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0. Introduction 

In [2], Barr and Diaconescu characterized those Grothendieck toposes 8 for 
which the inverse image, A, of the geometric morphism r: 8 + Yet, is logical. It was 
shown (among other things) that this happens precisely when the lattice of subobjects 
of every object of 8 is a complete atomic boolean algebra. Toposes satisfying this 
property are called atomic. These results were relativised to the case where f : 8 + Y 

is an arbitrary morphism of elementary toposes. Their proofs used Mikkelsen’s 
theorem [4] which says that a logical functor between toposes has a left adjoint if and 
only if it has a right adjoint, in order to obtain a left adjoint A to A. (E.g. in the Yet 
based case, AA is the set of atomic subobjects of A.) 

The purpose of this paper is to obtain analogous theorems characterizing those 
Grothendieck toposes 8 for which A has a left adjoint. For reasons which will 
become clear later, these toposes are called molecular. It is an exercise in [7, p. 414, 
Ex 7.61 that Sh(X) is molecular if and only if X is locally connected. 

We also treat the relative case, where Yeet is replaced by an arbitrary elementary 
topos 9 These results may be taken as a definition and characterizations of what it 
means for an elementary topos to be locally connected over another topos. It is 
presumably because of topological considerations such as these that Joyal raised the 
question that resulted in this paper. 

Tierney has also shown that our conditions are closely related to the problem of 
determining when a pullback of elementary toposes satisfies the Beck condition. 

* This research was partially supported by grants from the National Research Council and from the 
Minis&e de I’Education du Quibec. 
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1. The strong case 

M. Barr, R. Pari 

Let Y be an elementary topos and 8 an 9’-topos, i.e., 8 is an elementary topos and 

comes equipped with a geometric morphism into 9, 

We want to find conditions under which A has a left adjoint (more precisely, an 

indexed left adjoint). 

We shall use the following theorem due to W. Butler [l]. 

Theorem 1. Assume that in the following diagram of functors 

(1) 
(2) 
(3) 

(4) 
Then 

F is left adjoint to 17 and G is left adjoint to V, 

@F=GG, 
U is tripleable, 

@ preserves coequalizers of U split pairs. 

@ has a right adjoint. 

Sketch of proof. Since U is tripleable, every object of JZZ appears in a coequalizer 

P FUA 
FUFUA = FUA’A-A 

FUrA 

where E is the counit of the adjunction F -I U. When @ has a right adjoint P there is 

a coequalizer 

EFUQ 
FUFU’P = FU’P = ‘P. 

FLJr 9 

There is also an isomorphism UP = V induced by (2). This leads us to define Y to be 

the coequalizer of 

FUFVS FV 

where (Y is defined by 
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VGUFV VGV 

Ill Ill 

VQFUFV Tzzv@FV 

and 7’ and E’ are the unit and counit of the adjunction G i V. That the coequalizer 

exists follows from tripleableness and the fact that 

UEFV 

-UFV AV 

is a split coequalizer diagram. 0 

Y is a Cartesian closed category and 8 may be considered as an Y-category if we 

define Hom(E, E’) to be f(E’E). Then both r and 4 are strong functors and the 

adjointness 4 -i r is also strong. 

Theorem 2. A has a strong left adjoint if and only if 4 preserves exponentiation. 

Proof. Suppose that 4 has a strong left adjoint .I. This means that 

f(4XE) =X’E 

with the isomorphism natural in X and E. Then, for any X, Y in Y and E in 8 we 

have the following sequence of natural bijections 

E-*4(X7 

Y+T(4XE) 

4Y+4XE 

so, by the Yoneda lemma, 4(X’) = 4XJy. 

Conversely, assume that 4 preserves exponentiation and consider the following 

diagram 
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Y 

It satisfies the conditions of Butler’s theorem: the bijections 

[X, l-(AR)E]y = [AX, ARE]% = [E, AR’x]g = [ARJX, El%-P 

show that (AL?)‘“-’ ’ 1s left adjoint to T((AL?)‘-‘), that f2’-’ is tripleable is proved in [5], 
and the other conditions are obvious. Thus Aop has a right adjoint, i.e. A has a left 
adjoint A. 

Now, for E in 8 and X, Y in 9’we have the following natural bijections 

Y + f (AXE) 

AY+AXE 

E+A(XY) 

AE+XY 

Y-,X.” 

so T(AXE) s X.‘E. This shows that the adjunction is strong. 0 

Remark. Another proof of the existence of 11 can be found in [6, p. 1231 once we 
observe that since A is left exact, it will preserve exponentiation if and only if it 
preserves 9-Q. 

Recall from [3, Proposition 8.21 that $ is bounded (or has generators) over Yif and 
only if there exists an object (of generators) G in 8 such that for any E in 8 there 
exist an I in 57, a subobject GO- Al x G, and an epimorphism Go-n E. The following 
proposition is especially useful in applying theorems about triples, such as Butler’s, 
to bounded toposes. 

Theorem 3. If 8 is bounded over 9’ with object of generators G, then the functor 

m2G”‘)):P+Sp 

is tripleable. 

