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Introduction: 

All notation not otherwise specified in this paper is taken 

from the introduction to the [ZTB]. Let T denote the category of 

topological spaces and continuous mappings, ~ be the full subcate- 

gory whose objects are the compact hausdorff spaces and S the cate- 

gory of sets. The obvious functor U: C-@mS has a left adjoint F 

which is best described by saying that FX is the set of all ultra- 

filters on X with the hull-kernel topology. If ~ = (T,~,~) is the 

triple coming from the adjoint pair, the natural functor ~-~-SS~is 

an equivalence. This associates to a compact hausdorff space C the 

pair (UC,c) where c: TUC -~-UC is given by c(~) = lim u. for .u an 

ultrafilter on UC. 

In an arbitrary topological space V there is still given a 

relation x: TUV-~-UV which associates to an ultrafilter u the set 

x(~) of all its limits (possibly empty). Moreover it is well known 

that this convergence relation determines the topology uniquely and 

that continuity of mappings can also be described by it. It thus 

seemed plausible that by a suitable axiomatization of the notion of 

relational algebra of a triple (or of a theory) it could be shown 

that T is the category of relational algebras of the theory whose 

algebras are C. That this is so is the main result of this paper. 
w 
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Section 1 tabulates a few properties of the category R of 

sets and relations. Section 2 includes the definitions of rela- 

tional pre-algebras and establishes their basic properties. In 

section 3 the main theorem 3.1 about T is proved and in section 4 a 

few additional examples are given. 

Evel~jthing here is done for triples over the category S. 
m 

Presumably much of this could be done over other categories, at 

least those in which there is a good notion of what are relations. 

Manes conjectures (and is attempting to prove) that the analog of 

(5.1) is true for any varietal category and its compact algebra 

triple (see EMa3, ~ 5). 

In carrying out this work I had several stimulating discus- 

sions with Basil Rattray who independently proved (3.1). I would 

also like to thsnk the National Research Council of Canada for its 

support. 

i. Relations. 

Before talking about relational algebras we will here tabu- 

late some properties of the category R of sets and relations. If 
,ml 

r: X -~-Y is a relation it has a standard factorization 

l~-~r Crry X dr- 

where ~r ~ X x Y is the graph of r and the functions cr, dr are the 

restrictions to ~r of the coordinate projections. We write 
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r -1 = dr.cr -1. We call r epi, mono, e.d. (everywhere defined) or a 

p.f. (partial function) according as cr is epi, cr is mono, dr is 

epi or dr is mono, respectively. To define the composite of two 

relations it is only necessary to define a composition of the form 

f-lg where f and g are functions, for then we define 

r.s = cr.dr-l.cs.cs -1. Consider a commutative diagram: 

(i.i) j N g  
;N ,t; 

where u, v, f, g are all functions. In general we have only 

uv-l~ f-lg with equality if (1.1) is a weak pullback. In particu- 

lar we define f-lg to be uv -1 when (1.1) is a pullback. 

It is well known that the category R is a 2-category, the 

hom-sets being partially ordered by rC s in ~(X,Y) if ~rC ~s. The 

following proposition is also well known (see e.g. , [Mac3). 

Proposition 1.2. For any relation r: X-~-Y 

i) r is epi iff rr-l~Y 

ii) r is mono iff r-lr~x 

iii) r is e.d. iff r-lr~x 

iv) r is a p.f. iff rr-l~Y. 
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Of course combinations of these can be worked out as well. The 

most important characterizes r as a function iff r-lr~x and 

rr-l~y. 

If T: ~-~S is a functor it induces a pseudofunctor, also 

denoted by T: ~--~ given by T(cr.dr -1) = Tcr.T(dr) -1. This means 

that for r.s composable relations, T(r,s)~ Tr.Ts and that 

r~s =~TrCTs. Notice that T(r -1) = (Tr) -1 under this definition 

and will be written Tr -1. If we have a diagram 

X Y 

then gf-l~ r iff there is a mapping Z -~r making both triangles 

commute and gf-1 = riff that mapping is epi. In that case, since 

endofunctors on ~ preserve epimorphisms, it follows that the induced 

map TZ -4PT~r is also epi. We have defined Tr to have the graph 

~Tr which is the image of T~r in TX~TY. The result is that the 

induced map TZ -~'~r is still epi and so Tr = Tg.Tf -1 is indepen- 

dent of the factorization. Then to see that T is4pseudofunctor it 

is sufficient to show that T(f-lg)~Tf-l.Tg, for then we have, 

after factoring dr'l.cs = p. q-1 
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T(r.s) = T(cr.dr-l.cs.ds -1) = T(cr.p.q-l.ds -1) 

