquely to a
map he : R // RX and any R-linear RX // RY which is zero on h(M) will be zero on
he(R) contradicting the sobriety of M .

6.3. Example. Theorem 5.1 may hold even though R is not a PID.

Let K be any field and R = A1(K), the Weyl algebra in one variable defined as
K[x, y]/(xy − yx − 1). The reason it is described as the one variable algebra is that y
is thought of as representing the differential operator d/dx. It is known that this ring is
a right and left hereditary Noetherian domain, see [Rinehart (1962)]. The commutation
relation implies that the Ore conditions are satisfied and so the ring of quotients is a
division ring and therefore R-injective, see Theorem 2.5.

6.4. Example. Every ideal in a strongly regular ring R is fixed. But there are strongly
regular rings R (in particular, Boolean rings) for which not every R-cogenerated module
is fixed.

Proof. Recall that a ring R is strongly regular if it is von Neumann regular and every
idempotent is central. We use Theorem 3.24 and show that for any ideal I ⊆ R, wcR(I) =
I. Suppose r ∈ wcR(I). Then there a finite set B = {d1, . . . , dn} of elements of I such
that any R-linear map f : R // R that vanishes on B vanishes at r. It is clear that an
R-linear map vanishes at d if and only if it vanishes at the idempotent e = dd′. Thus we
may assume that B is a finite set of idempotents e1, . . . , en. Let e = e1 ∨ · · · ∨ en and
f : R //R be multiplication by 1−e. Then f vanishes on B, hence also at r. This means
that r(1− e) = 0 which is possible only if re = r which implies r ∈ I.

For an example that not every R-cogenerated module is fixed, we let S be the Boolean
ring of all subsets of N and R be the subring of finite/cofinite subsets. Since R is a subring
of S, we have that S is an R-module. Let I ⊆ R be the ideal of all finite subsets of N.

6.5. Proposition. Suppose D is an R-submodule of S that strictly contains R. Let
ϕ : D // R be R-linear. Then for any d ∈ D, ϕ(d) = dϕ(1). In particular ϕ(1) must be
a finite subset of N.
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Proof. We begin with the observation that for any k ∈ N, {k} is an atom so that for any
s ∈ S, either {k}s = 0 or {k}s = {k}. Suppose that k ∈ ϕ(d). Then {k} = {k}ϕ(d) =
ϕ({k}d) so that k ∈ d. But then {k}d = {k} so that {k} = ϕ({k}d) = ϕ({k}) =
ϕ({k}1) = {k}ϕ(1) and so k ∈ ϕ(1) and thus k ∈ dϕ(1). Conversely, if k ∈ dϕ(1), then
{k} = {k}ϕ(1) = ϕ({k}) = ϕ({k}d) = {k}ϕ(d) and hence k ∈ ϕ(d). Suppose that ϕ(1)
is cofinite. Since D is strictly larger than R, it contains an element d that is neither finite
nor cofinite. But then ϕ(d) = dϕ(1) = d is infinite, but not cofinite, and hence not in R.

6.6. Corollary. D∗ = I with the discrete topology.

Proof. We have just seen that D∗ = I. For each d ∈ D, the evaluation at d must be
continuous so that for each d ∈ S, {r ∈ I | rd = 0} is open. But when d = 1, this is just
the 0 element.

Now let D lie strictly between R and S. We see that D∗ = S∗ = I and hence D cannot
be fixed.

7. Actions

This section is not really about modules, but should be considered as an addition to [Barr
et al. (2008)] since it gives more instances of the general duality theory of that paper.

Let E be a monoid. If E is considered as a category with one object, then for any
category A , the functor category AE has for objects pairs (A, σ) with A and object of A
and σ : E // Hom(A,A) is a monoid homomorphism to the endomorphism monoid of A.
A morphism f : (A, σ) // (A′σ′) is a morphism f : A // A′ such that

Hom(A′, A′) Hom(A,A′)
Hom(f,A′)

//

E

Hom(A′, A′)

σ′

²²

E Hom(A,A)σ // Hom(A,A)

Hom(A,A′)

Hom(A,f)

²²

commutes. Note that this is equivalent to the statement that for all x ∈ E, the diagram

A′ A′
σ′(x)

//

A

A′

f

²²

A A
σ(x) // A

A′

f

²²

commutes. In concrete cases, this can be interpreted as f(xa) = xf(a) which means
that A is a left E-action in the usual sense. It is easy to see that the category AEop

can
similarly be interpreted as the category of right E-actions. Incidentally, had we chosen
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to write composition in the opposite order, the notions of left and right E-actions would
be reversed.