Proof. The natural isomorphisms 

LX r(n “““)]y = [AX, RGxE ]iS=[GxExAX,R]a 

=[E, 0 GxAXlg z [&-AX, _qaOD 

show that flGGrA( ) is left adjoint to r(flGx( ‘). 
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$Op has all reflexive coequalizers and by the results of [5], f?’ ) transforms reflexive 

coequalizers to split ones, so that f(RG”’ ) ), which is isomorphic to f((f2’ ‘)G), 
must preserve reflexive coequalizers. We still have to show that T(RG”’ ‘) is faithful 
(and therefore, since 8 is balanced, that it reflects isomorphisms) in order that it 
satisfy the conditions of the RTT (see [5]). 

Let f, g : A zZ3 be different morphisms of 8’. Since R’ ’ is faithful, R’, RB : RBZ 

fiA are different. By the generating property of G there exist Z in 9, a subobject 
Go w AZ x G, and an epimorphism Go = RB. Since RB is injective this epimorphism 
lifts to an epimorphism AZ x G + RB. Thus we have the correspondences 

AZxG+RB 5 RA different 

different 

Z+f(f?G”B)~:T(f2GXA) different 

and so f(fIG”‘) and f(OG”“) must be different, i.e. f(flGx( ‘) is faithful. 3 

We are now able to prove the following generalization of Theorem 2. 

Theorem 4. Let 8 and 9 be Y-toposes with 8 bounded over 9, and f: 9+ 8 n 

geometric morphism over 9. Then f” : if + 9 has an Y-strong left adjoint if and only if 

f preserves exponentials of the form EJx. 

Proof. We denote the structural geometric morphisms from 8 and 9 to Y by the 
same symbol f (with inverse images A). To say that f” has an y-strong left adjoint f! 

means that there are isomorphisms 

r[E’+f((f*E)F) (1) 

natural in E and F. For any X in 9, E in $7, and F in 9, we have the following natural 
bijections 

[F, fl”(E-‘X)]3 = [f!F, E4X]a = [AX, EffFlp 

= [X, f (E’qy 

and 

[F, (f*E)‘r’x’ 1~ = [F, (f*E)4Xls = MX, (f*E)% 

= [x, rwm19. 

Now (1) tells us that [X, f(E”F)]9=[X, f((f*E)F)]9, so 

[FI f*(E”X)ls =[F, (f*E)‘rJX’ls 

and by the Yoneda lemma, fF(EAx) = (f”E)‘rAX’. 

(2) 

(3) 
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Conversely, assume that f” preserves exponentials of the form EJx. The diagram 

satisfies the conditions of Butler’s theorem if we take F. to be f”(flG). Indeed, 

Z-U-Z Gx( ‘) is tripleable by theorem 3, Fif’ ’ is always left adjoint to f(Fb ’ ), and 

f”(fl Gx=) ,fr((flG)-‘X) ~r”(fi”,‘““~.f”(flG)-‘X* 

ThusFoP has a right adjoint, i.e. f” has a left adjointf!. Sincefr(EJx) = (f*E)(pJX’, 
(2) and (3) give that 

[X, ~~J+~)Iv = [X, M-W% 

so T(E’*F) 3 r((f”E)F), i.e. the adjunction f! -If* is Y-strong. Cl 

Remark. As Y-categories g and 9 are cotensored, the cotensor of E with X given 

by EJx. Thus the condition of the previous theorem can be stated as: f” preserves 

cotensors. 

2. The indexed case 

An 9’-topos ‘8’ is not merely a category enriched over 9’ but has the much richer 

structure of an Y-indexed category with small horns. This means that 8 comes 

equipped with a notion of families of objects of 8 indexed by an object of 9’ and 

satisfies some conditions. For Z in 9, the category 8’ of Z-indexed families of objects 

of 8 is defined to be the slice category g/AZ. For a : .Z --, Z in 9, the substitution 

functor (Y* : 8’ + 8’ is defined by pulling back along Aa. When we specialize this to 

the case 8 = 9, we get the canonical indexing of 9, namely Y’ = Y/Z. 

To be indexed, a functor CD must come equipped with functors 0’ defined on the 

Z-families, compatible with the substitution functors in the sense that a*@,’ = &Za* 

for all (Y. For example, if f: 9-, 8 is a geometric morphism of Y-toposes, then f” can 

be made into an indexed functor by defining f*’ by 

(F+AZ)++(f*F-+f*AZ=AZ). 

We can also give an indexing to f* by defining ff, at E +AZ as the top line in the 

pullback square 
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I I 
f*E - f*AZ =f*f*AZ . 

It turns out that f”’ is a left exact left adjoint to f:, making f into an indexed 

geometric morphism. In particular, f and A are part of an indexed geometric 

morphism. The reader is referred to [6] for more details on indexed categories. 

The enrichment of 8 over Y is completely determined by the indexing of d and the 

requirement that for Ei and Ez in 8, Hom(Ei, Ez) is an object of Ywith the property 

[Z, Hom(Ei, &)I9 =[Z*Ei, Z*Ezlar 

natural in Z (I* is the substitution functor corresponding to the unique morphism 

Z : Z + 1). Because of this, indexed functors are automatically strong, and because of 

this, indexedness is harder to achieve but more useful. 