= T(cr.p).T(q-l.ds -1) = Tcr.Tp.T((ds.q) -1) 

= Tcr.Tp.(T(ds.q)) -1 = Tcr.Tp.(Tds.Tq) -I 

= Tcr.Tp.Tq-l.Tds -1 = Tcr.T(pq-1).Tds -1 

= Tcr.T(dr -1. ~ .Tds-l~Tcr.Tdr-l.T c~Tds -1 

= Tr.Ts 

Clearly equality holds if either r is a function or s is an inverse 

function. Now suppose that u and v are the pullback of f and g as 

in 1.1. After we apply T the diagram will still commute, but might 

fail to be a pullback. Thus, T(f-lg) = T(u.v -1) = Tu.Tv-lC Tf-l.T@ 

If ~: T -i-T 1 is a natural transformation of functors on S, it be- 

comes pseudonatural on ~, which in this context means that 

~Y.TrCTlr.~X. 

2. Relational Algebras 

We recall some of the definitions from the introduction to 

[ZTB]. A triple ~= (T,~,~) on --X is an endofunctor T of ..X to- 

gether with natural transformations ~: T -~-~ (= identity functor) 

and ~ ~2 _~ ~ satisfying ~.~ = ~.~, #.~ = ~.~ = ~. 

The category X ~ of T- algebras has as objects (X,x) where X is an 

object and x: TX --~X a morphism of X such that 
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and 

x. Tx = x.~X 

x.~X ~ X. 

By a relational ~- prealgebra we mean a pair (X,x) where x: TX-IPX 

is a relation. A mapping f: (X,x) -b- (Y,y) of relational pre- 

algebras is a function f: X -t-Y such that f.x~ y.Tf. The category 

of relational prealgebras and mappings of prealgebras is denoted by 

~P(~). A relational pre-algebra (X,x) is called a relational alge- 

bra if 

and 

x.Tx~ X.~LX 

x.~X D x . 

This definition is a precise generalization of algebra because any 

inclusion between actual maps in ~ is an equality. We let 

--S~(~)C --S P(~) denote the full subcategory consisting of relational 

algebras. That S~C sR(~)C S P(~) are full inclusions follows from 

the fact that an inclusion among functions is an equality. We will 

show that each is a coreflective inclusion (by which we mean it has 

a left adjoint). First we show that limits and colimits are easily 

computed in sP(~L 

Proposition 2.1. S P(~) is complete and cocomplete. 

Proof: Limits (= projective limits) are computed in S P(T) exactly 

as in S~ For example, if (Xi,xi) is a family of relational 



- 45- 

prealgebras their product in S_ P(~) is (X R ~Xi,~[xi.a ) where 

a: T(~Xi) -~-~TX i is determined by Pi.a = Tp i and Pi is the ith 

coordinate projection. Equalizers are computed similarly. The same 

holds for relational algebras. As for colimits, first consider the 

same family (Xi,xi). Let b: IITX i -~.T(IIX i) be determined by 

b.u i = Tui, where u i denotes the ith coordinate injection. Then I 

claim that (llXi,llxi.b-I) is the coproduct. First we must show the 

ui: X i -~-IIX i are morphisms, i.e., that ui.xiC llxi.b-l.Tui . Now 

b.u i = Tu i (by 1.2.iii) = b-l.Tui ; then 

ui.x i = llxi.ui~llxi.b-l.Tu i. (Note: we have been using u i for 

different coproduct injections~ Now if fi: (Xi,x i) -~(Y,y) is 

given for each i, then the fi' extend to a unique f: !IX i -~--Y such 

that f.u i = fi" Then f.~Ixi.u i = f.ui.x i = fi.xi c y.Tf i = 

= y.Tf.Tu i = y.Tf.bu i for all i and so by uniqueness of morphisms 

from a coproduct, f.~lxiC y.Tf.b. Then 

f.~xi.b-lCy.Tf.b.b-lc, y.Tf (by 1.2.iv). Thus f is a morphism of 

relational prealgebras. Uniqueness is clear. 