Suppose C and D are dual categories. From C op ∼= D we easily see that C Eop
is dual

to DE.
The duality of the preceding sections is between categories C op

0 of certain topological
Rop-modules and D0 of certain discrete R-modules and is mediated in both directions by
functors we may denote hom(−, R). In this section, we need to be a bit more careful, so
we will denote them homR(−, R) : D0

// C0 and homRop(−, R) : C0
// D0. As indicated

above, these functors extend to dualities between C Eop

0 and DE
0 . However, this is not

in itself an Isbell duality in the sense of [Barr et al. (2008)] since the object R has no
E-action and the homfunctors are not in the categories of E-actions. What we want to
do is show that it is an Isbell duality, with the dual object being the ring RE with left
action given by (xf)(y) = f(yx) and right action given by (fx)(y) = f(xy) for x, y ∈ E
and f ∈ RE. As an object of C Eop

, RE is given the product topology from discrete R.
Notice that these objects, being powers of R are actually in C0 and D0.

Another observation we need is that when D is the category of R-modules, then DE is
just the category of R[E]-modules, the left modules over the monoid algebra R[E]. Sim-
ilarly C Eop

is the category of right topological R[E]-modules (which is to say, Rop[Eop)]-
modules.

We turn first to D0. The inclusion of R[E]-modules into R-modules has a right adjoint
that takes an R-module M to HomR(R[E],M) with left action induced by the right action
of R[E] on itself. This gives, for an R[E]-module M ,

homR(M, R) ∼= homR[E](M, HomR(R[E], R)) ∼= homR[E](M,RE)

In C , we have to take the topology into account. It is well known that when E is
discrete and X and Y are topological spaces, then a map X × E // Y is continuous if
and only if its transpose X //Y E is continuous into the product topology. Applying that
here we see that for an R[E]op-module M and an R-module N , the groups of continuous
homomorphisms HomRop(M, N) and HomR[E]op(M, NE) are isomorphic and so we have
the same isomorphisms as in D. Thus we conclude:

7.1. Theorem. Assume that R is a ring for which the duality of the first section is
valid. Let C0 and D0 be the fixed categories. Then for any monoid E, the object RE (with
the product topology in C ) gives an Isbell duality between C Eop

0 and DE
0 .

8. Appendix on adjunction between C and D
We relegate to this appendix the proof that homC (−, R) is adjoint on the right to
homD(−, R).

What we will show is that for any C ∈ C and D ∈ D, both HomC (C, homD(D, R))
and homD(D, homC (C)) can be identified as the set of all functions ϕ : ||C|| × ||D|| // R
that are additive in both variables, such that ϕ(−, d) is continuous on C for all d ∈ D
and such that ϕ(rc, ds) = rϕ(c, d)s for all r, s ∈ R, d ∈ D and c ∈ C.
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Suppose f : C // homD(D,R) is given. Clearly we get from this a function ϕ :
||C|| × ||D|| // R and it is obviously additive in both variables. Now f is assumed to be a
morphism of left R-modules. This means that f(rc) = rf(c) for every r ∈ R and c ∈ C.
The left action of R on homD(D,R) comes from the left action of R on itself so that for
any d ∈ D, ϕ(rc, d) = f(rc)(d) = rf(c)(d) = rϕ(c, d). Since f takes values in the group
of right R-linear maps, we must also have, for every s ∈ R that f(c)(ds) = f(c, d)s so
that ϕ(c, ds) = ϕ(c, d)s. We also have that f is continuous. The topology on homD(D, R)
embeds it as a subspace of R|D|. For f to be continuous, it is necessary and sufficient that
the composite C // homD(D,R) // R|D| be continuous. This precisely means that for
all d ∈ D, the map ϕ(d,−) be continuous on C, which means that its kernel is open.

Now let g : D // homC (C, R) be given with induced map ψ : ||C|| × ||D|| // R. The
additivity in each variable as well as the preservation of right and left action from R are
exactly the same as in the preceding paragraph. Finally, in order that g land in the set
of continuous maps, it is necessary and sufficient that g(d) be continuous for all d ∈ D.
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