We believe that the correct way to relativise the results of [7, p. 4141 to an arbitrary 

base topos Y is to require that the A and f! of Propositions 2 and 4 be indexed left 

adjoints. 

Definitions. A geometric morphism f : 9 + 8 over Ywill be called .!Lf’-essenrial iff f” 

has an Y-indexed left adjoint f!. 8 will be called S-mofecular if Z is Y-essential. 

Example. If C is a category ob.ject in 9, then Yc is Y-molecular. Indeed, the left _ 

adjoint to A is lin~c, which is indexed since (Y* preserves everything in its 

construction. 

If A has an ordinary left adjoint -4, we can define .4 I : E’ + 9” by 

d(E A AZ) = (dE L I) 

where p is the morphism corresponding top under the adjointness A --I J. It is easily 

seen that A ’ --I A ‘, but A is not necessarily indexed as the following example shows. 

Let Y = Yet’, $=.Yerx.Y’ef, Z’(A,B)=(AxB-,B), A(A-,B)=(A,B), and 

A (A, B) = (A + A + B). Taking (Y to be the unique morphism (0 --, 1) + (1 + 1) shows 

that 11 is not indexed. 

In concrete terms, for .4 to be indexed means that if (1) is a pull back, then so is (2): 

E’-E /IE’-AE 
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Intuitively, take J = 1, a E I then the condition means that (AE), = A(E,), or 
thinking of E as EE,, A(xE,) = C(AE,), i.e. n preserves internal sums, which is a 
reasonable condition. 

Theorem 5. 8 is Y-molecular if and only if A preserves l7, for all (Y in 9’. 

Proof. For any CK : I + I in 9’. any object p : E + Al of S’, and any object x : X + J of 
.?, if d has a left adjoint A we have the following natural isomorphisms 

b*A’(p),xk =M’(P), K(x)IY =:[p, A’n,Cx,l,~ 

and 

[A’s*(p), xl+ =[a*(~), A’(x)]~J =[p, 17aJ’(xk 

Thus, by the Yoneda lemma, 

(u*A’ zA’a* if and only if d’Z7, = &,A ‘, 

i.e. A is indexed if and only if A preserves LC To complete the proof, notice that if A 

preserves Lrl (the I here denotes the unique I + 1) then it preserves exponentiation 
since X’ = L&(1*X). So by Theorem 2, A has a left adjoint. 0 

Similarly, for a geometric morphism f : 9 + 8 over 9, if f* has an ordinary left 
adjoint f!, we can define f: by 

ff(F :AI) = (f!F JAI) 

where p corresponds by adjointness to F :A1 =:f*Al. Then ff is left adjoint to f”’ 
and makes f! into an indexed left adjoint iff (2) below is a pullback whenever (1) is: 

F’ -F f!F’ -fF 

A -AI AJ -AZ. 

The proof of the following proposition is similar to that of Theorem 5, and will be 
omitted. 

Theorem 6. A morphism of Y-toposes, f : 3 r+ %, is Y-essential ifff” preserves l7b for 

all a in 9. 0 

It is an open question whetherfC preserving exponentials of the form EAx implies 
that f” also preserves l7,, (even when f” = A). 



3. Y-definable subobjects 

For 8 an 9’-topos, the canonical morphism d : AR-0 is defined to be the 
characteristic morphism of At:A 1 -AR, i.e. such that 
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d 
AR -R 

Al I I , 
Al- 1 

is a pullback. If e : E + AR is any morphism, then the subobject classified by de is 
given by the pull back 

E,,-Al 

Part of the following proposition appears in [4, p. 751 where d and related 
morphisms are studied in detail. 

Proposition 7. Af2 is a lattice object in 8 and d is a lattice homomorphism. 

Proof. The structure of a lattice is that of a finitary algebraic theory which will be 
preserved by A because it is left exact. 

The squares in the following diagrams are pullbacks and the triangles are image 
factorizations. 

dxd 
ARxAL! - 0x0 20 

AOxAl+AlxA~ - nx1+1xn 
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A(Rxl+lxR) 

Since A preserves binary products and coproducts, u * d x d and d. A (t’) classify the 

same subobject and so u - d x d = d . A(u), i.e. d preserves U. 

The other parts are similar but easier. cl 

When Y is boolean, AR = 2 and d = (;) which is always manic. However not all d 
are manic if 9’ is not boolean as the following proposition shows. 

Proposition 8. Let f : X + Y be a continuous function and (f.+, f”) the corresponding 
geometric morphism Sh(X) + Sh( Y). Then d :f*O + 0 is manic if and only if f-’ 
preserves interiors of sets of the form Vu G where Vis open and G is closed in Y. In 
particular, if f is open, then d is manic. 

Proof. d :f*fi + R is manic if and only if for every x E X, d, : (f*f?), -, 0, is manic. 

To describe R, explicitly, write Ui E I UZ (resp. Ui =I UZ) if there exists an open 

neighbourhood V of x such that U1 n V c UZ n V (resp. L/i n V = UZ n V). It is 

easily seen that c I is a preorder and = II is an equivalence relation on the opens of X. 