Now suppose d°,dl: (X,x) ~ (Y,y) are given. Let d: Y -~-Z be 

the coequalizer of the set morphisms d ° and d I and 

z = d.y.Td-l: TZ -~Z. Then d.yC.d.y.Td-l.Td (by 1.2iii) ~ z.Td and 

so d is a morphism. If f: (Y,y) -~(W,w) coequalizes d ° and d I then 

there is induced a unique g: Z -~-W with g.d ~ f. Moreover, 

g.z ~ g.d.y.Td -1 = f.y.Td-l~ w.Tf.Td -1 ~ w.Tg.Td.Td-lC.w.Tg (by 

1. 2. iv). 
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Remark: Note that the limits and colimits preserve the underlying 

sets. This could have been predicted from the fact that the under- 

lying set functor sP(~)-IbS has both adjoints, namely 

X ~-~-(X,~X -1) and X ~-b-(X,X~TX) being left and right adjoint, 

respectively. Each of these is a relational algebra so the same 

remarks apply to sR(~)-~- S. 

2.2. (X,x) is a relational algebra iff x~1~X -1 and Proposition 
I 

x.Tx. x -I C 

Proof: If (X,x) is a relational algebra then XCx.~X so 

~x-lc x.~X.~X-1C_ x. Also x.Tx.~X-1C x.~X.~X-1C x. To 

see the converse we suppose that x~x-l:we have 

x.~X ~ ~x-l.~ X ~ X. Similarly, if x.Tx.#X -l~ x, then 

x. x c c 

Proposition 2.~. The obvious functor S R(~) -~-S P(~) has a left 

adj oint. 

Proof: Let ~--~ X and #&& =~X. If (X,x) is a relational pre- 

algebra, we define an ordinal sequence of relations Xn: TX -aPX as 

follows. Let x ° -- xV~-l. Having defined x m for all m~ n, de- 

%2 
fine x n = m~n Xm if m is a limit ordinal and x n = Xn_l.TXn_l.~ -I 

otherwise. Clearly xo~ x and x ° ~ -i. Assuming x m~ x k for all 

k (m (n, we have x n~x k for all k~ n if n is a limit ordinal 

and otherwise 

Xn = Xn_l.TXn_l.~a-i ~ Xn_l.T ~-I.~ A-I 

= Xn_l.(~.T~)-i = Xn_~ I. Now since TX~X is a set this 
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ascending chain of subsets represented by the graphs of these x n 

must eventually terminate, at which point x n = Xn_ 1 = ~ and so by 

2.2 (Tx,~) is a relational algebra. If f: (X,x) _a~(y,y) is a mor- 

phism of (X,x) into the relational algebra (Y,y), then f.x~.y.Tf. 

Also considering the diagram 

TX 

X TY 

Y 

as a diagram like i.i, we have f.~-l~-l.Tf(~y.Tf-- so that 

f.xoCY.Tf. Similarly if n is a limit ordinal and f.Xm(~ y.Tf for 

all m~ n them certainly f.Xn~ y.Tf. Finally, if f.Xn_l~ y.Tf 

then f.x n = f.Xn_l.TXn_l.~.-1C y.T(f.Xn_l).~ -I (since f is a 

function) 

c y .  T <y. Tf ~ .~t-1 C y. ~y. ~2f .~-1~ y .~y .F1  ~ . T 2 f . F l c  y.Tf.j~.~- 1 c y . ~  

Hence f.~C.y.Tf from which the result easily follows. 

Proposition ' 2.4. The obvious functor ~--~-S R(~) has a left adjoin~ 

Proof: This proof differs from the preceding in two respects. 

First the adjoint does not preserve the underlying set (by example~ 

Second, the proof is nonconstructive, being an application of the 

adjoint functor theorem. It is clear from the description of 

limits in S P(~) that the functor S~--~S P(~) preserves them. Also 

S ~(~) being a coreflective subcategory of --S P(~) computes its limits 
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in that category so that S~--~S R(~) preserves limits. So it is 

only necessary to find a solution set. Given (X,x), consider all 

algebras of the form (TX,/~X)/~ for which the composite 

X 7~X~-TX ~TX/~ is a mapping of relational algebras. This is 

clearly small. If f: (X,x) ~ (Y,y) is a mapping of X into a ~- 

algebra, y.Tf: TX -@.Y is a function and y.Tf~X = y.~y.T2f = 

= y.T(y.Tf) so y.Tf: (TX,/~X) --~-(Y,y) is a map of algebras. As 

usual, it factors as (TX,~X) b--~p(Yo,Yo) ~(Y,y) where (Yo,Yo) 

is a factor algebra of (TX,~.X) and a is mono. Then 

a.b.~X = y.Tf.~X = y.~Y.f = f and 

a.b.~X.x = f.xCy.Tf = y.Ta.T(b.~X) = a.Yo.T(b.~X ) and a is 

mono so (b.~X).xC~Yo.T(b.~X). Thus b.~X: (X,x) -~-(Yo,y ~ 

factors f and the codomain is a member of the given set. We note 

in passing that this gives a new proof of the cocompleteness of S Z. 

~ Topological spaces 

Theorem 5.1. There is a natural equivalence J between the category 

T of topological spaces and continuous maps and the category S R(~) 

where ~(T,~,~) is the compact hausdorff spaces triple. 

The proof is given by a series of propositions. We let u 

denote an ultrafilter on X. 

Proposition ~.2. If C is a topological space, X = UC is its under- 

lying set and x: TX ~X is given by taking x(~) to be the set of 

limits of ~jthen x.~X and x.Tx~x.~. 
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Proof: The first statement is trivial, being merely the statement 

that if ~ is the principal ultrafilter at the point p @ X, then 

p ~ x(2) which is certainly true in any topological space. We can 

factor x as TX~ ~-- DX~ d'x ~x CX~x where j is mono, and d'x and 

cx are epi (the latter because of principal ultrafilters). T 

preserves both monos and epis so that 

 Dx Td'   CX TX 

is the same type of decomposition. The mapping Tj consists of tak- 

ing an ultrafilter on DX and using it as a filter base on TX. The 

filter generated is an ultrafilter. Thus if ~ T2X~ Tx(~) # ~ iff 

given A E ~, DA z A~ DX ~ ~ also. Now suppose that 

~ T2X, Tx(~) z ~ and x(~) = p. Suppose that~(~) = ~. Then we 

must show that x(x) ~ p as well. This means showing that every 

open neighborhood U of p is in ~ or, from the definition of~, 

that (~IU~ ~)~ ~. Now U is open which means that x(~)~ U ~ ~. 

Suppose we had A = (~IU ~ ~)~ ~Now there is an ultrafilter ~ on 

T~ whose projections are ,a and ,u and there would have to be a 

B ~whose projections were A on the one hand and some U I on the 

other. If (~,q)~ B, then U~w but q~ x(~). As noted above, 

x(z)~ U = ~ and so q~U. Therefore, U~U 1 ~ ~ which is a con- 

tradiction. Hence A ~  and since ~ is an ultrafilter, its com- 

plement, (~IU~ ~)~ ~. This completes the proof. 

Proposition ~.~. If C and D are topological spaces with underlying 

sets X and Y and convergence mappings x and y respectively, then 
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f: X-~-Y underlies a continuous mapping iff f.xCx.Tf. 

Proof: This is nothing but a translation of a well known theorem 

which states that f is continuous iff whenever u is an ultrafllter 

on X and ~ converges to p then Tf(~) converges to fp (see [E-GS). 

Corollar~ ~.4. There is a natural J: T -~S R(~) which is full and 

faithful. 

Proof: Of course J is defined by JC = (UC, convergence) as above 

and the preceding two propositions state that J is a well defined 

functor and is full. It is clearly faithful since U is. 

Now suppose (X,x) is a relational algebra. We must show it 

is J of something. If e: U -~PX is a subset inclusion we define a 
m m 

new subset e: U -~-X by the following diagram 

(3.5) 

TX ~. dx ~x cx ~ X  

in which ~U is the pullback of Te and dx and ~.cU is the mono/epi 

factorization of cx. ~. In words, U is the set of "limits" of all 

ultrafilters containing U. 

Proposition 3.6. U ~-~-U is a closure operator. 

Proof: We must show a) ~ = ~, b) U~ U, c) UI ~ U 2 = Sl~ U 2 and 

d) S = U. Part a) is trivial since T~ = ~ and a pullback along ~ is 

empty, b) is also easy for p ~ U; the principal ultrafilter p con- 

tains U and converges to p. This implies that U l• U 2 ~ U 1 ~ U2 
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so showing c) requires only the reverse inclusion. But if an 

ultrafilter ~ contains UIU U 2 then it must contain one of them 

and so we get the reverse inclusion, d) is harder. Again, we al- 

ready have one inclusion. U~. It i~ easily seen to be suffi- 

cient to find a relation t: -~U such that e ~ ~.t. For then 

image(~)~ image(~.t)C image(~) and the result is proved. We de- 

= cU.dU -1. #U.dU.TcU-l.dU.c~ -1. In words, take a point of fine t 

~and find an ultrafilter on ~ converging to this. Represent that 

in turn by an ultrafilter on TU. Converge that under ~to an 

ultrafilter on U and converge that under x. Now recalling that 

g.dU -1 = dx-l.Te since Q is a pullback and f.f-l~ identity when 

f is epi, we have: 