A, is the set of equivalence classes, [VI, for U open in X, and c x induces an order 

relation on 0,. making it into a lattice. We have a similar description for (f*n), 

which is Of,. Then d,([ V],)=[f-‘VI,. S’ mce d, is a lattice homomorphism, it is 

manic if and only if 

[v1lrx~Ev2le e+ [f-‘u~[f-‘v21 

i.e. if and only if 

v,E~Xv2a f1V*Cxf-V2. 

It is easily seen that V1 5 fx V is equivalent to fx E.( V2 u Vi )‘, and f-' V1 E xf-* V2 is z 
equivalent to x E (f-' V2 u (f-l V,)‘)‘, where ( Jo denotes interior and ( )’ comple- 

ment. Thus d, is manic for every x if and only if 

f_'((V," V',)O)= (f-'V2u(f-1w)o, 

i.e. 

f_'((V2" v', )O) = (f-7 v2 u v; ))O. 
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Finally, it is well known that f is open if and only if f-’ preserves all interiors. 3 

For example, if f: IR] + R is the identity function from the reals with the discrete 

topology to the reals with the usual topology, the corresponding d is not manic since 

f-’ does not even preserve interiors of closed sets. 

In the same vein we have the following proposition also due to Mikkelsen [4, p. 

811. 

Proposition 9. The morphism d : 40 --, R is manic if and only if 4 preserves implica - 
tion (i.e. for any subobjects XI, X2 w X, 4 (X,+X,) = (4X1 +4X2) as subobjects of 
4X). 

Definition. Let 8 be an Y-topos for which d is manic. A subobject Eo*E in 8 is 

called Y-definable (or d-subobject, for short) if its characteristic morphism factors 

through d. 

Clearly, 40 classifies Y-definable subobjects in the sense that the association 

is a bijection between morphisms into 40 and d-subobjects of E. 

Examples. If 9’ is boolean, then Y-definable means complemented. 

If Y is a Grothendieck topos and C an ordinary small category, then .Yc is a topos 

over 9’ and @,P+ @ is Y-definable if and only if for every c : C + C’ in C, 

is a pullback. 

Definition. An I-family of 9’-definable subobjects is an Y/I-definable subobject of 

Z’/dI (which is an Y/I-topos via r’ and 4 ‘, and whose d is 4I x d which is still 

manic). 

The following proposition summarizes some of the properties of Y-definable 

subobjects. 

Proposition 10. (il If X0-X is a subobject in 9, then 4XOw4X is a d-subobject. 
(i) The inverse image (i.e. pullback) of a d-subobject is a d-subobject. 
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(ii) The d-subobjects of an object E are closed underfinite intersections and unions, 
and implication. 

(iv) The graph of any morphism E + AX is a d-subobject. 
(v) If p. : E. + AI is a subobject of p : E + AI in g/AI, then PO is an I-family of 

d-subobjects if and only if E. is a d-subobject of E (i.e. xrpo is a d-subobject of C,p). 

Proof. (i) and (ii) are trivial. 
The first part of (iii) is a restatement of Proposition 7. If E,, EzwE are d- 

subobjects with classifying morphisms ki, kz : E 3 Aa then we have the following 
pullbacks 

E (f,.JQ .-,Af2xAf2=A(f2xf2) 

E, -AlxAR=A(lxf2) 

and 

(k,.k,) 

E -Af2~AflzA(fi~~2) 

Ez- fiiz~di=A(f2~1) 

and so E~=sE~ is the pullback along (kl, k2) of A(t xO)+A(R x t) which by 
Proposition 9 is equal to A (t x 030 x t) so by (i) and (ii), EIJ E2 is a d-subobject. 

Applying (i) and (ii) to the following pullback will give (iv): 

E *AXsAX 

Finally, (v) follows from the fact that the d for %/AI as an Y/I-topos is 

Alxd 

AZxAf2 -AIxf2 

PI 

\/ 

PI 

AI 
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and the characteristic morphism of PO ++p is 

(P.Xr,-,) 

E-AZxR 

\I P PI 

AZ 

Arbitrary Y-unions or .Y-intersections of d-subobjects need not be d-subobjects, 

even when 9’ = Y’er, as the following example shows. Let X be the topological space 

{f l/nln E N}u{O} with the usual topology, and take $ = Sh(X). The d-subobjects 

of 1 in 8 are the complemented subobjects, i.e. the clopen sets. Each of the singletons 

{l/n} isclopen but u{l/ n } is not. Taking complements, we see that the d-subobjects 

are not closed under n either. 

The following example shows that the composite of two d-subobjects need not be 

a d-subobject (although, if Sp is boolean, it must). Take 

with 

9 = Yet”’ and $ = Yet’= 

T(A=$t B)=(Eq(f,g)+B) and A(A LB)=(A =$ B). 

Then it is easily checked that d is manic and 

An -A 

fo Bo II II f B 

Bo-B 

is a dzsubobject if and only if Vu (fu E Bo = ga E Bo). The two monos below satisfy 

this property but not their composite: 

Definition. We shall say that a morphism f : E + E’ is 9’-defined if it fits in a pullback 

diagram of the form 
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f 
E -E’ 

Intuitively this means that both E and E’ can be partitioned into direct sums in 
such a way that f restricted to each summand of E is an isomorphism into some 
summand of E’. 

Since pulling back preserves image factorizations it follows that the image of an 
Y-defined morphism is an Y-defined subobject. Also, since Y-defined subobjects 
are Y-defined morphisms we cannot expect the Y-defined morphisms to be closed 
under composition in general. 

Before proving the main theorem of this section, we need the following lemma. 

Lemma 11. In a regular category, R -X x Y is the graph of a morphism X + Y if and 
only if 

(i) 3 UR = 1~ where 3 y : Sub(X x Y) + Sub(X) 

(ii) pT R r\p$R = 3,R where 

p:, p;, 3s : Sub(X x Y) + Sub(X x Y x Y) 

i.e. the following is a limit diagram in Yet 

3, 
1x, Yl- Sub(XxY) p.; -Sub(Xx Yx Y) 

II 

n . 

3” r I,‘ 

Sub(X) 

Proof. If (f, g): R -XX Y, then (i) says that f is a regular epi. By noting that the 
kernel pair off can be calculated in stages as in the following diagram 

(f.8) 
R-XxY 

P 
-x 

pTRnp;R+---+p;R- R 
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a simple diagram chase will tell us that (ii) is equivalent to f being manic. 0 

Theorem 12. $ is .Y’-molecular if and only if 

(1) d is monk, 
(2) for every E in 8 there exists an object .LE in Y and a lattice isomorphism 

T(AOE) = R ‘&, and 
(3) the composite of Y-definable morphisms is Y-definable. 

Proof. Assume 8 molecular. Let f, g : E --* AR be such that df = dg. Then we get a 

diagram 

E;AR---+R 

Eo-Al- I 

in which the right hand square and the composite rectangle and hence the left hand 

square are pullbacks whether f or g is taken as the top map. Since _ I is an indexed left 

adjoint 
i 

.4E,, - 1 

are pullbacks as well, where f-and S correspond to f and g respectively under the 

adjunction. Since a subobject has a unique classifying map, f= g whence f = g. Thus 

d is manic. 

Indexed adjointness implies strong adjointness, of which (2) is an instance. 

If f: E + E’ is an Y-definable morphism, it appears in a pullback diagram 

E’ -AI’ 

E - Al 

which by indexed adjointness, gives a pullback diagram 

tE’- I’ 

.‘f I I cz 

.tE - I 
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In the following diagram 

6’ 
E’-AAE’ -Al’ 

E-AAE-Al ?E 

the right hand square is a pullback since A is left exact, and the rectangle is a pullback 
by hypothesis, so the left hand square is also a pullback. If f’: E’+ E” is also 
9’-definable then the rectangle 

E” - A.2 E” 

f I I 
E’ - AAE 

f 

I I 
E - A.lE 

is a pullback, thus showing that /‘f is Y-definable. 
Conversely, assume conditions (l), (2), and (3). For any E in $5’ and X in 9 we have 

the following lattice isomorphisms: 

Sub(AE x X) = [AE xX, L!] = [X, OrE] = [X, I’(AL! “)I 

= [AX, Af-f] = [E x AX, Al21 = d-Sub(E x AX), 

which are natural in X and where d-Sub(E x AX) represents the lattice of Y- 
definable subobjects of EX AX. The monomorphism d: AR +f2 induces an 
inclusion of lattices 

d-Sub(E x AX)wSub(E x AX) 

which is also natural in X. Therefore we get a monomorphism of lattices 

Sub(AE x X) w Sub(E x AX) 

which is natural in X. Furthermore, since images of Y-definable morphisms are 
Y-definable subobjects, (3) implies that d-Sub(E x AX) is closed under 3, for 
Y-definable fi 

Consider the diagram (of solid arrows) 
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[AE. X] 51’: I I zz.;,. I-_-_-:_’ [E, AX] 

I 
* . // I .& MH I .. 

Sub(/tE x X) 5 
l Ii 

H 

e Sub(E x AX) 

H 
Sub(.IE) + 

II > 

l Sub(E) 

SubME xX xX) 
, II 

Sub(E x AX x AX) 

143 

where the left and right parts are diagrams of the type appearing in Lemma 11, and 
the horizontal arrows come from the above mentioned injections of lattices and the 
fact that A preserves finite products. 

All corresponding squares commute: the ones involving ‘l,,~l and p? A pT since 
the inclusion is a lattice homomorphism and is natural in X; the ones involving 3~ 
and Ya by the preceding remarks and the fact that if an adjoint pair restricts (as 
functors) to full subcategories, the restrictions are still adjoint. 