~. t = ~. cU. dU -I. #AU. TdU. TcU -I. dU. cU -I 

= cx. g. dU -I . ~AU. TdU. TcU -I . dU. cU -I 

= cx. dx -1 . Te. taa-U. TdU. TcU -1 . dU. cU -1 

= x.~AX. T2e. TdU. TcU-1. dU. cU -I 

D x. Tx. T2e. TdU. TcU -1 . dS. cU -1 

= x. Tcx. Tdx-1. T2e. TdU. TcU-1. dU. c~ -1 

= x. Tcx. Tg. TdU -1 . TdU. TcU -1 . dS. cU -1 

~x. T~. TcU. TcU -1 .dU. cS -I 

= x.Te.dU.cU -l 

= cx.dx=l.dx.~.cU -I 

~cx.~.cU -I = ~.cU.cU -I : e 
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It is well known that such a closure operator induces a 

unique topology on X. There is now only one thing left to com- 

plete the proof of Theorem 3.1. 

Proposition 5.7. Suppose (X,x) ~ s R(~)and the closure is defined 

as above. Then for any ~a TX, p E x(~) iff p~ ~ (UIUa ~). 

Remark. Since this latter is the formula for ultrafilter conver- 

gence under a closure operator, this means that x is convergence 

(as described in the introduction) under that topology. 

Proof: One way is clear. For if pG x(u) and UE u, u is an 

ultrafilter containing U and p is one of its limits under x so 
wmy 

p ~ ~. To go the other~we suppose that U~ u converges to p • U. 

We want to show that p ~ x(~). The idea of the proof is to find an 

a~ T2X with ~(a) = ~ while Tx(a) -- p,the principal ultrafilter at 

p. Then p ~ x(p)~ x.~(a) = x(u). We begin by constructing an 

ultrafilter b on ~x" Let B = ((v,p)Ip ~. x(v))~ ~x and for each 

U~ u let B U = {(v,q) IU~ v and q~ x(v)). Then for U1, U 2 ~U, 

BUl~ BU2 ~ BU1 ~ U2 ~ ~ since Ul~ U 2 # ~. Moreover, since p ~ U 

for each U ~ u, we can find a v such that U ~ U and p~ x(v). Then 

(v,p)~ B~ B U. Thus B together with (B U) generates a proper fil- 

ter which is contained in an ultrafilter ..b on ~x" Clearly one 

projection is p since B projects to (p). The other projection is 

and it is clear that for all U~ u, (vlU ~ v)~ dx(B U) and thus is 

in .a" Hence U~ ~ (a).. for all U~ ,u and so ..u -- ~(a). 
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4. Other examples. 

In this section we consider a few other examples of rela- 

tional algebras although in no case are the results as striking as 

the preceding. The simplest example is the identity triple 

= (I,l,1). Here the laws simply reduce to x: X -IDX subject to 

x.x~x and x ~X. Thus an algebra for this triple is a set with a 

transitive, reflexive relation, usually called a preordered set. 

It is simple to check that mappings are exactly the order preserving 

functions. It is perhaps interesting to note in this connection 

that the algebras, ~, are a coreflexive (hence tripleable) subcate- 

gory of preordered sets. 

The next example is the triple ~= (T,~,~) where TX = X+l, 

where + denotes the coproduct. The category of algebras is the 

category of pointed sets. A relational algebra is a set X with a 

relation x: X+l -~-X. Now X+l is a coproduct and so x is deter- 

mined by its restrictions xIX and xI1. The first restriction is a 

preorder, as before, and the second is just a subset XoC X. The 

unitary law is automatic (as soon as xlX is a preorder) while the 

associative law requires that X ° be a ray. That is, if 

p ~ Xo, q ~ p (or qE x(p)) then q~ X o also. Thus the algebras 

are pairs (X,XoC X) where X is a preordered set and X ° is a ray. 

Morphisms are maps of pairs which preserve the order as well. 

Similar considerations apply to the category of relational 

models of the triple where TX is the set of ultrafilters on X+l. 



o $4 o 

The algebras are pairs (X,Xo) where X is a topological space and 

XoC X is a closed subspace. Mappings are continuous maps of pairs 

No other interesting examples are known to us. It seems 

fairly clear that Cat, for example, is a full subcategory of the 

relational models of the theory of monoids (however the nullary 

operation 1 becomes the set of objects of a categoryl) but just 

being a full subcategory is not very informative. (E.g. the recent 

work of the "~ech school" seems to show that practically everything 

is fully embedded in the category of semigroups). 
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