Therefore, by Lemma 11, there exists a function cp such that icp = f3i and Q is 
necessarily manic. Since the graph of any morphism E -, AX is Y-definable (Pro- 
position lO(iv)) there exists a function $ such that @J, = i. Since the horizontal maps 
are manic, 1/1 equalizes the morphisms in the left hand limit diagram and so factors 
through i by G’. So it&’ = Ojt,b’ = 64 = i and since i is manic, ~4' = 1. Then Q$'Q = Q 

which implies $'Q = 1. Therefore [AE, X] 3 [E, AX] and .,I extends uniquely to a left 
adjoint for A. 

Next we show that the conditions (l), (2), (3) are stable in the sense that if they hold 
for I-: $ --, Y then they also hold for r’ : %/AI + Y/I. 

This is clear for condition (1) since the morphism corresponding to d in %/AI is 
AZxd. 

Let p : E + AZ be an object of %/AI and a : J + I an object of Y/I, then we have the 
following bijections of lattices 

(1) 
.9/I-definable (p,,)w(p)x(da) 

Y-definable E. >-* Ed1 x AJ 
(2) 

Y-definable Eo- E x AJ such that 
(3) 

E. E a*(E, p) 

X,-AE x J 
(4) 

such that Xoza*(AE, p) 

X,>-,AE,xJ in Y 
(5) 

(x~)*(~)X(cu) in Y/I. 

Bijection (1) follows from Proposition 10(v). By a*(E, p) we mean the subobject of 
E x AJ defined by the pullback 
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u*tE.p) 
. -ExAJ 

EpExAJ (E.p) 

which is easily seen to be E.,I x AJ H E x AJ. By Proposition 10 (ii, iv) it follows that 

a*(& p) is an Y-definable subobject. Then condition (3) gives bijection (2) in the 

downward direction, whereas the upward direction comes from pulling back along 

a*(& p) (Proposition lO(ii)). The correspondence (3) comes from the isomorphism 

d-Sub@ x AJ) = Sub(AE X .I) mentioned above, and the fact that under this lattice 

isomorphism (E, p) corresponds to (AE, p) by construction, and by naturality, 

LU*(E, p) will correspond to (Y*(AE, p). Finally, bijections (4) and (5) are similar to (2) 

and (l), but simpler since we are dealing with arbitrary subobjects. This shows that 

condition (2) is stable. 

That condition (3) is stable follows immediately from the fact that 

f 
E FE’ 

is Y/Z-defined if and only if f : E + E’ is Y-defined. The “only if” part is trivial. To see 

the “if” part, take a pullback 

f 
E ____, E’ 

I I 
AJ -AK 

do 

in 8’, 
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If CJ : E’-, AZ’ and cp : I + I’, the above bijection of lattices becomes 

Y/Z-definable (po)~(cp*q)x(Aa) 

(xo)w((P*~) x (a) in Y/Z. 

On the other hand we have the following bijections of lattices 

Y/Z-definable (po)*(cp*q)x(Aa) 
(1) 

Y-definable E,,++ E’x dr.AJ 
(1) 

Y/Z’-definable (q,,)~(q)xA(cpa) 
(condition (2)) 

XO*,4E~,xJ in Y 
(5) 

(x0) ~(cp*q) x (CY) in Y/Z. 

In the presence of conditions (1) and (3) condition (2) uniquely determines the value 

of the left adjoint to A so we conclude from the above bijections that 

A’(cp*q) = cp*q = &4’,(q), 

i.e. A is indexed. cl 

Remark. f(ALIE) is the Y-object of Y-definable subobjects of 8, and taking into 

account Mikkelsen’s theorem [4, p. 701 that the complete atomic heyting algebra 

objects of 9’ are precisely those objects of the form ox for some X, we see that 

condition 2 could be stated: for every E in 8, the lattice object (in 9’) of Y-definable 

subobjects of E is a complete atomic heyting algebra object. 

Proposition 13. Condition (3) of Theorem 12 can be replaced by either of the two 
following conditions : 

(3’) for any Y-definable morphism f: E + E’, 3,: Sub(E) + Sub(E’) preserves Y’- 
definable subobjects, 

(3”) (a) the composite of Y-definable subobjects is an Y-definable subobject. 
(b) the Y-union of a family of Y-definable subobjects is again one. 

Proof. (3’) + (3”) since (a) is an instance of (3’) for f manic and (b) for f a projection 

AZxE’-*E’. 

(3”) * (3’) since, if f appears in a pullback diagram 

f 
E - E’ 

B I I 
Al 7AJ 
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then f can be written as 
(&/I 

E-AIxE’- pz E’ 

and (g, f) is .Y’-definable by 
(&fJ 

E -AlxE’ 

I I 
AJyAJxAJ 

Since images of Y-definable morphisms are Y-definable subobjects, (3) clearly 
implies (3’). 

Finally, a careful look at the proof of Theorem 12 shows that all that is used is 
condition (3’) and the fact that the hypotheses are stable. But (3’) is stable for the 
same reasons that (3) is. cl 

4. Molecules 

Assume that d is manic for r: 8 + 9’. 

Definition. An object M in 8 is called a molecule (or Y-indecomposable) if the 
canonical f2 + f (AaM) (corresponding to diag : Ail + AORM) is an isomorphism. An 
Z-family of molecules is a molecule in %/Al relative to Y/I. 

Equivalently, M is a molecule if and only if for every I in Y and every Y-definable 
subobject MO H Al x M there exists a unique lo -I such that 

111 AfxM 

/ 
Al,x M 

Intuitively, of an I-family of So-definable subobjects of A4, I0 of them are equal to M 
and the others are 0. 

An I-family of molecules is an object M -+ Al such that for every (Y : J + I and 
every Y-definable subobject MO~hJ,I x M, there exists a unique p : K HJ such 
that 

WI - AJ,, x M 

is a pullback. 

I> *I 
AK AJ 

Al3 
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It is clear from this formulation that molecules are stable under substitution, i.e. if 
M -* dl is a family of molecules then so is AJd, x A4 + AJ for every J -+ I. 

Theorem 14. $ is molecular over Y if and only if 
(a) d is manic and 
(b) every object of 8 is a sum of molecules. 

Proof. Assume 8 molecular. By Theorem 12, d is manic. Now for 
h : E + AAE be the unit of the adjunction A + A. For any (Y : J + AE, if 

any E, let 

El-E 

I I 
AJ - AA E 

A0 

is a pullback, then by indexedness of the adjunction 

is also a pullback, so J z AE’ and the morphism E’+ AJ is essentially the unit 
h’ : E’+ AAE’. For an Y-definable Eow E’ we have a pullback 

E’-AR 

I I Al 

Eo -Al 

so by adjointness there exists a unique AE’+ R such that 

AAE’ AE’ 

/ 
E’ 

\ I I 
AR R . 
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Pulling back in stages we get pullbacks 

E’ - AilE’ - AL? 

Eo-AK-Al 

and the following the left square by the isomorphism AE’=J, we get a pullback 

E’ - AJ 

I I 
Eo -AK 

which shows that h : E -+ AAE is a family of molecules. 

Since x.,E(h) = E, this proves (b). 

Conversely, assume (a) and (b) are satisfied. We shall show that the conditions of 

Theorem 12 are satisfied. (1) is obvious. Given any E in 8, express it as a sum of 

molecules indexed by some object which we will call .1E: 

h:E-*AAE. 

Then h is a molecule in 8/A. \E and for any I is Y 

ExAI - E 

1 
A.\ExAl 

Ill 
I 

A(.,tE x I)- AAE 

is a pullback, so for any Y-definable subobject Eo=-E x AI there exists a unique 

lo * A E x I such that 

Eo -ExAf 

I I 
AI, - A(itE x I) 

is a pullback. This gives us the isomorphism of lattices required to establish (2). 

We prove (3”) of Proposition 13 rather than (3). To see 3”(a), let Eo-EI and 

El ++ E be two Y-definable subobjects and write E as a sum of molecules 

h : E + A.4E. 
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Since (h) is a :tE family of molecules there exists a unique K, w.iE making 

E, -E 

I I 
AK, -A.iE 

into a pullback. Since Eo>-, El is Y-definable, the defining property of a family of 

molecules says that there exists a unique Ko*K, such that 

I I 
AK<,- AK, 

is a pullback. Pasting these two pullbacks exhibits E,M E as a pullback of 

A(KowAE) and so Eo~E is Y-definable. 

Finally, to show 3”(b), let Eo- E x Al be an Y-definable subobject. As in the 

proof of (2) above, there exists a unique lo ++AE x I such that the left square below is 

a pullback (the right one is trivially) 

PI 
Eos-----+ExAI----+E 

I I I 
Al,-A(AEW,,pAAE 

I 

Therefore Eo + E is an Y-definable morphism and so its image, which is LJlEo H E, is 
Y-definable. q 

5. The Yet case 

When the base category 9’ is the category of sets, the above results become 

simpler. In the first place, all functors into Yet are indexed and so we need only 

consider ordinary adjoints A i A. Secondly, Yer being Boolean, d is 

(;, : 1+ 1 --f R, 

which is always manic. An Y-definable subobject is therefore the same thing as a 

complemented subobject. The definition of molecule also simplifies to that of an 

object M whose only complemented subobjects are 0 and M (and M f 0), i.e. M is 
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indecomposable. We should point out, however, that families of objects of $ as we 

defined them, namely E --* AZ, are not quite the usual families. They correspond to 

ordinary families (E,)iar which are bounded in the sense that there exist an object B 
in 8 and monomorphisms (Ei - B)i,r. If 8 has coproducts (which it does when 8 is 

Grothendieck) then these families are the same as ordinary families. 

We now restate our charatiterizations of molecular toposes, incorporating the 

simplifications which occur when 9’ is taken to be Yet. 

Theorem 15. Let $ be an elementary topos defined over Yet. Then the following 
conditions are equivalent. 

(1) 8 is molecular (i.e. d : Yeef+ 8 has a left adjoint). 
(2) 4 preserves exponentiation. 
(3) (a) For every object E of 8, the lattice of complemented subobjects of E is a 

complete atomic boolean algebra, i.e. there is a set ,IE such that we have an 
isomorphism of lattices [E, 21z = [AE, 2]~.,, 

(b) arbitrary unions of complemented subobjects are again complemented. 
(4) Every object of E is a sum of molecules (i.e. indecomposables). 

Proof. Since the base category is Yet, indexed adjointness is the same as ordinary 

adjointness and strong adjointness. It follows that (l)-(2) by Theorem 2. 

Condition (3) is equivalent to the conditions of Theorem 12, with (3”). Indeed 

condition (1) of Theorem 12 and (3”a) of Proposition 13 are automatic when Y = Yer 

(or any boolean topos), (3”b) is the same as 3(b) above, and condition (2) Theorem 

12, is the same as 3(a) above. 
- 

Finally (4)*(l) by Theorem 14. - 

Definition. A site .U is called molecular if the covering sieves are nonempty and 

connected [a sieve on M is considered as a full subcategory of the slice category 

yiY/M). 

Theorem 16. Let 8 be a Grothendieck topos. Then the follorcing are equivalent. 
(1) i% is molecular (over Yet). 
(2) Every element of some generating set for g is a sum of molecules. 
(3) 8 is equivalent to a category of sheaves on some site for \c,hich the constant 

presheaves are sheaves. 
(4) 8 is equivalent to a category of sheaves on a molecular site. 

Proof. It follows immediately from Theorem 14 that (l)-(Z). 

Now, assume (2) and write each of the generators as a sum of (a set of) molecules 

and let ,I[ be the full subcategory of 8 determined by those molecules used. .M is a 

small category and itsobjects generate 8. Give .II the topology induced [7, III 3.11 b; 

the canonical topology on 8. By Corollary l.,. 7 1 of [7, IV], 5 is equivalent to _(I 

(sheaves on “II), the equivalence being given by the functor % -+ ,fi which sends E to 
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[ -, El8 restricted to .U. For any M in J4 and Z in Yer, 

[M, ‘JZ]a = [MZ, Z]Yc, z [l, Z]ye, = Z 

where .lM = 1 since M is a molecule. Thus the constant presheaf with value Z is 

[ -, Alla restricted to ;I(, and therefore is a sheaf. This shows that (2) + (3). 

Denote the constant presheaf with value Z by C(Z):.IIoP+.9’eet. C(Z) is a sheaf if 

and only if for every M in ,U and every covering sieve R of M, the canonical 

morphism 

c(l)(!Mjj!im(C(l)(M’)I(M’~M)~ R) 

is an isomorphism, i.e. 

diag : Z --f Z n,tR) 

is an isomorphism, where T,,(R) denotes the set of connected components of R. If Z is 

not 0 or 1, diag is an isomorphism if and only if sro(R) = 1. Therefore the constant 

presheaves are sheaves if and only if the site is molecular. Thus (3)H(4). 

If .I[ is any site, the category of presheaves, A.?, is always molecular over P’er, so we 

have adjoint functors A,1 -I ~1 -I f. If the constant presheaves are sheaves, then d 

factors through i :.k~,k, say d =iA’. Then .4’ is easily seen to be left adjoint to 

fi = f’ and this adjoint pair is easily seen to be the geometric morphism _k -+ .Yer. 

Then 

[,liE, Xl:/_-, =[iE, JX]_,i=[iE, iJ’X]_,i=[E, J’M],,i 

shows that _ 1’ = .I i is left adjoint to d’. Thus (3) 3 (1). 

Remark. As seen from the above proof, it is sufficient that any constant presheaf, 

whose value is not 0 or 1, be a sheaf in order that the site be molecular. 

Example. If X is a locally connected space, then every open set is the disjoint union 

of its connected components (with the disjoint union topology) and since the opens, 

considered as subobjects of 1, are a generating family for Sh(X), and connected 

opens are molecules, it follows by Theorem 16 that Sh(X) is molecular. Conversely, 

if Sh(X) is molecular, then X must be locally connected since every open set must be 

a disjoint union of molecules. Geometrically, it associates to a local homeomor- 

phism E--,X, the set of connected components of E, T~,J E ). 

6. Local character of molecular toposes 

The following theorem says that being molecular is a local property (see [7, IV.81). 

Theorem 17. Let r: 8 -f Ybe n morphism of elementary toposes. 

(1) Zf 8 is Y-molecular then %/AZ is Y/Z-molecular for any Z in Y. 



1.52 M. Barr, R. Pare’ 

(2) If Z has full support (i.e. I +>l) and 8/4I is Y/I-molecular, then 8 is 
Y-molecular. 

Proof. (1) is immediate since to say that A is an indexed left adjoint means that for 
every J, 4’ : Y/J + 8/4J has a left adjoint A’ and the A’ are compatible with pulling 
back. Then use the isomorphism (S@/l)/(a : J + I) 3 Y/J. 

Now assume that I has full support and that g/41 is .9/I-molecular and consider 
the commutative diagram of inverse images of geometric morphisms 

(Al )* 
8/4J - Gf 

I* is logical and so preserves Z7, for all (Y in Y and by Theorem 5, A’ also preserves 
Ii. Since (AI)* preserves Z7 also and reflects isos, the canonical morphism 4 - II.. + 

&.I, * 4 is an iso in 8 and so by Theorem 5, 8 is molecular over 9. 
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